The taxonomic history of the enigmatic Papuan snake genus Toxicocalamus (Elapidae: Hydrophiinae), with the description of a new species from the Managalas Plateau of Oro Province, Papua New Guinea, and a revised dichotomous key

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.

Help

 

Have Institutional Access?

Login with your institution. Any other coaching guidance?

Connect

Abstract

We trace the taxonomic history of Toxicocalamus, a poorly known genus of primarily vermivorous snakes found only in New Guinea and associated island archipelagos. With only a relatively limited number of specimens to examine, and the distribution of those specimens across many natural history collections, it has been a difficult task to assemble a complete taxonomic assessment of this group. As a consequence, research on these snakes has undergone a series of fits and starts, and we here present the first comprehensive chronology of the genus, beginning with its original description by George Albert Boulenger in 1896. We also describe a new species from the northern versant of the Owen Stanley Range, Oro Province, Papua New Guinea, and we present a series of comparisons that include heretofore underused characteristics, including those of unusual scale patterns, skull details, and tail tip morphology. Defined by the smallest holotype in the genus, the new species is easily differentiated from all other Toxicocalamus by a combination of the following eidonomic characters: fused prefrontal-internasal scute; single preocular, separate, not fused with prefrontal; minute circular, counter-sunk naris in the centre of a large, undivided, nasal scute; paired postoculars; single anterior temporal and paired posterior temporals; six supralabials, with 3rd and 4th supralabial contacting the orbit; dorsal scales in 15-15-15 rows; 235 ventral scales, 35 paired subcaudal scales; paired cloacal scales preceded by paired precloacal scales; and a short, laterally slightly compressed, ‘Ultrocalamus-type’ tail, terminating in a short conical scale. Differences from congeners in skull morphology include a reduced anterior extent of the parasphenoid, termination of the palatine tooth row at the anterior level of the parasphenoid, extent and shape of the premaxilla, shape and size of the prootics, extent and shape of the exoccipitals and occipital condyles, and features of the atlas-axis complex. This is the fifteenth species in the genus Toxicocalamus.

The taxonomic history of the enigmatic Papuan snake genus Toxicocalamus (Elapidae: Hydrophiinae), with the description of a new species from the Managalas Plateau of Oro Province, Papua New Guinea, and a revised dichotomous key

in Amphibia-Reptilia
Sections
References
  • AdlerK. (2007): Contributions to the History of Herpetology vol. 2. Society for the Study of Amphibians and ReptilesLawrence, KS.

  • AllisonA.BickfordD.RichardsS.TorrG. (1998): Herpetofauna and Appendix 15. Herpetofauna species accounts. In: A Biological Assessment of the Lakekamu Basin Papua New Guinea. RAP Working Papers 9 p. 58-62 and 157-172. MackA.L. Ed. Conservation InternationalWashington, DC.

    • Search Google Scholar
    • Export Citation
  • BarbourT. (1908): Some new reptiles and amphibians. Bull. Mus. Comp. Zool. 51: 315-325.

  • BogertC.M.MatalasB.L. (1945): Results of the Archbold Expeditions. No. 53. A review of the elapid genus Ultrocalamus of New Guinea. Am. Mus. Novit. 1284: 1-8.

    • Search Google Scholar
    • Export Citation
  • BoulengerG.A. (1896): Description of a new genus of elapine snakes from Woodlark Island, British New Guinea. Ann. Mag. Nat. Hist. 18: 152.

    • Search Google Scholar
    • Export Citation
  • BoulengerG.A. (1897): An account of the reptiles and batrachians collected by Dr. L. Loria in British New Guinea. Ann. Mus. Civ. Stor. Nat. Genova Ser. 2 38: 694-710.

    • Search Google Scholar
    • Export Citation
  • BoulengerG.A. (1903): Descriptions of new reptiles from British New Guinea. Proc. Zool. Soc. London 1903: 125-129.

  • BoulengerG.A. (1904): Descriptions of three new snakes. Ann. Mag. Nat. Hist. 13: 450-452.

  • BoulengerG.A. (1908): Description of a new elapine snake of the genus Apisthocalamus, Blg., from New Guinea. Ann. Mag. Nat. Hist. 1: 248-249.

    • Search Google Scholar
    • Export Citation
  • BoulengerG.A. (1914): An annotated list of the batrachians and reptiles collected by the British Ornithologists’ Union Expedition and the Wollaston Expedition in Dutch New Guinea. Trans. Zool. Soc. London 20: 247-274.

    • Search Google Scholar
    • Export Citation
  • CalveteJ.J.GhezellouP.PaivaO.MatainahoT.GhassempourA.GoudarziH.KrausF.SanzL.WilliamsD.J. (2012): Snake venomics of two poorly known Hydrophiinae: comparative proteomics of the venoms of terrestrial Toxicocalamus longissimus and marine Hydrophis cyanocinctus. J. Proteom. 75: 4091-4101.

    • Search Google Scholar
    • Export Citation
  • CoggerH.G. (2014): Reptiles and Amphibians of Australia7th Edition. Reed New HollandChatswood, New South Wales.

  • De VisC.W. (1905): A new genus of lizards. Ann. Queensl. Mus. 6: 46-52.

  • GreerA.E. (1997): The Biology and Evolution of Australian Snakes. Surrey Beatty & SonsChipping Norton, New South Wales.

  • HopeG.S.GolsonJ.AllenJ. (1983): Palaeoecology and prehistory in New Guinea. J. Hum. Evol. 12: 37-60.

  • HornH.-G.SweetS.S.PhilippK.M. (2007): On the distribution of the Papuan monitor (Varanus salvadorii Peters & Doria, 1878) in New Guinea. In: Advances in Monitor Research III p. 25-43. HornH.-G.BöhmeW.KrebsU. Eds Deutsche Gesellschaft für Herpetologie und TerrarienkundeRheinbach.

    • Search Google Scholar
    • Export Citation
  • IngerR.F.MarxH. (1965): The systematics and evolution of the oriental colubrid snakes of the genus Calamaria. Fieldiana Zool. 49: 1-304.

    • Search Google Scholar
    • Export Citation
  • IngramG.J. (1989): Vanapina lineata de Vis, 1905 is a junior synonym of the New Guinean snake Toxicocalamus longissimus Boulenger, 1896. Copeia 1989: 753-754.

    • Search Google Scholar
    • Export Citation
  • KinghornJ.R. (1928): Notes on some reptiles and batachians from the northern division of Papua, with descriptions of new species of Apisthocalamus and Lygosoma. Rec. Aust. Mus. 16: 289-293.

    • Search Google Scholar
    • Export Citation
  • KöhlerG. (2012): Color Catalogue for Field Biologists. HerpetonOffenbach.

  • KrausF. (2009): New species of Toxicocalamus (Squamata: Elapidae) from Papua New Guinea. J. Herpetol. 65: 460-467.

  • KrausF. (2017): Two new species of Toxicocalamus (Squamata: Elapidae) from Papua New Guinea. J. Herpetol. 51: 574-581.

  • LongC. (1981): Centenary of the Natural History Museum: a hundred years of zoology entomology palaeontology mineralogy. London Newspaper Group. Available at http://www.christopherlong.co.uk/pri/nathistmus.html (accessed on 14 October 2017).

  • LönnbergA. (1900): Reptiles and amphibians collected in German New Guinea by the late Dr. Erik Nyman. Ann. Mag. Nat. Hist. 6: 574-582.

    • Search Google Scholar
    • Export Citation
  • LuiselliL. (2006): Resource partitioning and interspecific competition in snakes: the search for general geographical and guild patterns. Oikos 114: 193-211.

    • Search Google Scholar
    • Export Citation
  • MarxH.RabbG.B. (1970): Character analysis: an empirical approach applied to advanced snakes. J. Zool. (Lond.) 161: 525-548.

  • MarxH.RabbG.B. (1972): Phyletic analysis of fifty characters of advanced snakes. Fieldiana Zool. 63: 1-321.

  • McDowellS.B. (1967): Aspidomorphus, a genus of New Guinea snakes of the family Elapidae, with notes on related genera. J. Zool. (Lond.) 151: 497-543.

    • Search Google Scholar
    • Export Citation
  • McDowellS.B. (1969): Toxicocalamus, a New Guinea genus of snakes of the family Elapidae. J. Zool. (Lond.) 159: 443-511.

  • MirtschinP.DavisR. (1982): Dangerous Snakes of Australia. RigbyAdelaide, South Australia.

  • MirtschinP.RasmussenA.R.WeinsteinS.A. (2017): Australia’s Dangerous Snakes: Identification Biology and Envenoming. CSIROClayton South, Victoria.

    • Search Google Scholar
    • Export Citation
  • MurphyJ.C.MumpuniDe LangR.GowerD.J.SandersK.L. (2012): The Moluccan short-tailed snakes of the genus Brachyorrhus Kuhl (Squamata: Serpentes: Homalopsidae, and the status of Calamophis Meyer. Raffles Bull. Zool. 60: 501-514.

    • Search Google Scholar
    • Export Citation
  • NatuschD.J.D.ShineR. (2012): Measuring body lengths of preserved snakes. Herpetol. Rev. 43: 34-35.

  • O’SheaM. (2005): Venomous Snakes of the World. New HollandLondon.

  • O’SheaM.ParkerF.KaiserH. (2015): A new species of New Guinea worm-eating snake, genus Toxicocalamus (Serpentes: Elapidae), from the Star Mountains of Western Province, Papua New Guinea, with a revised dichotomous key to the genus. Bull. Mus. Comp. Zool. 161: 241-264.

    • Search Google Scholar
    • Export Citation
  • O’SheaM.KaiserH. (2016): The first female specimen of the poorly known Arfak stout-tailed snake, Calamophis sharonbrooksae Murphy, 2012, from the Vogelkop Peninsula of Indonesian West New Guinea, with comments on the taxonomic history of primitive homalopsids. Amphib. Rept. Conserv. 10: 1-10.

    • Search Google Scholar
    • Export Citation
  • O’SheaM.HerlihyB.PaivuB.ParkerF.RichardsS.J.KaiserH. (2018): Rediscovery of the rare Star Mountains worm-eating snake, Toxicocalamus ernstmayri O’Shea et al., 2015 (Serpentes: Elapidae: Hydrophiinae) with the description of its coloration in life. Amphib. Rept. Conserv. 12: 27-34.

    • Search Google Scholar
    • Export Citation
  • O’SheaM.KaiserH. (2018): Erroneous environs or aberrant activities? Reconciling unexpected collection localities for three New Guinea worm-eating snakes (Toxicocalamus, Serpentes, Elapidae) using historical accounts. Herpetol. Rev. 49: 189-207.

    • Search Google Scholar
    • Export Citation
  • PigramC.J.DaviesH.L. (1987): Terranes and the accretion history of the New Guinea orogen. BMR J. Austral. Geol. Geophys. 10: 193-211.

    • Search Google Scholar
    • Export Citation
  • PrattA.E. (1906): Two Years Amongst New Guinea Cannibals: a Naturalist’s Sojourn Among the Aborigines of Unexplored New Guinea. Seeley & Co.London.

    • Search Google Scholar
    • Export Citation
  • SabajM.H. (2016): Standard symbolic codes for institutional resource collections in herpetology and ichthyology: an online reference. Version 6.5 (16 August 2016). Available at http://www.asih.org. American Society of Ichthyologists and Herpetologist Washington DC.

  • SchüzE. (1929): Verzeichnis der Typen des Staatlichen Museums für Tierkunde in Dresden. Part 1. Fische, Amphibien und Reptilien mit einem Anhang: Die Schlangen der papuanischen Ausbeute Dr. Schlaginhaufen 1909. Abh. Ber. Mus. Tierk. Völkerk. Dresden 17: 14-16.

    • Search Google Scholar
    • Export Citation
  • ShineR.KeoghJ.S. (1996): Food habits and reproductive biology of the endemic Melanesian elapids: are tropical snakes really different? J. Herpetol. 30: 238-247.

    • Search Google Scholar
    • Export Citation
  • SmithM.A. (1926): Monograph of the Sea-Snakes (Hydrophiidae). British Museum (Natural History)London.

  • SternfeldR. (1913): Beiträge zur Schlangenfauna Neuguineas und der benachbarten Inselgruppen. Sitzungsber. Ges. Naturforsch. Freunde Berlin 1913: 384-389.

    • Search Google Scholar
    • Export Citation
  • StricklandJ.L.CarterS.KrausF.ParkinsonC.L. (2016): Snake evolution in Melanesia: origin of the Hydrophiinae (Serpentes, Elapidae), and the evolutionary history of the enigmatic New Guinean elapid Toxicocalamus. Zool. J. Linn. Soc. 177: 1-16.

    • Search Google Scholar
    • Export Citation
  • SwadźbaE.MaślakR.RupikW. (2009): Light and scanning microscopic studies of integument differentiation in the grass snake Natrix natrix L. (Lepidosauria, Serpentes) during embryogenesis. Acta Zool. 90: 30-41.

    • Search Google Scholar
    • Export Citation
  • UetzP.FreedP.HošekJ. (2018): The reptile database. Available at http://www.reptile-database.org (accessed on 27 March 2018).

  • WallachV. (1995): A new genus for the Ramphotyphlops subocularis species group (Serpentes: Typhlopidae), with description of a new species. Asiat. Herpetol. Res. 6: 132-150.

    • Search Google Scholar
    • Export Citation
  • WilsonS.K.SwanG. (2017): A Complete Guide to the Reptiles of Australia5th Edition. New HollandSydney, New South Wales.

  • WollastonA.F.R. (1914): Expedition to Dutch New Guinea. Geogr. J. 43: 248-268.

Figures
  • View in gallery

    Map of New Guinea and surrounding islands, showing the mainland and offshore distribution of the genus Toxicocalamus, with the localities of type specimens indicated. The listed localities include those for types of currently recognized species (yellow circles), taxa in synonymy (white circles), and species without precise type locality data (yellow square). The portion of the map shaded in red indicates the known distribution of Toxicocalamus. The numbers inside the symbols correspond to the following listing, with synonyms identified by a lower case letter following the number of the valid species. Valid taxa are listed in alphabetical order following the new species. (1) Jarefa Camp, Itokama, Oro Province, PNG; holotype of Toxicocalamus pumehanae sp. nov. (BPBM 36185). (2) “German New Guinea,” without precise locality data; holotype of T. buergersi (ZMB 25232). (2a) Torricelli Mountains, Sandaun Province, PNG; holotype of Ultrocalamus latisquamatus, synonym of T. buergersi (MTKD 2360, lost). (3) Haia, Crater Mountain Wildlife Management Area, Simbu Province, PNG; holotype of T. cratermontanus (USNM 562941). (4) Wangbin, Star Mountains, Western Province, PNG; holotype of T. ernstmayri (MCZ R-145946). (5) Launch Camp, Setekwa River, Papua Province, Indonesia; holotype of T. grandis (BMNH 1946.1.18.34). (6) Mount Rossel, Rossel Island, Louisiade Archipelago, Milne Bay Province, PNG; holotype of T. holopelturus (AMNH R-76660). (7) Woodlark Island, Milne Bay Province, PNG; paralectotype and lectotype of T. longissimus (BMNH 1946.1.18.93). (8) Haveri, Bartholomew Range, Central Province, PNG; holotype of T. loriae (MSNG 29141). (8a) Mount Lamington, Oro Province, PNG; holotype and paratypes of Apisthocalamus lamingtoni, synonym of T. loriae (AM R-9351-52, 61027). (8b) Fakfak, Onin Peninsula, West Papua Province, Indonesia, syntypes of A. loennbergii (BMNH 1946.1.18.24-26, MCZ R-76634). (8c) Sattelberg, Huon Peninsula, Morobe Province, PNG; syntypes of Pseudapistocalamus nymani, synonym of T. loriae (BMNH 1946.1.17.57, MCZ R-76627-28, USPZ 2387). (8d) Dinawa, Central Province, PNG; holotype of A. pratti, synonym of T. loriae (BMNH 1946.1.14.53). (9) Mount Rio, Sudest Island, Louisiade Archipelago, Milne Bay Province, PNG; holotype of T. mintoni (BPBM 20822). (10) Mount Sisa, Misima Island, Louisiade Archipelago, Milne Bay Province, PNG; holotype of T. misimae (AMNH R-76684). (11) Oya Waka and Basima, Fergusson Island, d’Entrecasteaux Archipelago, Milne Bay Province, PNG; holotype and paratype of T. nigrescens respectively (BPBM 16545, 16544). (12) Cloudy Mountains, Milne Bay Province, PNG; holotype of T. pachysomus (BPBM 15771). (13) Seleo Island, Sandaun Province, PNG; holotype of T. preussi preussi (ZMB 23848). (14) Palmer Junction, Upper Fly River, Western Province, PNG; paratype and holotype of T. preussi angusticinctus (AMNH R-57512). (15) Purosa, Eastern Highlands Province, PNG; holotype of T. spilolepidotus (AMNH R-85745). (16) Same locality as 7d; holotype of T. stanleyanus (BMNH 1904.3.17.13). The type locality of Vanapina lineata (Vanapa River, Central Province, PNG), which some have considered a synonym of T. longissimus, is not illustrated due to loss of the specimen and lingering doubt over its correct placement into Toxicocalamus. The circled question mark in New Britain indicates Uasilau, the reported collection locality for an extant specimen of Toxicocalamus. Scale = 1000 km. N = North.

  • View in gallery

    Holotype of Toxicocalamus pumehanae sp. nov. (BPBM 36185) in life, illustrating yellow pigment on supralabials, anterior head scutes, and conical tail cap. Photo by Allen Allison.

  • View in gallery

    Holotype of Toxicocalamus pumehanae sp. nov. (BPBM 36185) in (A) dorsal and (B) ventral views. Scale = 5 cm.

  • View in gallery

    Satellite map of the region around Jarefa Camp, indicated by a red dot, the type locality for Toxicocalamus pumehanae sp. nov., on the eastern versant of the Owen Stanley Range, southern Oro Province, Papua New Guinea. Scale = 25 km. N = North.

  • View in gallery

    Detailed views of head and tail of Toxicocalamus pumehanae sp. nov. (BPBM 36185), presented for clarity as both photographic and line-drawn illustrations. (A, A′) Dorsal view of the head showing, rostal (R), fused prefrontal-internasals (PF-IN shaded), supraoculars (SO), frontal (F), and parietals (P). (B, B′) Ventral view, showing the scale arrangement of six infralabials (IL1-IL6), paired anterior genials (AG) and posterior genials (PG), intergenials (IG), the mental (M), and the first ventral scute (V1). (C, C′) Right lateral view, showing undivided nasal (N), fused prefrontal-internasal (PF-IN shaded), a separate, single preocular (PR), paired postoculars (PO), a single anterior temporal (AT), and paired posterior temporals (PT). Six supralabials (SL1-SL6) are present, with SL3 and SL4 in contact with the orbit. (D, D′) Left lateral view, identical to left lateral view. (E, E′) Ventral view of the cloacal region showing the last ventral (V235), paired precloacals (PC), paired cloacals (CP), and first subcaudals (SC). (F, F′) Lateral view of the laterally compressed tail, showing the conical terminal scale. The scale is 5.0 mm for the head views (A-D).

  • View in gallery

    Comparisons between head scute fusion arrangements in the genus Toxicocalamus. Scute abbreviations include preocular (PR), prefrontal (PF), internasal (IN), frontal (F), and supraocular (SO). Coloured bars indicate fusion of different sets of scutes. Members of Toxicocalamus not included in this table do not exhibit head scute fusion.

  • View in gallery

    Comparative data for species in the genus Toxicocalamus, including T. pumehanae sp. nov. Displayed characteristics include the number of specimens examined (n) and maximum lengths for males and females. Asterisks (*) denote specimens with an incomplete tail. For missing data, we use the symbol ⊙ when no specimens exist and ∙ where specimens exist but cannot be evaluated for the character (e.g. due to truncated tails). Abbreviations include snout-vent length (SVL), tail length (TL), total length (TTL), frontal (F), internasal (IN), postoculars (PO), prefrontals (PF), preoculars (PR), supralabial (SL), and supraocular (SO).

  • View in gallery

    (Continued.)

  • View in gallery

    (Continued.)

  • View in gallery

    Fusion of dorsal head scutes and supralabial scale counts in various species of Toxicocalamus. Abbreviations include preocular (PR), prefrontal (PF), internasal (IN), supraocular (SO), frontal (F), and supralabial (SL). (A) BPBM 36185, holotype of Toxicocalamus pumehanae sp. nov., with separate PR and fused PF + IN. (B) AMNH 75001, T. buergersi, (the holotype of T. buergersi (ZMB 25232) is too desiccated to allow an accurate head drawing), (C) ZMB 23948, holotype of T. preussi preussi, and (D) AMNH 57512, holotype of T. p. angusticinctus, with fused PR + PF + IN. (E) BPBM 20822, the holotype of T. mintoni, with separate IN, fused PR + PF, and fused SO + F + SO. (F) BMNH 1946.1.18.42, holotype of T. longissimus, (G) AMNH 76684, holotype of T. misimae, (H) BMNH 1946.1.17.55, holotype of T. stanleyanus, and (I) USNM 562941, holotype of T. cratermontanus, with fused PR + PF. All other Toxicocalamus species exhibit the typical ‘colubrid-elapid nine-scute arrangement,’ in which all of these scutes are separated. Figures are not to scale.

  • View in gallery

    Tail tip shape and termination in various species of Toxicocalamus. (A) BPBM 36185, holotype of T. pumehanae sp. nov. (B) AMNH R-75236, T. buergersi. (C) ZMB 23948, holotype of T. preussi preussi. (D) AMNH R-75512, holotype of T. p. angusticinctus. (E) BMNH 1946.1.18.34, holotype of T. grandis. (F) MCZ R-145946, holotype T. ernstmayri. (G) UPNG 365, T. loriae. (H) BPBM 16545, holotype of T. nigrescens. (I) BMNH 1946.1.18.93, lectotype of T. longissimus. (J) BPBM 20829, T. holopelturus. (K) AMNH R-76684, holotype of T. misimae. (L) PNGM 22132, T. spilolepidotus. (M) BMNH 1908.10.14.10, T. stanleyanus. (N) USNM 562941, holotype of T. cratermontanus. Figures are not to scale. Note: Toxicocalamus mintoni and T. pachysomus are known only from single specimens with truncated tails and are not included in this figure.

  • View in gallery

    X-ray images of the tail tips of selected species of Toxicocalamus. (A) T. pumehanae sp. nov. (holotype; BPBM 36185). (B) T. buergersi (AM 129231). (C) T. loriae (paratype of Apisthocalamus lamingtoni; AM 9352). (D) T. longissimus (AM 124858). (E) T. loriae (BPBM 38855). (F) T. misimae (AM 125026). (G) T. grandis (holotype; BMNH 1946.1.18.34). (H) T. ernstmayri (holotype; MCZ R-145946).

  • View in gallery

    X-ray images of the skulls of selected species of Toxicocalamus. (A) T. pumehanae sp. nov. (holotype; BPBM 36185). (B) T. buergersi (AM 129231). (C) T. loriae (paratype of Apisthocalamus lamingtoni; AM 9352). (D) T. longissimus (AM 124858). (E) T. loriae (BPBM 38855). (F) T. misimae (AM 125026). (G) T. grandis (holotype; BMNH 1946.1.18.34). (H) T. ernstmayri (holotype; MCZ R-145946). Scales = 10 mm.

Index Card
Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 191 191 15
Full Text Views 43 43 0
PDF Downloads 21 21 0
EPUB Downloads 2 2 0