Purchase instant access (PDF download and unlimited online access):
Crocodilians usually remain inside or near their nests during most vulnerable life stages (as eggs, neonates and reproductive females). Thus, protection of nesting sites is one of the most appropriate conservation actions for these species. Nesting sites are often found across areas with difficult access, making remote sensing a valuable tool used to derive environmental variables for characterisation of nesting habitats. In this study, we (i) review crocodilian nesting habitats worldwide to identify key variables for nesting site distribution: proximity to open-water, open-water stability, vegetation, light, precipitation, salinity, soil properties, temperature, topography, and flooding status, (ii) present a summary of the relative importance of these variables for each crocodilian species, (iii) identify knowledge gaps in the use of remote sensing methods currently used to map potential crocodilian nesting sites, and (iv) provide insight into how these remotely sensed variables can be derived to promote research on crocodilian ecology and conservation. We show that few studies have used remote sensing and that the range of images and methods used comprises a tiny fraction of what is available at little to no cost. Finally, we discuss how the combined use of remote sensing methods – optical, radar, and laser – may help overcome difficulties routinely faced in nest mapping (e.g., cloud cover, flooding beneath the forest canopy, or complicated relief) in a relevant way to crocodilians and to other semiaquatic vertebrates in different environments.
Adugna, C., Kiros, S., Dejene, T., Asmelash, T., Hadgu, K.M. (2017): Distribution and habitat suitability of Nile crocodile (Crocodylus niloticus, L. 1768) in Tekeze River Dam, Tigray, Ethiopia. Int. J. Biodivers. Conserv. 9: 350-362.
Anderson, K., Gaston, K.J. (2013): Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 11: 138-146.
Arnesen, A.S., Silva, T.S.F., Hess, L.L., Novo, E.M.L.M., Rudorff, C.M., Chapman, B.D., McDonald, K.C. (2013): Monitoring flood extent in the lower Amazon River floodplain using ALOS PALSAR ScanSAR images. Remote Sens. Environ. 130: 51-61.
Arraut, E.M., Arraut, J.L., Marmontel, M., Mantovani, J.E., Novo, E.M.L.M. (2017): Bottlenecks in the migration routes of Amazonian manatees and the threat of hydroelectric dams. Acta Amazon. 47: 7-18.
Arraut, E.M., Marmontel, M., Mantovani, J.E., Novo, E.M.L.M., MacDonald, D.W., Kenward, R.E. (2010): The lesser of two evils: seasonal migrations of Amazonian manatees in the western Amazon. J. Zool. 280: 247-256.
Asner, G.P. (2001): Cloud cover in Landsat observations of the Brazilian Amazon. Int. J. Remote Sens. 22: 3855-3862.
Asner, G.P. (2015): Organismic remote sensing for tropical forest ecology and conservation. Ann. Mo. Bot. Gard. 100: 127-140.
Asner, G.P., Ustin, S.L., Townsend, P.A., Martin, R.E., Chadwick, K.D. (2015): Forest biophysical and biochemical properties from hyperspectral and LiDAR remote sensing. In: Land Resources Monitoring, Modeling, and Mapping With Remote Sensing, p. 429-448. Thenkabail, P.S., Ed., CRC Press, Boca Raton, FL, USA.
Berry, P.A.M., Garlick, J.D., Freeman, J.A., Mathers, E.L. (2005): Global inland water monitoring from multi-mission altimetry. Geophys. Res. Lett. 32: L16401.
Betbeder, J., Rapinel, S., Corpetti, T., Pottier, E., Corgne, S., Hubert-Moy, L. (2014): Multitemporal classification of TerraSAR-X data for wetland vegetation mapping. J. Appl. Remote Sens. 8: 083648.
Beyer, H.G., Costanzo, C., Heinemann, D. (1996): Modifications of the Heliosat procedure for irradiance estimates from satellite images. Sol. Energ. 56: 207-212.
Bezuijen, M.R., Cox, J.H.Jr., Thorbjarnarson, J.B., Phothitay, C., Hedemark, M., Rasphone, A. (2013): Status of Siamese crocodile (Crocodylus siamensis) Schneider, 1801 (Reptilia: Crocodylia) in Laos. J. Herpetol. 47: 41-65.
Bezuijen, M.R., Webb, G.J.W., Hartoyo, P., Samedi. (2001): Peat swamp forest and the false gharial Tomistoma schlegelii (Crocodilia, Reptilia) in the Merang River, eastern Sumatra, Indonesia. Oryx 35: 301-307.
Bogning, S., Frappart, F., Blarel, F., Niño, F., Mahé, G., Bricquet, J.-P., Seyler, F., Onguéné, R., Etamé, J., Paiz, M.-C., Braun, J.-J. (2018): Monitoring water levels and discharges using radar altimetry in an ungauged river basin: the case of the Ogooué. Remote Sens. 10: 350.
Bwangoy, J.-R., Hansen, M.C., Roy, D.P., De Grandi, G., Justice, C.O. (2010): Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices. Remote Sens. Environ. 114: 73-86.
Campos, Z., Mourão, G., Coutinho, M., Magnusson, W.E., Soriano, B.M. (2015): Spatial and temporal variation in reproduction of a generalist crocodilian, Caiman crocodilus yacare, ina seasonally flooded wetland. PLoS One 10: e0129368.
Combrink, X., Korrûbel, J.L., Kyle, R., Taylor, R., Ross, P. (2011): Evidence of a declining Nile crocodile (Crocodylus niloticus) population at Lake Sibaya, South Africa. S. Afr. J. Wildl. Res. 41: 145-157.
Corbane, C., Lang, S., Pipkins, K., Alleaume, S., Deshayes, M., Millán, V.E.G., Strasser, T., Borre, J.V., Toon, S., Michael, F. (2015): Remote sensing for mapping natural habitats and their conservation status – new opportunities and challenges. Int. J. Appl. Earth Obs. 37: 7-16.
Cowling, S.A., Field, C.B. (2003): Environmental control of leaf area production: implications for vegetation and land-surface modelling. Global Biogeochem. Cy. 17: 1007.
Crétaux, J.-F., Jelinski, W., Calmant, S., Kouraev, A., Vuglinski, V., Bergé-Nguyen, M., Gennero, M.-C., Nino, F., Abarca Del Rio, R., Cazenave, A., Maisongrande, P. (2011): SOLS: a lake database to monitor in the near real time water level and storage variations from remote sensing data. Adv. Space Res. 47: 1497-1507.
Dekker, A.G., Vos, R.J., Peters, S.W. (2002): Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data. Int. J. Remote Sens. 23: 15-35.
Dettmering, D., Schwatke, C., Boergens, E., Seitz, F. (2016): Potential of ENVISAT radar altimetry for water level monitoring in the Pantanal wetland. Remote Sens. 8: 596.
Development Team QGIS (2015): QGIS Geographic Information System. Available at http://qgis.osgeo.org. [Accessed 20 March 2018].
Duffett, M.L., Harvey, K.R., Hill, G.J.E. (2000): Saltwater crocodile nesting habitat suitability mapping with Landsat TM and GIS, Northern Territory, Australia. In: Proceedings of IGARSS ‘00 – IEEE 2000 International Geoscience and Remote Sensing Symposium 5. Taking the Pulse of the Planet: the Role of Remote Sensing in Managing the Environment, Honolulu, HI, USA, 24-28 July 2000, pp. 1918-1920. IEEE Xplore Publications.
Dzwonkowski, B., Yan, X.-H. (2005): Tracking of a Chesapeake Bay estuarine outflow plume with satellite-based ocean colour data. Cont. Shelf Res. 25: 1942-1958.
Eklundh, L., Jin, H., Schubert, P., Guzinski, R., Heliasz, M. (2011): An optical sensor network for vegetation phenology monitoring and satellite data calibration. Sensors 11: 7678-7709.
Elsey, R.M., Trosclair III, P.L. (2016): The use of an unmanned aerial vehicle to locate alligator nests. Southeast Nat. 15: 76-82.
Evans, T.L., Costa, M.P.F., Telmer, K., Silva, T.S.F. (2010): Using ALOS PALSAR and RADARSAT-2 to map land cover and seasonal inundation in the Brazilian Pantanal. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 3: 560-575.
Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., Alsdorf, D. (2007): The shuttle radar topography mission. Rev. Geophys. 45: 1-43.
Fensholt, R., Sandholt, I. (2005): Evaluation of MODIS and NOAA AVHRR vegetation indices with in situ measurements in a semi-arid environment. Int. J. Remote Sens. 26: 2561-2594.
Fensholt, R., Sandholt, I., Rasmussen, M.S. (2004): Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens. Environ. 91: 490-507.
Ferreira-Ferreira, J., Silva, T.S.F., Streher, A.S., Affonso, A.G., Furtado, L.F.A., Forsberg, B.R., Valsecchi, J., Queiroz, H.L., Novo, E.M.L.M. (2015): Combining ALOS PALSAR derived vegetation structure and inundation patterns to characterize major vegetation types in the Mamirauá Sustainable Development Reserve, Central Amazon floodplain, Brazil. Wetl. Ecol. Manag. 23: 41-59.
Feyisa, G.L., Meilby, H., Fensholt, R., Proud, S.R. (2014): Automated water extraction index: a new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 140: 23-35.
Forkuor, G., Hounkpatin, O.K.L., Welp, G., Thiel, M. (2017): High resolution mapping of soil properties using remote sensing variables in south western Burkina Faso: a comparison of machine learning and multiple linear regression models. PLoS One 12: e0170478.
França, A.M.S., Florenzano, T.G., Novo, E.M.L.M. (2007): Avaliação de fusão de imagens ópticas e microondas no mapeamento de morfologias lacustres. Rev. Bras. Cart. 59: 205-211.
Fulton, R.A., Breidenbach, J.P., Seo, D.-J., Miller, D.A., O’Bannon, T. (1998): The WSR-88D rainfall algorithm. Weather Forecast. 13: 377-395.
Furtado, L.F.A., Silva, T.S.F., Fernandes, P.J.F., Novo, E.M.L.M. (2015): Land cover classification of Lago Grande de Curuai floodplain (Amazon, Brazil) using multi-sensor and image fusion techniques. Acta Amazon. 45: 195-202.
Furtado, L.F.A., Silva, T.S.F., Novo, E.M.L.M. (2016): Dual-season and full-polarimetric C band SAR assessment for vegetation mapping in the Amazon várzea wetlands. Remote Sens. Environ. 174: 212-222.
Gao, B. (1996): NDWI – a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58: 257-266.
Geller, G.N., Halpin, P.N., Helmuth, B., Hestir, E.L., Skidmore, S., Abrams, M.J., Aguirre, N., Blair, M., Botha, E., Colloff, M., Dawson, T., Franklin, J., Horning, N., James, C., Magnusson, W., Santos, M.J., Schill, S.R., Williams, K. (2017): Remote sensing for biodiversity. In: The GEO Handbook on Biodiversity Observation Networks, p. 187-200. Walters, M., Scholes, R.J., Eds, Springer Open, Cham, Switzerland.
Goetz, S., Steinberg, D., Dubayah, R., Blair, B. (2007): Laser remote sensing of canopy habitat heterogeneity as a predictor of bird species richness in an eastern temperate forest, USA. Remote Sens. Environ. 108: 254-263.
Gómez, C., White, J.C., Wulder, M.A. (2016): Optical remotely sensed time series data for land cover classification: a review. ISPRS J. Photogramm. Remote Sens. 116: 55-72.
Gower, S.T., Kucharik, C.J., Norman, J.M. (1999): Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sens. Environ. 70: 29-51.
GPM (2018): Global Precipitation Mission (GPM) Homepage. Available at http://pmm.nasa.gov/GPM. [Accessed 7 September 2018].
GRASS (2012): Geographic Resources Analysis Support System (GRASS) Software. Open Source Geospatial Foundation Project. Available at http://grass.osgeo.org. [Accessed 19 March 2018].
Guisan, A., Thuiller, W. (2005): Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8: 993-1009.
Guo, M., Li, J., Sheng, C., Xu, J., Wu, L. (2017): A review of wetland remote sensing. Sensors (Basel) 17: 777.
Hammer, A., Heinemann, D., Hoyer, C., Kuhlemann, R., Lorenz, E., Muller, R., Beyer, H.G. (2003): Solar energy assessment using remote sensing technologies. Remote Sens. Environ. 86: 423-432.
Hammer, A., Kühnert, J., Weinreich, K., Lorenz, E. (2015): Short-term forecasting of surface solar irradiance based on Meteosat-SEVIRI data using a nighttime cloud index. Remote Sens. 7: 9070-9090.
Hansen, M.C., Roy, D.P., Lindquist, E., Adusei, B., Justice, C.O., Altstatt, A. (2008): A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin. Remote Sens. Environ. 112: 2495-2513.
Harvey, K.R., Hill, G.J.E. (2001): Vegetation mapping of a tropical freshwater swamp in the northern territory, Australia: a comparison of aerial photography, Landsat TM and SPOT satellite imagery. Int. J. Remote Sens. 22: 2911-2925.
Harvey, K.R., Hill, G.J.E. (2003): Mapping the nesting habitats of Saltwater crocodiles (Crocodylus porosus) in Melacca Swamp and the Adelaide River wetlands, northern territory: an approach using remote sensing and GIS. Wildl. Res. 30: 365-375.
He, K.S., Bradley, B.A., Cord, A.F., Rocchini, D., Tuanmu, M.N., Schmidtlein, S., Turner, W., Wegmann, M., Pettorelli, N. (2015): Will remote sensing shape the next generation of species distribution models?. Remote Sens. Ecol. Conserv. 1: 4-8.
Henderson, F.M., Lewis, A.J. (2008): Radar detection of wetland ecosystems: a review. Int. J. Remote Sens. 29: 5809-5835.
Hess, L.L., Melack, J.M., Affonso, A.G., Barbosa, C., Gastil-Buhl, M., Novo, E.M.L.M. (2015): Wetlands of the lowland Amazon basin: extent, vegetative cover, and dual-season inundated area as mapped with JERS-1 synthetic aperture radar. Wetlands 35: 745-756.
Hess, L.L., Melack, J.M., Filoso, S., Wang, Y. (1995): Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 33: 896-904.
Hess, L.L., Melack, J.M., Novo, E.M.L.M., Barbosa, C.C.F., Gastil, M. (2003): Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sens. Environ. 87: 404-428.
Huete, A.R. (1988): A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25: 295-309.
Huete, A.R., Liu, H.Q., Batchily, K., van Leeuwen, W. (1997): A comparison of vegetation indices global set of TM images for EOS MODIS. Remote Sens. Environ. 59: 440-451.
Ihlow, F., Bonkea, R., Hartmanna, T., Geisslera, P., Behlerb, N., Rödder, D. (2014): Habitat suitability, coverage by protected areas and population connectivity for the Siamese crocodile Crocodylus siamensis Schneider, 1801. Aquat. Conservat. Mar. Freshwat. Ecosyst. 25: 544-554.
Islam, A., Gao, J., Ahmad, W., Neil, D., Bel, P. (2004): A composite DOP approach to excluding bottom reflectance in mapping water parameters of shallow coastal zones from TM imagery. Remote Sens. Environ. 92: 40-51.
Jarihani, A.A., Callow, J.N., Johansen, K., Gouweleeuw, B. (2013): Evaluation of multiple satellite altimetry data for studying inland water bodies and river floods. J. Hydrol. (Amsterdam, Neth.) 505: 78-90.
Jenkins, J.C., Birdsey, R.A., Pan, Y. (2001): Biomass and NPP estimation for the mid-Atlantic region (USA) using plot-level forest inventory data. Ecol. Applic. 11: 1174-1193.
Jenson, S.K., Domingue, J.O. (1988): Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm. Eng. Remote Sens. 54: 1593-1600.
Justice, C.O., Townshend, J.R.G., Vermote, E.F., Masuoka, E., Wolfe, R.E., Saleous, N., Roy, D.P., Morisette, J.T. (2002): An overview of MODIS land data processing and product status. Remote Sens. Environ. 83: 3-15.
Kasischke, E.S., Melack, J.M., Dobson, M.C. (1997): The use of imaging radars for ecological applications: a review. Remote Sens. Environ. 59: 141-156.
Klemas, V. (2011): Remote sensing of sea surface salinity: an overview with case studies. J. Coast. Res. 27: 830-838.
Kummerow, C., Simpson, J., Thiele, O., Barnes, W., Chang, A.T.C., Stocker, E., Adler, R.F., Hou, A., Kakar, R., Wentz, F., Ashcroft, P., Kozu, T., Hong, Y., Okamoto, K., Iguchi, T., Kuroiwa, H., Im, E., Haddad, Z., Huffman, G., Ferrier, B., Olson, W.S., Zipser, E., Smith, E.A., Wilheit, T.T., North, G., Krishnamurti, T., Nakamura, K. (2000): The status of the tropical rainfall measuring mission (TRMM) after two years in orbit. J. Appl. Meteor. 39: 1965-1982.
Kushwaha, S.P.S., Dwivedi, R.S., Rao, B.R.M. (2000): Evaluation of various digital image processing techniques for detection of coastal wetlands using ERS-1 SAR data. Int. J. Remote Sensing 21: 565-579.
Lagerloef, G., Boutin, J., Chao, Y., Delcroix, T., Font, J., Niiler, P., Reul, N., Riser, S., Schmitt, R., Stammer, D., Wentz, F. (2010): Resolving the global surface salinity field and variations by blending satellite and in situ observations. In: Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society 2. Venice, Italy, 21-25 September 2009, pp. 587-597. Hall, J., Harrison, D.E., Stammer, D., Eds, ESA Publication WPP-306.
Layden, A., Merchant, C., MacCallum, S. (2015): Global climatology of surface water temperatures of large lakes by remote sensing. Int. J. Climatol. 35: 44644479.
Li, X., Gong, P., Liang, L. (2015): A 30-year (1984–2013) record of annual urban dynamics of Beijing city derived from Landsat data. Remote Sens. Environ. 166: 78-90.
Lihan, T., Saitoh, S.-I., Iida, T., Hirawake, T., Iida, K. (2008): Satellite-measured temporal and spatial variability of the Tokachi River plume. Estuarine Coastal and Shelf Sci. 78: 237-249.
Loarie, S.R., Tambling, C.J., Asner, G.P. (2013): Lion hunting behaviour and vegetation structure in an African savanna. Anim. Behav. 85: 899-906.
Lyet, A., Slabbert, R., Versfeld, W.F., Leslie, A.J., Beytell, P.C., Preez, P.D. (2016): Using a binomial mixture model and aerial counts for an accurate estimate of Nile crocodile abundance and population size in the Kunene River, Namibia. Afr. J. Wildl. Res. 46: 71-86.
Magnusson, W.E., Grigg, G.C., Taylor, J.A. (1980): An aerial survey of potential nesting areas of Crocodylus prosus on the west coast of Cape York Peninsula. Wildl. Res. 7: 465-478.
Manchanda, M.L., Kudrat, M., Tiwari, A.K. (2002): Soil survey and mapping using remote sensing. Trop. Ecol. 43: 61-74.
Markham, B.L., Helder, D.L. (2012): Forty-year calibrated record of Earth-reflected radiance from Landsat: a review. Remote Sens. Environ. 122: 30-40.
McAliley, L.R.I., Willis, R.E., Ray, D.A., White, P.S., Brochu, C.A., Densmore III, L.D. (2006): Are crocodiles really monophyletic? Evidence for subdivisions from sequence and morphological data. Mol. Phylogenet. Evol. 39: 16-32.
McFeeters, S.K. (1996): The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17: 1425-1432.
Melack, J.M., Hess, L.L., Sippel, S. (1994): Remote sensing of lakes and floodplains in the Amazon basin. Remote Sens. Rev. 10: 127-142.
Mendoza, J.M. (2006): Caracterización de la vegetación y playas para la nidificación del Crocodylus intermedius, en el tramo norte del río Cojedes, Venezuela. Rev. Unell. Cienc. Tec. 24: 105-110.
Miller, B.A., Schaetzl, R.J. (2014): The historical role of base maps in soil geography. Geoderma 230-231: 329-339.
Minasny, B., McBratney, A.B. (2016): Digital soil mapping: a brief history and some lessons. Geoderma 264: 301-311.
Molleri, G.S.F., Novo, E.M.L.M., Kampel, M. (2010): Space-time variability of the Amazon river plume based on satellite ocean color. Cont. Shelf. Res. 30: 342-352.
Montanher, O.C., Novo, E.M.L.M., Barbosa, C.C.F., Rennó, C.D., Silva, T.S.F. (2014): Empirical models for estimating the suspended sediment concentration in Amazonian white-water rivers using Landsat-5 TM. Int. J. Appl. Earth Obs. Geoinf. 29: 67-77.
Moulatlet, G.M., Rennó, C.D., Costa, F.R.C., Emilio, T., Schietti, J. (2015): Mapping hydrological environments in central Amazonia: ground validation and surface model based on SRTM-DEM data corrected for deforestation. Earth Syst. Sci. Data 7: 29-34.
Mouw, C.B., Greb, S., Aurin, D., DiGiacomo, P.M., Lee, Z., Twardowski, M., Binding, C., Hu, C., Ma, R., Moore, T., Moses, W., Craig, S.E. (2015): Aquatic color radiometry remote sensing of coastal and inland waters: challenges and recommendations for future satellite missions. Remote Sens. Environ. 160: 15-30.
Mulder, V.L., de Bruin, S., Schaepman, M.E., Mayr, T.R. (2011): The use of remote sensing in soil and terrain mapping – a review. Geoderma 162: 1-19.
Myneni, R.B., Nemani, R.R., Running, S.W. (1997): Estimation of global leaf area index and absorbed PAR using radiative transfer model. IEEE Trans. Geosci. Remote Sens. 35: 1380-1393.
Nagendra, H., Lucas, R., Honrad, J.P., Jongman, R.H.G., Tarantino, C., Adarno, M., Mairota, P. (2013): Remote sensing for conservation monitoring: assessing protected areas, habitat extent, species diversity, and threats. Ecol. Indic. 33: 45-59.
Nagler, P., Morino, K., Murray, R.S., Osterberg, J., Glenn, E. (2009): An empirical algorithm for estimating agricultural and riparian evapotranspiration using MODIS enhanced vegetation index and ground measurements of ET. I. Description of method. Remote Sens. 1: 1273-1297.
NOAA (2018): Global NOAA Next Generation Radar (NEXRAD) Level III Products. Available at https://data.noaa.gov. [Accessed 15 September 2018].
Nobre, A.D., Cuartas, L.A., Momo, M.R., Severo, D.L., Pinheiro, A., Nobre, C.A. (2016): HAND contour: a new proxy predictor of inundation extent. Hydrol. Process. 30: 320-333.
Novo, E.M.L.M., Costa, M.P.F., Mantovani, J.E., Lima, I.B.T. (2002): Relationship between macrophyte stand variables and radar backscatter at L and C band, Tucuruí reservoir, Brazil. Int. J. Remote Sens. 23: 1241-1260.
Pettorelli, N., Owen, H.J.F., Duncan, C. (2016): How do we want satellite remote sensing to support biodiversity conservation globally? Methods Ecol. Evol. 7: 656-665.
Piola, A.R., Romero, S.I., Zajaczkovski, U. (2008): Space-time variability of the Plata plume inferred from ocean color. Cont. Shelf Res. 28: 1556-1567.
Poli, D., Remondino, F., Angiuli, E., Agugiaro, G. (2015): Radiometric and geometric evaluation of GeoEye-1, WorldView-2 and Pléiades-1A stereo images for 3D information extraction. ISPRS J. Photogramm. Remote Sens. 100: 35-47.
Posselt, R., Mueller, R., Trentmann, J., Stockli, R., Liniger, M.A. (2014): A surface radiation climatology across two Meteosat satellite generations. Remote Sens. Environ. 142: 103-110.
Rennó, C.D., Nobre, A.D., Cuartas, L.A., Soares, J.V., Hodnett, M.G., Tomasella, J., Waterloo, M.J. (2008): HAND, a new terrain descriptor using SRTM-DEM: mapping terra-firme rainforest environments in Amazonia. Remote Sens. Environ. 112: 3469-3481.
Rigollier, C., Lefèvre, M., Wald, L. (2004): The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Sol. Energ. 77: 159-169.
Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., Harlan, J.C. (1974): Monitoring the Vernal Advancements and Retrogradation (Green Wave Effect) of Natural Vegetation. Final Report. NASA/GSFC, Greenbelt.
Saalfeld, T., Conway, W.C., Calkins, G.E. (2012): Nest success and hatchling survival of American alligators within inland wetlands of east Texas. J. Wildlife Manage. 76: 1568-1575.
Salem, A.H.I. (2013): Habitat vulnerability for the Nile crocodile (Crocodylus niloticus) in Nasser Lake (Egypt). Transylv. Rev. Syst. Ecol. Res. 15: 19-32.
Sartori, L.R., Imai, N.N., Mura, J.C., Novo, E.M.L.M., Silva, T.S.F. (2011): Mapping macrophyte species in the Amazon floodplain wetlands using fully polarimetric ALOS PALSAR data. IEEE Trans. Geosci. Remote Sens. 49: 4717-4728.
Schietti, J., Emilio, T., Rennó, C.D., Drucker, D.P., Costa, F.R.C., Nogueira, A., Baccaro, F.B., Figueiredo, F., Castilho, C.V., Kinupp, V., Guillaumet, J.-L., Garcia, A.R.M., Lima, A.P., Magnusson, W.E. (2014): Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest. Plant Ecol. Divers. 7: 241-253.
Schwatke, C., Dettmering, D., Bosch, W., Seitz, F. (2015): DAHITI – an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrol. Earth Syst. Sci. 19: 4345-4364.
Seo, D.-J. (1998): Real-time estimation of rainfall fields using radar rainfall and rain gage data. J. Hydrol. 208: 37-52.
Silva, T.S.F., Costa, M.P.F., Melack, J.M. (2010a): Assessment of two biomass estimation methods for aquatic vegetation growing on the Amazon floodplain. Aquat. Bot. 92: 161-167.
Silva, T.S.F., Costa, M.P.F., Melack, J.M. (2010b): Spatial and temporal variability of macrophyte cover and productivity in the eastern Amazon floodplain: a remote sensing approach. Remote Sens. Environ. 114: 1998-2010.
Silva, T.S.F., Costa, M.P.F., Melack, J.M., Novo, E.M.L.M. (2008): Remote sensing of aquatic vegetation: theory and applications. Environ. Monit. Assess. 140: 131-145.
Silva, T.S.F., Melack, J.M., Novo, E.M.L.M. (2013): Responses of aquatic macrophyte cover and productivity to flooding variability on the Amazon floodplain. Glob. Chang. Biol. 19: 3379-3389.
Silva, T.S.F., Melack, J.M., Streher, A.S., Ferreira-Ferreira, J., Furtado, L.F.A. (2015): Capturing the dynamics of Amazonian wetlands using synthetic aperture radar: lessons learned and future directions. In: Remote Sensing of Wetlands: Applications and Advances, p. 455-472. Tiner, R., Lang, M., Klemas, V., Eds, CRC Press, Boca Raton, FL, USA.
Somaweera, R., Webb, J.K., Shine, R. (2011): Determinants of habitat selection by hatchling Australian freshwater crocodiles. PLoS One 6: e28533.
Sulistioadi, Y.B., Tseng, K.-H., Shum, C.K., Hidayat, H., Sumaryono, M., Suhardiman, A., Setiawan, F., Sunarso, S. (2015): Satellite radar altimetry for monitoring small rivers and lakes in Indonesia. Hydrol. Earth Syst. Sci. 19: 341-359.
Thomas, A.C., Weatherbee, R.A. (2006): Satellite-measured temporal variability of the Columbia river plume. Remote Sens. Environ. 100: 167-178.
TRMM (2018): Tropical Rainfall Measurement Mission (TRMM). Available at http://pmm.nasa.gov/trmm. [Accessed 9 June 2018].
Tuanmu, M.-N., Jetz, W. (2014): A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Global Ecol. Biogeogr. 23: 1031-1045.
Tuanmu, M.-N., Jetz, W. (2015): A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecol. Biogeogr. 24: 1329-1339.
Tucker, A.D., McCallum, H.I., Limpus, C.J., McDonald, K.R. (1998): Sex-biased dispersal in a long-lived polygynous reptile (Crocodylus johnstoni). Behav. Ecol. Sociobiol. 44: 85-90.
Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., Steininger, M. (2003): Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 18: 306-314.
Valeriano, M.M., Kuplich, T.M., Storino, M., Amaral, B.D., Mendes, J.N.Jr., Lima, D.J. (2006): Modelling small watersheds in Brazilian Amazonia with shuttle radar topographic mission-90 m data. Comput. Geosci. 32: 1169-1181.
Vancutsem, C., Ceccato, P., Dinku, T., Connor, S.J. (2010): Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens. Environ. 114: 449-465.
Vega, G.C., Pertierra, L.R., Olalla-Tárraga, M.A. (2017): MERRAclim, a high-resolution global dataset of remotely sensed bioclimatic variables for ecological modelling. Sci. Data 4: 170078.
Villamarín, F., Marioni, B., Thorbjarnarson, J.B., Nelson, B.W., Botero-Arias, R., Magnusson, W.E. (2011): Conservation and management implications of nest-site selection of the sympatric crocodilians Melanosuchus niger and Caiman crocodilus in Central Amazonia, Brazil. Biol. Conserv. 144: 913-919.
Viña, A., Gitelson, A.A., Nguy-Robertson, A.L., Peng, Y. (2011): Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ. 115: 3468-3478.
Walker, N.D. (1996): Satellite assessment of Mississippi River plume variability: causes and predictability. Remote Sens. Environ. 58: 21-35.
Waltari, E., Schroeder, R., McDonald, K., Anderson, R.P., Carnaval, A. (2014): Bioclimatic variables derived from remote sensing: assessment and application for species distribution modelling. Methods Ecol. Evol. 5: 1033-1042.
Ward, D.P., Petty, A., Setterfield, S.A., Douglas, M.M., Ferdinands, K., Hamilton, S.K., Phinn, S. (2014): Floodplain inundation and vegetation dynamics in the Alligator Rivers region (Kakadu) of northern Australia assessed using optical and radar remote sensing. Remote Sens. Environ. 147: 43-55.
Wenga, Q., Lub, D., Schubringa, J. (2004): Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 89: 467-483.
Wilson, E.H., Sader, S.A. (2002): Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 80: 385-396.
Wilson, J.W., Brandes, A.E. (1979): Radar measurement of rainfall: a summary. Am. Meteorol. Soc. 60: 1048-1058.
Xu, H. (2006): Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 27: 3025-3033.
Yong, E. (2011): Nile crocodile is two species. Available at https://www.nature.com/news/2011/110914/full/news.2011.535.html. [Accessed 26 August 2018].
Zhang, C., Qiu, F. (2012): Mapping individual tree species in an urban forest using airborne lidar data and hyperspectral imagery. Photogramm. Eng. Remote Sens. 78: 1079-1087.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 354 | 229 | 12 |
Full Text Views | 114 | 12 | 1 |
PDF Views & Downloads | 59 | 15 | 5 |
Terms and Conditions | Privacy Statement | Cookie Settings | Accessibility
Copyright © 2016-2021
Copyright © 2016-2021