Species inhabiting broad altitudinal gradients are particularly exposed to the effects of global climate change (GCC). Those species reaching mountain tops are the most negatively affected. Here, using ecological niche models we estimated the climate change exposure of endemic amphibians of the most important extra-Andean mountain system of Argentina: the Sierras Pampeanas Centrales. Our results pinpoint that micro-endemic amphibians of this mountain system are heavily exposed to the effects of GCC, with important constraints of suitable climatic conditions for the six analyzed species. Among the most important findings, our models predict a high probability of a total disappearance of suitable climatic conditions for two of the species, currently restricted to mountain tops. This high exposure, in synergy with their very restricted ranges, and other important human induced threats (as fish invasion and emergent diseases), pose a serious threat to these endemic species, which can enter into the “extinction pathway” in a near future if no concrete conservation actions are taken. Our findings provide additional evidence of the great negative impact of GCC in high-altitude centers of endemism.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Alroy, J. (2015): Current extinction rates of reptiles and amphibians. Proc. Natl. Acad. Sci. U. S. A. 112: 13003-13008.
Araújo, M.B., New, M. (2007): Ensemble forecasting of species distributions. Trends Ecol. Evol. 22: 42-47.
Austin, R.A., Hawkes, L.A., Doherty, P.D., Henderson, S., Inger, R., Johnson, L., Pikesley, S.K., Solandt, J.-L., Speedie, C., Witt, M.J. (2019): Predicting habitat suitability for basking sharks (Cetorhinus maximus) in UK waters using ensemble ecological niche modelling. J. Sea Res. 153: 101767.
Baraquet, M., Grenat, P.R., Salas, N.E., Martino, A.L. (2012): Variación morfométrica y geográfica entre poblaciones de Hypsiboas cordobae (Anura: Hylidae) en Argentina. Cuad. Investig. UNED 4: 147-156.
Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberón, J., Villalobos, F. (2011): The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Modell. 222: 1810-1819.
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., Courchamp, F. (2012): Impacts of climate change on the future of biodiversity. Ecol. Lett. 15: 365-377.
Bergl, R.A., Oates, J.F., Fotso, R. (2007): Distribution and protected area coverage of endemic taxa in West Africa’s Biafran forests and highlands. Biol. Conserv. 134: 195-208.
Bickford, D., Howard, S.D., Ng, D.J.J., Sheridan, J.A., Bickford, D., Howard, Á.S.D., Ng, D.J.J., Sheridan, J.A. (2010): Impacts of climate change on the amphibians and reptiles of Southeast Asia Abbreviations CCSM Community Climate System Model ENSO El Niño Southern Oscillation IPCC International Panel on Climate Change NPP Net primary productivity. Biodivers Conserv 19: 1043-1062.
Blaustein, A.R., Walls, S.C., Bancroft, B.A., Lawler, J.J., Searle, C.L., Gervasi, S.S. (2010): Direct and indirect effects of climate change on amphibian populations. Diversity 2: 281-313.
Brehm, G., Homeier, J., Fiedler, K., Kottke, I., Illig, J., Nöske, N.M., Werner, F.A., Breckle, S.W. (2008): Mountain rain forests in southern Ecuador as a hotspot of biodiversity – limited knowledge and diverging patterns. In: Gradients in a Tropical Mountain Ecosystem of Ecuador, p. 15-23.
Broennimann, O., Thuiller, W., Hughes, G., Midlgey, G.F., Alkemade, J.M.R., Guisan, A. (2006): Do geographic distribution, niche property and life form explain plants’ vulnerability to global change? Glob. Chang. Biol. 12: 1079-1093.
Cabido, M., Funes, G., Pucheta, E., Vendramini, F., Díaz, S. (1998): A chorological analysis of the mountains from Central Argentina. Is all what we call Sierra Chaco really Chaco? Contribution to the study of the flora and vegetation of the Chaco. XII. Candollea 53: 321-331.
Cei, J.M. (1980): Amphibians of Argentina. Monitore Zoologico Italiano, Monograph 2: 1-609.
Chen, I.-C., Hill, J.K., Ohlemüller, R., Roy, D.B., Thomas, C.D. (2011): Rapid range shifts of species associated with high levels of climate warming. Science 333: 1024-1026.
Coetzee, B.W.T., Robertson, M.P., Erasmus, B.F.N., van Rensburg, B.J., Thuiller, W. (2009): Ensemble models predict important bird areas in southern Africa will become less effective for conserving endemic birds under climate change. Glob. Ecol. Biogeogr. 18: 701-710.
Comte, L., Buisson, L., Daufresne, M., Grenouillet, G. (2013): Climate-induced changes in the distribution of freshwater fish: observed and predicted trends. Freshw. Biol. 58: 625-639.
Dawson, T.P., Jackson, S.T., House, J.I., Prentice, I.C., Mace, G.M. (2011): Beyond predictions: biodiversity conservation in a changing climate. Science (80) 332: 53-58.
Di Tada, I.E. (1994): Patrones de distribución de los anfibios anuros de la provincia de Córdoba. Doctoral thesis, Universidad Nacional de Córdoba, Argentina. 1994.
Diniz-Filho, J.A.F., Mauricio Bini, L., Fernando Rangel, T., Loyola, R.D., Hof, C., Nogués-Bravo, D., Araújo, M.B. (2009): Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32: 897-906.
Dirnböck, T., Essl, F., Rabitsch, W. (2011): Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob. Chang. Biol. 17: 990-996.
Duan, R.-Y., Kong, X.-Q., Huang, M.-Y., Varela, S., Ji, X. (2016): The potential effects of climate change on amphibian distribution, range fragmentation and turnover in China. PeerJ 4: e2185.
Engler, R., Randin, C.F., Thuiller, W., Dullinger, S., Zimmermann, N.E., Araújo, M.B., Pearman, P., Le Lay, G., Piedallu, C., Albert, C.H., Choler, P., Coldea, G., De Lamo, X., Dirnbock, T., Gégout, J.-C., Gomez-Garcia, D., Grytnes, J.-A., Heegaard, E., Hoistad, F., Nogués-Bravo, D., Normand, S., Puscas, M., Sebastia, M.-T., Stanisci, A., Theurillat, J.-P., Trivedi, M.R., Vittoz, P., Guisan, A. (2011): 21st century climate change threatens mountain flora unequally across Europe. Glob. Chang. Biol. 17: 2330-2341.
Enriquez-Urzelai, U., Bernardo, N., Moreno-Rueda, G., Montori, A., Llorente, G. (2019): Are amphibians tracking their climatic niches in response to climate warming? A test with Iberian amphibians. Clim. Change 154: 289-301.
Fielding, A., Bell, J. (1997): A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24: 38-49.
Filipello, A.M., Crespo, F.A. (1994): Alimentación en Melanophryniscus stelzneri (Anura: Bufonidae). Cuad. Herpetol. 8: 18-24.
Forero-Medina, G., Joppa, L., Pimm, S.L. (2011): Constraints to species’ elevational range shifts as climate changes. Conserv. Biol. 25: 163-171.
Fu, C., Hua, X., Li, J., Chang, Z., Pu, Z., Chen, J. (2006): Elevational patterns of frog species richness and endemic richness in the Hengduan Mountains, China: geometric constraints, area and climate effects. Ecography (Cop.) 29: 919-927.
Gower, D.J., Aberra, R.K., Schwaller, S., Largen, M.J., Collen, B., Spawls, S., Menegon, M., Zimkus, B.M., de Sá, R., Mengistu, A.A., Gebresenbet, F., Moore, R.D., Saber, S.A., Loader, S.P. (2013): Long-term data for endemic frog genera reveal potential conservation crisis in the Bale Mountains, Ethiopia. Oryx 47: 59-69.
Graham, C.H., Carnaval, A.C., Cadena, C.D., Zamudio, K.R., Roberts, T.E., Parra, J.L., McCain, C.M., Bowie, R.C.K., Moritz, C., Baines, S.B., Schneider, C.J., VanDerWal, J., Rahbek, C., Kozak, K.H., Sanders, N.J. (2014): The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography 37: 711-719.
Grenouillet, G., Buisson, L., Casajus, N., Lek, S. (2011): Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34: 9-17.
Guisan, A., Thuiller, W. (2005): Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8: 993-1009.
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A. (2005): Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 1965-1978.
Hof, C., Araújo, M.B., Jetz, W., Rahbek, C. (2011): Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature 480: 516-519.
Hoffmann, M., Hilton-Taylor, C., Angulo, A., Böhm, M., Brooks, T.M., Butchart, S.H.M., Carpenter, K.E., Chanson, J., Collen, B., Cox, N.A., Darwall, W.R.T., Dulvy, N.K., Harrison, L.R., Katariya, V., Pollock, C.M., Quader, S., Richman, N.I., Rodrigues, A.S.L., Tognelli, M.F., Vié, J.-C., Aguiar, J.M., Allen, D.J., Allen, G.R., Amori, G., Ananjeva, N.B., Andreone, F., Andrew, P., Ortiz, A.L.A., Baillie, J.E.M., Baldi, R., Bell, B.D., Biju, S.D., Bird, J.P., Black-Decima, P., Blanc, J.J., Bolaños, F., Bolivar-G, W., Burfield, I.J., Burton, J.A., Capper, D.R., Castro, F., Catullo, G., Cavanagh, R.D., Channing, A., Chao, N.L., Chenery, A.M., Chiozza, F., Clausnitzer, V., Collar, N.J., Collett, L.C., Collette, B.B., Fernandez, C.F.C., Craig, M.T., Crosby, M.J., Cumberlidge, N., Cuttelod, A., Derocher, A.E., Diesmos, A.C., Donaldson, J.S., Duckworth, J.W., Dutson, G., Dutta, S.K., Emslie, R.H., Farjon, A., Fowler, S., Freyhof, J., Garshelis, D.L., Gerlach, J., Gower, D.J., Grant, T.D., Hammerson, G.A., Harris, R.B., Heaney, L.R., Hedges, S.B., Hero, J.-M., Hughes, B., Hussain, S.A., Icochea, M.J., Inger, R.F., Ishii, N., Iskandar, D.T., Jenkins, R.K.B., Kaneko, Y., Kottelat, M., Kovacs, K.M., Kuzmin, S.L., La Marca, E., Lamoreux, J.F., Lau, M.W.N., Lavilla, E.O., Leus, K., Lewison, R.L., Lichtenstein, G., Livingstone, S.R., Lukoschek, V., Mallon, D.P., McGowan, P.J.K., McIvor, A., Moehlman, P.D., Molur, S., Alonso, A.M., Musick, J.A., Nowell, K., Nussbaum, R.A., Olech, W., Orlov, N.L., Papenfuss, T.J., Parra-Olea, G., Perrin, W.F., Polidoro, B.A., Pourkazemi, M., Racey, P.A., Ragle, J.S., Ram, M., Rathbun, G., Reynolds, R.P., Rhodin, A.G.J., Richards, S.J., Rodríguez, L.O., Ron, S.R., Rondinini, C., Rylands, A.B., Sadovy de Mitcheson, Y., Sanciangco, J.C., Sanders, K.L., Santos-Barrera, G., Schipper, J., Self-Sullivan, C., Shi, Y., Shoemaker, A., Short, F.T., Sillero-Zubiri, C., Silvano, D.L., Smith, K.G., Smith, A.T., Snoeks, J., Stattersfield, A.J., Symes, A.J., Taber, A.B., Talukdar, B.K., Temple, H.J., Timmins, R., Tobias, J.A., Tsytsulina, K., Tweddle, D., Ubeda, C., Valenti, S.V., van Dijk, P., Veiga, L.M., Veloso, A., Wege, D.C., Wilkinson, M., Williamson, E.A., Xie, F., Young, B.E., Akçakaya, H.R., Bennun, L., Blackburn, T.M., Boitani, L., Dublin, H.T., da Fonseca, G.A.B., Gascon, C., Lacher, T.E., Mace, G.M., Mainka, S.A., McNeely, J.A., Mittermeier, R.A., Reid, G.M., Rodriguez, J.P., Rosenberg, A.A., Samways, M.J., Smart, J., Stein, B.A., Stuart, S.N. (2010): The impact of conservation on the status of the world’s vertebrates. Science 330: 1503-1509.
Hoorn, C., Mosbrugger, V., Mulch, A., Antonelli, A. (2013): Biodiversity from mountain building. Nature Geoscience 6: 154.
Houlahan, J.E., Findlay, C.S. (2003): The effects of adjacent land use on wetland amphibian species richness and community composition. Can. J. Fish. Aquat. Sci. 60: 1078-1094.
IUCN (2000): IUCN Red List Categories and Criteria. Switerland and Cambridge, UK.
IUCN (2015): IUCN Red List Categories and Criteria. Switerland and Cambridge, UK.
Jingyun, F., Zehao, S., Haiting, C. (2004): Ecological characteristics of mountains and research issues of mountain ecology. Biodivers. Sci. 12: 10-19.
Kafash, A., Ashrafi, S., Ohler, A., Yousefi, M., Malakoutikhah, S., Koehler, G., Schmidt, B.R. (2018): Climate change produces winners and losers: differential responses of amphibians in mountain forests of the Near East. Glob. Ecol. Conserv. 16: e00471.
Körner, C. (2004): Mountain biodiversity, its causes and function. Ambio 13: 11-17.
Kozak, K.H., Wiens, J.J. (2010): Niche conservatism drives elevational diversity patterns in Appalachian salamanders. Am. Nat. 176: 40-54.
Lenoir, J., Gégout, J.C., Marquet, P.A., de Ruffray, P., Brisse, H. (2008): A significant upward shift in plant species optimum elevation during the 20th century. Science 320: 1768-1771.
Lescano, J., Longo, S., Robledo, G. (2013): Chytridiomycosis in endemic amphibians of the mountain tops of the Córdoba and San Luis ranges, Argentina. Dis. Aquat. Organ. 102: 249-254.
Lescano, J.N. (2018): ¿Rhinella achalensis en declinación? Observaciones sobre el estado actual de las poblaciones del Sapo de Achala. Cuad. Herpetol. 32: 15-22.
Lescano, J.N., Nori, J., Verga, E., Robino, F., Bonino, A., Miloch, D., Ríos, N., Leynaud, G.C. (2015): Anfibios de las Sierras Pampeanas Centrales de Argentina: diversidad y distribución altitudinal. Cuad. Herpetol. 29: 103-115.
Li, Y., Cohen, J.M., Rohr, J.R. (2013): Review and synthesis of the effects of climate change on amphibians. Integr. Zool. 8: 145-161.
Liu, C., White, M., Newell, G. (2011): Measuring and comparing the accuracy of species distribution models with presence-absence data. Ecography 34: 232-243.
Martínez, G.A., Arana, M.D., Oggero, A.J., Natale, E.S. (2016): Biogeographical relationships and new regionalisation of high-altitude grasslands and woodlands of the central Pampean Ranges (Argentina), based on vascular plants and vertebrates. Aust. Syst. Bot. 29: 473-482.
Merow, C., Smith, M.J., Edwards, T.C., Guisan, A., McMahon, S.M., Normand, S., Thuiller, W., Wüest, R.O., Zimmermann, N.E., Elith, J. (2014): What do we gain from simplicity versus complexity in species distribution models? Ecography 37: 1267-1281.
Moritz, C., Agudo, R. (2013): The future of species under climate change: resilience or decline? Science 341: 504-508.
Nores, M. (1995): Insular biogeography of birds on mountain-tops in north western Argentina. J. Biogeogr. 22: 61.
Nori, J., Lemes, P., Urbina-Cardona, N., Baldo, D., Lescano, J., Loyola, R. (2015): Amphibian conservation, land-use changes and protected areas: a global overview. Biol. Conserv. 191: 367-374.
Nori, J., Moreno Azócar, D.L., Cruz, F.B., Bonino, M.F., Leynaud, G.C. (2016): Translating niche features: modelling differential exposure of Argentine reptiles to global climate change. Austral Ecol. 41: 373-381.
Nori, J., Tessarolo, G., Ficetola, G.F., Loyola, R., Di Cola, V., Leynaud, G. (2017): Buying environmental problems: the invasive potential of imported freshwater turtles in Argentina. Aquat. Conserv. Mar. Freshw. Ecosyst. 27: 685-691.
Pacifici, M., Foden, W.B., Visconti, P., Watson, J.E.M., Butchart, S.H.M., Kovacs, K.M., Scheffers, B.R., Hole, D.G., Martin, T.G., Akçakaya, H.R., Corlett, R.T., Huntley, B., Bickford, D., Carr, J.A., Hoffmann, A.A., Midgley, G.F., Pearce-Kelly, P., Pearson, R.G., Williams, S.E., Willis, S.G., Young, B., Rondinini, C. (2015): Assessing species vulnerability to climate change. Nat. Clim. Chang. 5: 215-224.
Pimm, S.L., Jenkins, C.N., Abell, R., Brooks, T.M., Gittleman, J.L., Joppa, L.N., Raven, P.H., Roberts, C.M., Sexton, J.O. (2014): The biodiversity of species and their rates of extinction, distribution, and protection. Science 344: 1246752.
Pounds, J.A., Bustamante, M.R., Coloma, L.A., Consuegra, J.A., Fogden, M.P.L., Foster, P.N., La Marca, E., Masters, K.L., Merino-Viteri, A., Puschendorf, R., Ron, S.R., Sánchez-Azofeifa, G.A., Still, C.J., Young, B.E. (2006): Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439: 161-167.
Raxworthy, C.J., Pearson, R.G., Rabibisoa, N., Rakotondrazafy, A.M., Ramanamanjato, J.B., Raselimanana, A.P., Wu, S., Nussbaum, R.A., Stone, D.A. (2008): Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar. Global Change Biology 14: 1703-1720.
Robledo, G., Urcelay, C., Domínguez, L., Rajchenberg, M. (2006): Taxonomy, ecology, and biogeography of polypores (Basidiomycetes) from Argentinian Polylepis woodlands. Can. J. Bot. 84: 1561-1572.
Robledo, G.L., Renison, D. (2010): Wood-decaying polypores in the mountains of central Argentina in relation to Polylepis forest structure and altitude. Fungal Ecology 3: 178-184.
Roelants, K., Jiang, J., Bossuyt, F. (2004): Endemic ranid (Amphibia: Anura) genera in southern mountain ranges of the Indian subcontinent represent ancient frog lineages: evidence from molecular data. Mol. Phylogenet. Evol. 31: 730-740.
Rosset, S.D., Baldo, D., Lanzone, C., Basso, N.G. (2006): Review of the geographic distribution of diploid and tetraploid populations of the Odontophrynus Americanus species complex (Anura: Leptodactylidae). J. Herpetol. 40: 465-477.
Rowe, K.C., Rowe, K.M.C., Tingley, M.W., Koo, M.S., Patton, J.L., Conroy, C.J., Perrine, J.D., Beissinger, S.R., Moritz, C. (2015): Spatially heterogeneous impact of climate change on small mammals of montane California. Proc. R. Soc. B Biol. Sci. 282: 20141857.
Scales, K.L., Miller, P.I., Ingram, S.N., Hazen, E.L., Bograd, S.J., Phillips, R.A. (2016): Identifying predictable foraging habitats for a wide-ranging marine predator using ensemble ecological niche models. Divers. Distrib. 22: 212-224.
Stuart, S.N. (2004): Status and trends of amphibian declines and extinctions worldwide. Science (80-.) 306: 1783-1786.
Thuiller, W., Georges, D., Engler, R., Breiner, F., Georges, M.D., Thuiller, C.W. (2016): Package ‘biomod2’. Species distribution modeling within an ensemble forecasting framework. Ecography 32: 369-373.
Wake, D.B., Vredenburg, V.T. (2008): Colloquium paper: are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl. Acad. Sci. U. S. A. 105: 11466-11473.
Walls, S., Barichivich, W., Brown, M., Walls, S.C., Barichivich, W.J., Brown, M.E. (2013): Drought, deluge and declines: the impact of precipitation extremes on amphibians in a changing climate. Biology 2: 399-418.
Williams, S.E., Bolitho, E.E., Fox, S. (2003): Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proc. Biol. Sci. 270: 1887-1892.
Wright, A.N., Schwartz, M.W., Hijmans, R.J., Shaffer, H.B. (2016): Advances in climate models from CMIP3 to CMIP5 do not change predictions of future habitat suitability for California reptiles and amphibians. Clim. Change 134: 579-591.
Yousefi, M., Ahmadi, M., Nourani, E., Behrooz, R., Rajabizadeh, M., Geniez, P., Kaboli, M. (2015): Upward altitudinal shifts in habitat suitability of mountain vipers since the last glacial maximum. PLoS One 10: e0138087.
| All Time | Past 365 days | Past 30 Days | |
|---|---|---|---|
| Abstract Views | 1743 | 481 | 30 |
| Full Text Views | 623 | 19 | 1 |
| PDF Views & Downloads | 580 | 26 | 0 |
Species inhabiting broad altitudinal gradients are particularly exposed to the effects of global climate change (GCC). Those species reaching mountain tops are the most negatively affected. Here, using ecological niche models we estimated the climate change exposure of endemic amphibians of the most important extra-Andean mountain system of Argentina: the Sierras Pampeanas Centrales. Our results pinpoint that micro-endemic amphibians of this mountain system are heavily exposed to the effects of GCC, with important constraints of suitable climatic conditions for the six analyzed species. Among the most important findings, our models predict a high probability of a total disappearance of suitable climatic conditions for two of the species, currently restricted to mountain tops. This high exposure, in synergy with their very restricted ranges, and other important human induced threats (as fish invasion and emergent diseases), pose a serious threat to these endemic species, which can enter into the “extinction pathway” in a near future if no concrete conservation actions are taken. Our findings provide additional evidence of the great negative impact of GCC in high-altitude centers of endemism.
| All Time | Past 365 days | Past 30 Days | |
|---|---|---|---|
| Abstract Views | 1743 | 481 | 30 |
| Full Text Views | 623 | 19 | 1 |
| PDF Views & Downloads | 580 | 26 | 0 |