Space fit for a king: spatial ecology of king cobras (Ophiophagus hannah) in Sakaerat Biosphere Reserve, Northeastern Thailand

in Amphibia-Reptilia
No Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?



A species’ spatial ecology has direct implications for that species’ conservation. Far-ranging species may be more difficult to conserve because their movements increase their chances of encountering humans. The movements can take them out of protected areas, which is especially risky for species that are routinely persecuted. The king cobra (Ophiophagus hannah), a large venomous elapid, is subject to anthropogenic pressures, such as persecution and habitat loss. Here we present results from a study using radio telemetry to quantify movements and habitat use of nine king cobras in and around a protected area in Northeast Thailand. This study is the first investigation into the movements and habitat use of king cobras outside of the Western Ghats, India. On average, the tracked king cobra’s use areas of 493.42 ± 335.60 ha (95% fixed kernel), moving 183.24 ± 82.63 m per day. King cobras did not remain in intact forested area. Five of the individuals frequently used the human-dominated agricultural areas surrounding the protected area, appearing to make regular use of irrigation canals. Two adult males showed increases in movements during the breeding season. One male’s increased breeding season range caused him to venture beyond the protected area, shifting his habitat use from intact forests to scrub in human-dominated areas. King cobras’ large home range and willingness to use anthropogenic landscapes merits special consideration from conservation planners.

Space fit for a king: spatial ecology of king cobras (Ophiophagus hannah) in Sakaerat Biosphere Reserve, Northeastern Thailand

in Amphibia-Reptilia



AkaniG.C.EyoE.OdegbuneE.EniangE.A.LuiselliL. (2002): Ecological patterns of anthropogenic mortality of suburban snakes in an African tropical region. Isr. J. Zool. 48: 1-11.

AkberM.A.ShresthaR.P. (2015): Land use change and its effect on biodiversity in Chiang Rai province of Thailand. J. Land Use Sci. 10: 108-128.

AshleyE.P.KosloskiA.PetrieS.A. (2007): Incidence of intentional vehicle-reptile collisions. Hum. Dimens. Wildl. 12: 137-143.

AustP.W.Van TriN.NatuschD.J.D.AlexanderG.J. (2016): Asian snake farms: conservation curse or sustainable enterprise? Oryx 51: 1-8.

BarveS.BhaisareD.GiriA.ShankarP.G.WhitakerR.GoodeM. (2013): A preliminary study on translocation of ‘rescued’ King Cobras (Ophiophagus hannah). Hamadryad 36: 80-86.

BashirT.PoudyalK.BhattacharyaT.SathyakumarS.SubbaJ.B.SubbaJ.B. (2010): Sighting of King Cobra Ophiophagus hannah in Sikkim, India: a new altitude record for the northeast. J. Threat. Taxa 2: 990-991.

BauderJ.M.BreiningerD.R.BoltM.R.LegareM.L.JenkinsC.L.RothermelB.B.McGarigalK. (2016a): Seasonal variation in Eastern Indigo Snake (Drymarchon couperi) movement patterns and space use in peninsular Florida at multiple temporal scales. Herpetologica 72: 214-226.

BauderJ.M.BreiningerD.R.BoltM.R.LegareM.L.JenkinsC.L.RothermelB.B.McGarigalK. (2016b): The influence of sex and season on conspecific spatial overlap in a large, actively-foraging colubrid snake. PLoS One 11: 1-19.

BaxleyD.L.QuallsC.P. (2009): Black Pine Snake (Pituophis melanoleucus lodingi): spatial ecology and associations between habitat use and prey dynamics. J. Herpetol. 43: 284-293.

Berger-TalO.PolakT.OronA.LubinY.KotlerB.P.SaltzD. (2011): Integrating animal behavior and conservation biology: a conceptual framework. Behav. Ecol. 22: 236-239.

BhaisareD.RamanujV.ShankarP.G.VittalaM.GoodeM.J.WhitakerR. (2010): Observations on a Wild King Cobra (Ophiophagus hannah), with emphasis on foraging and diet. IRCF Reptilia-Amphibia 17: 95-102.

BirchfieldG.L.DetersJ.E. (2005): Movement paths of displaced Northern Green Frogs (Rana clamitans melanota). Southeast. Nat. 4: 63-76.

BivandR.Lewin-KohN. (2017): maptools: tools for reading and handling spatial objects. R package version 0.9-2. Available at

BivandR.KeittT.RowlingsonB. (2017): rgdal: bindings for the ’Geospatial’ data abstraction library. R package version 1.2-16. Available at

Blouin-DemersG.FoxS.F. (2006): Kernels are not accurate estimators of home-range size for herpetofauna. Copeia 2006: 797-802.

BonnetX.NaulleauG.ShineR. (1999): The dangers of leaving home: dispersal and mortality in snakes. Biol. Conserv. 89: 39-50.

BreiningerD.R.BoltM.R.LegareM.L.DreseJ.H.StolenE.D. (2011): Factors influencing home-range sizes of Eastern Indigo Snakes in central Florida. J. Herpetol. 45: 484-490.

BrownG.P.ShineR. (2006): Why do most tropical animals reproduce seasonally? Testing hypotheses on an Australian snake. Ecology 87: 133-143.

BrownG.P.ShineR.MadsenT. (2002): Responses of three sympatric snake species to tropical seasonality in northern Australia. J. Trop. Ecol. 18: 549-568.

BrunerA.G.GullisonR.E.RiceR.E.da FonsecaG.A.B. (2001): Effectiveness of parks in protecting tropical biodiversity. Science 291: 125-128.

BunyavejchewinS. (1986): Ecological studies of tropical semi-evergreen rain forest at Sakaerat, Nnkhon [sic] Ratchasima, Northeast Thailand, II. Litterfall. Nat. Hist. Bull. Siam Soc. 34: 35-58.

CalengeC. (2006): The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecological Modelling 197: 516-519.

CarfagnoG.L.F.HeskeE.J.WeatherheadP.J. (2006): Does mammalian prey abundance explain forest-edge use by snakes? Ecoscience 13: 293-297.

ChanhomeL.CoxM.J.VasaruchapongT.ChaiyabutrN.SitprijaV. (2011): Characterization of venomous snakes of Thailand. Asian Biomed. 5: 311-328.

ChristianK.A.CorbettL.K.GreenB.WeaversB.W. (1995): Seasonal activity and energetics of two species of varanid lizards in tropical Australia. Oecologia 103: 349-357.

CoreyB.DoodyJ.S. (2010): Anthropogenic influences on the spatial ecology of a semi-arid python. J. Zool. 281: 293-302.

CoxM.J.HooverM.F.ChanhomeL.ThirakhuptK. (2012): Ophiophagus hannah (Cantor, 1836). In: The Snakes of Thailand p. 603-606. Chulalongkorn University Museum of Natural HistoryBangkok.

DasI.GhodkeS. (2003): Ophiophagus hannah (King Cobra). Juvenile diet. Herpetol. Rev. 34: 253.

DoddC.K.BarichivichW. (2007): Movements of large snakes (Drymarchon, masticophis) in north-central Florida. Florida Sci. 70: 83-94.

DuncanP. (1983): Determinants of the use of habitat by horses in a Mediterranean wetland. J. Anim. Ecol. 52: 93-109.

DuvallD.SchuettG.W. (1997): Straight-line movement and competitive mate searching in prairie rattlesnakes, Crotalus viridis viridis. Anim. Behav. 54: 329-334.

FlemingC.H.CalabreseJ.M. (2017a): ctmm: continuous-time movement modeling. R package version 0.4.1. Available at

FlemingC.H.CalabreseJ.M. (2017b): A new kernel density estimator for accurate home-range and species-range area estimation. Methods Ecol. Evol. 8: 571-579.

ForbesG.J.ThebergeJ.B. (1996): Cross-boundary management of Algonquin Park wolves. Conserv. Biol. 10: 1091-1097.

FormanR.T.T.AlexanderL.E. (1998): Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 29: 207-231.

GADM (2015): GADM database of global administrative areas. Version 2.8. Available at

Google Maps (2014): Satellite imagery. Retrieved via the OpenLayers QGIS plug-in!3m1!1e3!4m2!17m1!1e1.

GrayC.L.HillS.L.L.NewboldT.HudsonL.N.BörgerL.ContuS.HoskinsA.J.FerrierS.PurvisA.ScharlemannJ.P.W. (2016): Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7: 1-7.

HartK.M.CherkissM.S.SmithB.J.MazzottiF.J.FujisakiI.SnowR.W.DorcasM.E. (2015): Home range, habitat use, and movement patterns of non-native Burmese pythons in Everglades National Park, Florida, USA. Anim. Biotelemetry 3: 1-13.

HeardG.W.BlackD.RobertsonP. (2004): Habitat use by the inland carpet python (Morelia spilota metcalfei: Pythonidae): seasonal relationships with habitat structure and prey distribution in a rural landscape. Austral Ecol. 29: 446-460.

HenleK.DaviesK.F.KleyerM.MargulesC.SetteleJ. (2004): Predictors of species sensitivity to fragmentation. Biodivers. Conserv. 13: 207-251.

HesedK. (2006): Ophiophagus hannah (King Cobra). Diet. Herpetol. Rev. 37: 480.

HughesA.C. (2017): Understanding the drivers of Southeast Asian biodiversity loss. Ecosphere 8: e01624.

HyslopN.L.MeyersJ.M.CooperR.J.NortonT.M. (2009): Survival of radio-implanted Drymarchon couperi (Eastern Indigo Snake) in relation to body size and sex. Herpetologica 65: 199-206.

HyslopN.L.MeyersJ.M.CooperR.J.StevensonD.J. (2014): Effects of body size and sex of Drymarchon couperi (eastern indigo snake) on habitat use, movements, and home range size in Georgia. J. Wildl. Manage. 78: 101-111.

JellenB.C.ShepardD.B.DreslikM.J.PhillipsC.A. (2007): Male movement and body size affect mate acquisition in the Eastern Massasauga (Sistrurus Catenatus). J. Herpetol. 41: 451-457.

KenwardR.E.WallsS.S.HodderK.H. (2001): Life path analysis: scaling indicates priming effects of social and habitat factors on dispersal distances. J. Anim. Ecol. 70: 1-13.

KranstauberB.SmollaM.ScharfA.K. (2016): move: visualizing and analyzing animal track data. R package version 3.0.2. Available at

KrishnaS. (2002): Ophiophagus hannah (King Cobra). Diet. Herpetol. Rev. 33: 141.

LaverP.N.KellyM.J. (2008): A critical review of home range studies. J. Wildl. Manage. 72: 290-298.

LeiJ.BoothD.T.DwyerR.G. (2017): Spatial ecology of yellow-spotted goannas adjacent to a sea turtle nesting beach. Aust. J. Zool. 65: 77-86.

LelièvreH.MoreauC.Blouin-DemersG.BonnetX.LourdaisO. (2012): Two syntopic colubrid snakes differ in their energetic requirements and in their use of space. Herpetologica 68: 358-364.

MacartneyJ.M.GregoryP.T.LarsenK.W.HerpetologyJ.MarN. (1988): A tabular survey of data on movements and home ranges of snakes. J. Herpetol. 22: 61-73.

MadsenT.ShineR. (1996): Seasonal migration of predators and prey – a study of pythons and rats in tropical Australia. Ecology 77: 149-156.

MadsenT.UjvariB. (2011): The potential demise of a population of adders (Vipera berus) in Smygehuk, Sweden. Herpetol. Conserv. Biol. 6: 72-74.

McNabB.K. (1963): Bioenergetics and the determination of home range size. Am. Nat. 97: 133-140.

MitrovichM.J.DiffendorferJ.E.FisherR.N. (2009): Behavioral response of the Coachwhip (Masticophis flagellum) to habitat fragment size and isolation in an urban landscape. J. Herpetol. 43: 646-656.

MorrisonS.A.BoyceW.M. (2009): Conserving connectivity: some lessons from Mountain Lions in Southern California. Conserv. Biol. 23: 275-285.

NewmarkW.D.ManyanzaD.N.GamassaD.-G.M.SarikoH.I. (1994): The conflict between wildlife and local people living adjacent to protected areas in Tanzania: human density as a predictor. Conserv. Biol. 8: 249-255.

NilsenE.B.PedersenS.LinnellJ.D.C. (2008): Can minimum convex polygon home ranges be used to draw biologically meaningful conclusions? Ecol. Res. 23: 635-639.

OEPP (1997): Thailand policy and perspective plan for enhancement and conservation of national environmental quality 1997-2016. Bangkok Office of Environment Policy and Planning Ministry of Science Technology and Environment.

PebesmaE.J.BivandR.S. (2005): Classes and methods for spatial data in R. R News 5. Available at

PhumeeP.PagdeeA.KawasakiJ. (2017): Energy crops, livelihoods, and legal deforestation: a case study at Phu Wiang National Park, Thailand. J. Sustain. For. 37: 120-138.

Quantum GIS Development Team (2017): Quantum GIS geographic information system. Open source geospatial foundation project. Available at

R Core Team (2017): R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available at

R Studio Team (2016): RStudio: integrated development environment for R. Available at

RaoC.TalukdarG.ChoudhuryB.C.ShankarP.G.WhitakerR.GoodeM. (2013): Habitat use of King Cobra (Ophiophagus hannah) in a heterogeneous landscape matrix in the tropical forests of the Western Ghats, India. Hamadryad 36: 69-79.

ReadingC.J.LuiselliL.M.AkaniG.C.BonnetX.AmoriG.BallouardJ.M.FilippiE.NaulleauG.PearsonD.RugieroL. (2010): Are snake populations in widespread decline? Biol. Lett. 6: 777-780.

ReinertH.K.CundallD. (1982): An improved surgical implantation method for radio-tracking snakes. Copeia 1982: 702.

RoeJ.H.KingsburyB.A.HerbertN.R. (2004): Comparative water snake ecology: conservation of mobile animals that use temporally dynamic resources. Biol. Conserv. 118: 79-89.

RosaI.M.D.SmithM.J.WearnO.R.PurvesD.EwersR.M. (2016): The environmental legacy of modern tropical deforestation. Curr. Biol. 26: 2161-2166.

SandersonE.W.RedfordK.H.VedderA.CoppolilloP.B.WardS.E. (2002): A conceptual model for conservation planning based on landscape species requirements. Landsc. Urban Plan. 58: 41-56.

SaruwatariT. (2006): Aerial photo interpretation of 50-year vegetation changes in Sakaerat Environmental Research Station (SERS) Northeast Thailand. Nakhorn Ratchasima Laboratory of Tropical Forest Environment Kyoto University.

SaundersD.A.HobbsR.J.MargulesC.R. (1991): Biological consequences of ecosystem fragmentation: a review. Conserv. Biol. 5: 18-32.

SchaeferW.H. (1934): Diagnosis of sex in snakes. Copeia 1934: 181.

SeamanD.E.PowellR.A. (1996): An evaluation of the accuracy of kernel density estimators for home range analysis. Ecology 77: 2075-2085.

SecorS.M. (1994): Ecological significance of movements and activity range for the Sidewinder, Crotalus cerastes. Copeia 1994: 631-645.

SetserK. (2007): Use of anesthesia increases precision of snake length measurements. Herpetol. Rev. 38: 409-411.

ShankarP.G.GaneshS.R.WhitakerR.PrashanthP. (2013a): King Cobra Ophiophagus hannah (Cantor, 1836) encounters in human-modified rainforests of the Western Ghats, India. Hamadryad 36: 62-68.

ShankarP.G.SinghA.GaneshS.R.WhitakerR. (2013b): Factors influencing human hostility to King Cobras (Ophiophagus hannah) in the Western Ghats of India. Hamadryad 36: 91-100.

ShineR.MadsenT. (1996): Is thermoregulation unimportant for most reptiles? An example using Water Pythons (Liasis fuscus) in tropical Australia. Physiol. Zool. 69: 252-269.

SilerC.D.WeltonL.J.BrownR.M.InfanteC.DiesmosA.C. (2011): Ophiophagus hannah (King Cobra). Diet. Herpetol. Rev. 42: 297.

SomaweeraR.SomaweeraN. (2010): Serpents in jars: the snake wine industry in Vietnam. J. Threat. Taxa 2: 1251-1260.

SperryJ.H.WeatherheadP.J. (2009): Sex differences in behavior associated with sex-biased mortality in an oviparous snake species. Oikos 118: 627-633.

SteenD.A. (2010): Snakes in the grass: secretive natural histories defy both conventional and progressive statistics. Herpetol. Conserv. Biol. 5: 183-188.

StrineC.T.SilvaI.CraneM.NadolskiB.ArtchawakomT.GoodeM.SuwanwareeP. (2014): Mortality of a wild king cobra, Ophiophagus hannah Cantor, 1836 (Serpentes: Elapidae) from northeast Thailand after ingesting a plastic bag. Asian Herpetol. Res. 5: 284-286.

StuartB.WoganG.GrismerL.AuliyaM.IngerR.F.LilleyR.Chan-ArdT.ThyN.NguyenT.Q.SrinivasuluC.JelićD. (2012): Ophiophagus hannah King Cobra. The IUCN red list of threatened species. Available at Downloaded on 20 October 2017.

TrisuratY. (2010): Land use and forested landscape changes at Sakaerat Environmental Research Station in Nakhon Ratchasima province, Thailand. Ekol. Bratislava 29: 99-109.

WalstonJ.RobinsonJ.G.BennettE.L.BreitenmoserU.da FonsecaG.A.B.GoodrichJ.GumalM.HunterL.JohnsonA.Ullas KaranthK.Leader-WilliamsN.MacKinnonK.MiquelleD.PattanaviboolA.PooleC.RabinowitzA.SmithJ.L.D.StokesE.J.StuartS.N.VongkhamhengC.WibisonoH. (2010): Bringing the tiger back from the brink-the six percent solution. PLoS Biol. 8: 6-9.

WhitakerN.ShankarP.G.WhitakerR. (2013): Nesting ecology of the King Cobra (Ophiophagus hannah) in India. Hamadryad 36: 101-107.

WhitakerP.B.ShineR. (2000): Sources of mortality of large elapid snakes in an agricultural landscape. J. Herpetol. 34: 121-128.

WhitakerP.B.ShineR. (2003): A radiotelemetric study of movements and shelter-site selection by free-ranging Brownsnakes (Pseudonaja textilis, Elapidae). Herpetol. Monogr. 17: 130-144.

WhitakerR.CaptainA. (2004): King Cobra Ophiophagous hannah. In: Snakes of India – a Field Guide p. 384-385. Draco BooksChennai, India.

WickhamH. (2009): ggplot2: Elegant Graphics for Data Analysis. Springer-VerlagNew York.

WikramanayakeE.D.DinersteinE.RobinsonJ.G.KaranthU.RabinowitzA.OlsonD.MathewT.HedaoP.ConnerM.HemleyG.BolzeD. (1998): An ecology-based method for defining priorities for large mammal conservation: the tiger as case study. Conserv. Biol. 12: 865-878.

WinneC.T.WillsonJ.D.AndrewsK.M.ReedR.N. (2006): Efficacy of marking snakes with disposable medical cautery units. Herpetol. Rev. 37: 52-54.

WortonB.J. (1989): Kernel methods for estimating the utilization in home-range studies. Ecology 70: 164-168.

WortonB.J. (1995): Using Monte Carlo simulation to evaluate kernel-based home range estimators. J. Wildl. Manage. 59: 794-800.


  • View in gallery

    Location of the Sakaerat Biosphere Reserve (SBR) in Thailand. Alongside a map of the Core (smallest central green area), Buffer (intermediate lighter green area) and Transitional areas (largest and palest area) of the SBR. Scale is in m and corresponds to the 47N UTM region.

  • View in gallery

    Characteristics of all caught king cobras. SVL = snout vent length. HL = Head length. HW = Head width. Snakes marked with * have their characteristics averaged over multiple captures.

  • View in gallery

    Movements and Home Range Size. “# Tracked” is the number of the days tracked for. “MDD” is the mean distance in metres covered per day. “MCP” is the area of the Minimum Convex Polygon based upon 95% of the locations in hectares. “95% K” is the 95% fixed density kernel in hectares. “50% K” is the 50% fixed density kernel in hectares. “H value” is the optimised h kernel smoothing factor used to estimate home range. “Most Used Land Use” is the habitat that contained the most unique locations. Land use abbreviations: DEF – Dry Evergreen Forest, DDF – Dry Dipterocarp Forest.

  • View in gallery

    The home ranges of the tracked king cobras. Dark areas are settlements. Dark line is the 304 Highway. Scales is based in m and corresponds to the 47N UTM region. Dashed line shows the 95% MCP, single hashed areas correspond to the activity area, and the double hashed areas are the individual’s core area. Crosses represent a confirmed snake location.

  • View in gallery

    Habitat preferences for all the tracked king cobras calculated using Duncan’s Index. All preferences are calculated using the 95% fixed kernel home range. Habitat codes: AGR – agriculture, DDF – dry dipterocarp forest, DEF – dry evergreen forest, FOR – forest fragments outside of core SERS area, OTH – other trace habitat types within core SERS area, PLTS – plantation forest within buffer SERS area, PLT – plantations outside of buffer SERS area, SCR – scrub, SET – settlement, WAT – waterbody.

  • View in gallery

    The home ranges of AM006 and AM007 during breeding (February, March, and April) and non-breeding seasons. Dashed line shows the 95% MCP, single hashed areas correspond to the activity area, and the double hashed areas are the individual’s core area. Crosses represent a confirmed snake location. Scale is in m and corresponds to the 47N UTM region.


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 157 157 52
Full Text Views 105 105 42
PDF Downloads 7 7 1
EPUB Downloads 0 0 0