A review on crocodilian nesting habitats and their characterisation via remote sensing

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.

Help

 

Have Institutional Access?

Login with your institution. Any other coaching guidance?

Connect

Abstract

Crocodilians usually remain inside or near their nests during most vulnerable life stages (as eggs, neonates and reproductive females). Thus, protection of nesting sites is one of the most appropriate conservation actions for these species. Nesting sites are often found across areas with difficult access, making remote sensing a valuable tool used to derive environmental variables for characterisation of nesting habitats. In this study, we (i) review crocodilian nesting habitats worldwide to identify key variables for nesting site distribution: proximity to open-water, open-water stability, vegetation, light, precipitation, salinity, soil properties, temperature, topography, and flooding status, (ii) present a summary of the relative importance of these variables for each crocodilian species, (iii) identify knowledge gaps in the use of remote sensing methods currently used to map potential crocodilian nesting sites, and (iv) provide insight into how these remotely sensed variables can be derived to promote research on crocodilian ecology and conservation. We show that few studies have used remote sensing and that the range of images and methods used comprises a tiny fraction of what is available at little to no cost. Finally, we discuss how the combined use of remote sensing methods – optical, radar, and laser – may help overcome difficulties routinely faced in nest mapping (e.g., cloud cover, flooding beneath the forest canopy, or complicated relief) in a relevant way to crocodilians and to other semiaquatic vertebrates in different environments.

Sections
References
  • AdugnaC.KirosS.DejeneT.AsmelashT.HadguK.M. (2017): Distribution and habitat suitability of Nile crocodile (Crocodylus niloticus, L. 1768) in Tekeze River Dam, Tigray, Ethiopia. Int. J. Biodivers. Conserv. 9: 350-362.

    • Search Google Scholar
    • Export Citation
  • AndersonK.GastonK.J. (2013): Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 11: 138-146.

    • Search Google Scholar
    • Export Citation
  • ArnesenA.S.SilvaT.S.F.HessL.L.NovoE.M.L.M.RudorffC.M.ChapmanB.D.McDonaldK.C. (2013): Monitoring flood extent in the lower Amazon River floodplain using ALOS PALSAR ScanSAR images. Remote Sens. Environ. 130: 51-61.

    • Search Google Scholar
    • Export Citation
  • ArrautE.M.ArrautJ.L.MarmontelM.MantovaniJ.E.NovoE.M.L.M. (2017): Bottlenecks in the migration routes of Amazonian manatees and the threat of hydroelectric dams. Acta Amazon. 47: 7-18.

    • Search Google Scholar
    • Export Citation
  • ArrautE.M.MarmontelM.MantovaniJ.E.NovoE.M.L.M.MacDonaldD.W.KenwardR.E. (2010): The lesser of two evils: seasonal migrations of Amazonian manatees in the western Amazon. J. Zool. 280: 247-256.

    • Search Google Scholar
    • Export Citation
  • AsnerG.P. (2001): Cloud cover in Landsat observations of the Brazilian Amazon. Int. J. Remote Sens. 22: 3855-3862.

  • AsnerG.P. (2015): Organismic remote sensing for tropical forest ecology and conservation. Ann. Mo. Bot. Gard. 100: 127-140.

  • AsnerG.P.UstinS.L.TownsendP.A.MartinR.E.ChadwickK.D. (2015): Forest biophysical and biochemical properties from hyperspectral and LiDAR remote sensing. In: Land Resources Monitoring Modeling and Mapping With Remote Sensing p. 429-448. ThenkabailP.S. Ed. CRC PressBoca Raton, FL, USA.

    • Search Google Scholar
    • Export Citation
  • BerryP.A.M.GarlickJ.D.FreemanJ.A.MathersE.L. (2005): Global inland water monitoring from multi-mission altimetry. Geophys. Res. Lett. 32: L16401.

    • Search Google Scholar
    • Export Citation
  • BetbederJ.RapinelS.CorpettiT.PottierE.CorgneS.Hubert-MoyL. (2014): Multitemporal classification of TerraSAR-X data for wetland vegetation mapping. J. Appl. Remote Sens. 8: 083648.

    • Search Google Scholar
    • Export Citation
  • BeyerH.G.CostanzoC.HeinemannD. (1996): Modifications of the Heliosat procedure for irradiance estimates from satellite images. Sol. Energ. 56: 207-212.

    • Search Google Scholar
    • Export Citation
  • BezuijenM.R.CoxJ.H.Jr.ThorbjarnarsonJ.B.PhothitayC.HedemarkM.RasphoneA. (2013): Status of Siamese crocodile (Crocodylus siamensis) Schneider, 1801 (Reptilia: Crocodylia) in Laos. J. Herpetol. 47: 41-65.

    • Search Google Scholar
    • Export Citation
  • BezuijenM.R.WebbG.J.W.HartoyoP.Samedi. (2001): Peat swamp forest and the false gharial Tomistoma schlegelii (Crocodilia, Reptilia) in the Merang River, eastern Sumatra, Indonesia. Oryx 35: 301-307.

    • Search Google Scholar
    • Export Citation
  • BogningS.FrappartF.BlarelF.NiñoF.MahéG.BricquetJ.-P.SeylerF.OnguénéR.EtaméJ.PaizM.-C.BraunJ.-J. (2018): Monitoring water levels and discharges using radar altimetry in an ungauged river basin: the case of the Ogooué. Remote Sens. 10: 350.

    • Search Google Scholar
    • Export Citation
  • BwangoyJ.-R.HansenM.C.RoyD.P.De GrandiG.JusticeC.O. (2010): Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices. Remote Sens. Environ. 114: 73-86.

    • Search Google Scholar
    • Export Citation
  • CamposZ.MourãoG.CoutinhoM.MagnussonW.E.SorianoB.M. (2015): Spatial and temporal variation in reproduction of a generalist crocodilian, Caiman crocodilus yacare, ina seasonally flooded wetland. PLoS One 10: e0129368.

    • Search Google Scholar
    • Export Citation
  • CombrinkX.KorrûbelJ.L.KyleR.TaylorR.RossP. (2011): Evidence of a declining Nile crocodile (Crocodylus niloticus) population at Lake Sibaya, South Africa. S. Afr. J. Wildl. Res. 41: 145-157.

    • Search Google Scholar
    • Export Citation
  • CorbaneC.LangS.PipkinsK.AlleaumeS.DeshayesM.MillánV.E.G.StrasserT.BorreJ.V.ToonS.MichaelF. (2015): Remote sensing for mapping natural habitats and their conservation status – new opportunities and challenges. Int. J. Appl. Earth Obs. 37: 7-16.

    • Search Google Scholar
    • Export Citation
  • CowlingS.A.FieldC.B. (2003): Environmental control of leaf area production: implications for vegetation and land-surface modelling. Global Biogeochem. Cy. 17: 1007.

    • Search Google Scholar
    • Export Citation
  • CrétauxJ.-F.JelinskiW.CalmantS.KouraevA.VuglinskiV.Bergé-NguyenM.GenneroM.-C.NinoF.Abarca Del RioR.CazenaveA.MaisongrandeP. (2011): SOLS: a lake database to monitor in the near real time water level and storage variations from remote sensing data. Adv. Space Res. 47: 1497-1507.

    • Search Google Scholar
    • Export Citation
  • DekkerA.G.Vos R.J.Peters S.W. (2002): Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data. Int. J. Remote Sens. 23: 15-35.

    • Search Google Scholar
    • Export Citation
  • DettmeringD.SchwatkeC.BoergensE.SeitzF. (2016): Potential of ENVISAT radar altimetry for water level monitoring in the Pantanal wetland. Remote Sens. 8: 596.

    • Search Google Scholar
    • Export Citation
  • Development Team QGIS (2015): QGIS Geographic Information System. Available at http://qgis.osgeo.org. [Accessed 20 March 2018].

  • DuffettM.L.HarveyK.R.HillG.J.E. (2000): Saltwater crocodile nesting habitat suitability mapping with Landsat TM and GIS, Northern Territory, Australia. In: Proceedings of IGARSS ‘00 – IEEE 2000 International Geoscience and Remote Sensing Symposium 5. Taking the Pulse of the Planet: the Role of Remote Sensing in Managing the Environment Honolulu HI USA 24-28 July 2000 pp. 1918-1920. IEEE Xplore Publications.

    • Search Google Scholar
    • Export Citation
  • DzwonkowskiB.YanX.-H. (2005): Tracking of a Chesapeake Bay estuarine outflow plume with satellite-based ocean colour data. Cont. Shelf Res. 25: 1942-1958.

    • Search Google Scholar
    • Export Citation
  • EklundhL.JinH.SchubertP.GuzinskiR.HeliaszM. (2011): An optical sensor network for vegetation phenology monitoring and satellite data calibration. Sensors 11: 7678-7709.

    • Search Google Scholar
    • Export Citation
  • ElseyR.M.Trosclair IIIP.L. (2016): The use of an unmanned aerial vehicle to locate alligator nests. Southeast Nat. 15: 76-82.

  • EvansT.L.CostaM.P.F.TelmerK.SilvaT.S.F. (2010): Using ALOS PALSAR and RADARSAT-2 to map land cover and seasonal inundation in the Brazilian Pantanal. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 3: 560-575.

    • Search Google Scholar
    • Export Citation
  • FarrT.G.RosenP.A.CaroE.CrippenR.DurenR.HensleyS.KobrickM.PallerM.RodriguezE.RothL.SealD.ShafferS.ShimadaJ.UmlandJ.WernerM.OskinM.BurbankD.AlsdorfD. (2007): The shuttle radar topography mission. Rev. Geophys. 45: 1-43.

    • Search Google Scholar
    • Export Citation
  • FensholtR.SandholtI. (2005): Evaluation of MODIS and NOAA AVHRR vegetation indices with in situ measurements in a semi-arid environment. Int. J. Remote Sens. 26: 2561-2594.

    • Search Google Scholar
    • Export Citation
  • FensholtR.SandholtI.RasmussenM.S. (2004): Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens. Environ. 91: 490-507.

    • Search Google Scholar
    • Export Citation
  • Ferreira-FerreiraJ.SilvaT.S.F.StreherA.S.AffonsoA.G.FurtadoL.F.A.ForsbergB.R.ValsecchiJ.QueirozH.L.NovoE.M.L.M. (2015): Combining ALOS PALSAR derived vegetation structure and inundation patterns to characterize major vegetation types in the Mamirauá Sustainable Development Reserve, Central Amazon floodplain, Brazil. Wetl. Ecol. Manag. 23: 41-59.

    • Search Google Scholar
    • Export Citation
  • FeyisaG.L.MeilbyH.FensholtR.ProudS.R. (2014): Automated water extraction index: a new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 140: 23-35.

    • Search Google Scholar
    • Export Citation
  • ForkuorG.HounkpatinO.K.L.WelpG.ThielM. (2017): High resolution mapping of soil properties using remote sensing variables in south western Burkina Faso: a comparison of machine learning and multiple linear regression models. PLoS One 12: e0170478.

    • Search Google Scholar
    • Export Citation
  • FrançaA.M.S.FlorenzanoT.G.NovoE.M.L.M. (2007): Avaliação de fusão de imagens ópticas e microondas no mapeamento de morfologias lacustres. Rev. Bras. Cart. 59: 205-211.

    • Search Google Scholar
    • Export Citation
  • FultonR.A.BreidenbachJ.P.SeoD.-J.MillerD.A.O’BannonT. (1998): The WSR-88D rainfall algorithm. Weather Forecast. 13: 377-395.

    • Search Google Scholar
    • Export Citation
  • FurtadoL.F.A.SilvaT.S.F.FernandesP.J.F.NovoE.M.L.M. (2015): Land cover classification of Lago Grande de Curuai floodplain (Amazon, Brazil) using multi-sensor and image fusion techniques. Acta Amazon. 45: 195-202.

    • Search Google Scholar
    • Export Citation
  • FurtadoL.F.A.SilvaT.S.F.NovoE.M.L.M. (2016): Dual-season and full-polarimetric C band SAR assessment for vegetation mapping in the Amazon várzea wetlands. Remote Sens. Environ. 174: 212-222.

    • Search Google Scholar
    • Export Citation
  • GaoB. (1996): NDWI – a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58: 257-266.

    • Search Google Scholar
    • Export Citation
  • GellerG.N.HalpinP.N.HelmuthB.HestirE.L.SkidmoreS.AbramsM.J.AguirreN.BlairM.BothaE.ColloffM.DawsonT.FranklinJ.HorningN.JamesC.MagnussonW.SantosM.J.SchillS.R.WilliamsK. (2017): Remote sensing for biodiversity. In: The GEO Handbook on Biodiversity Observation Networks p. 187-200. WaltersM.ScholesR.J. Eds Springer OpenCham, Switzerland.

    • Search Google Scholar
    • Export Citation
  • GoetzS.SteinbergD.DubayahR.BlairB. (2007): Laser remote sensing of canopy habitat heterogeneity as a predictor of bird species richness in an eastern temperate forest, USA. Remote Sens. Environ. 108: 254-263.

    • Search Google Scholar
    • Export Citation
  • GómezC.WhiteJ.C.WulderM.A. (2016): Optical remotely sensed time series data for land cover classification: a review. ISPRS J. Photogramm. Remote Sens. 116: 55-72.

    • Search Google Scholar
    • Export Citation
  • GowerS.T.KucharikC.J.NormanJ.M. (1999): Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sens. Environ. 70: 29-51.

    • Search Google Scholar
    • Export Citation
  • GPM (2018): Global Precipitation Mission (GPM) Homepage. Available at http://pmm.nasa.gov/GPM. [Accessed 7 September 2018].

  • GRASS (2012): Geographic Resources Analysis Support System (GRASS) Software. Open Source Geospatial Foundation Project. Available at http://grass.osgeo.org. [Accessed 19 March 2018].

  • GuisanA.ThuillerW. (2005): Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8: 993-1009.

  • GuoM.LiJ.ShengC.XuJ.WuL. (2017): A review of wetland remote sensing. Sensors (Basel) 17: 777.

  • HammerA.HeinemannD.HoyerC.KuhlemannR.LorenzE.MullerR.BeyerH.G. (2003): Solar energy assessment using remote sensing technologies. Remote Sens. Environ. 86: 423-432.

    • Search Google Scholar
    • Export Citation
  • HammerA.KühnertJ.WeinreichK.LorenzE. (2015): Short-term forecasting of surface solar irradiance based on Meteosat-SEVIRI data using a nighttime cloud index. Remote Sens. 7: 9070-9090.

    • Search Google Scholar
    • Export Citation
  • HansenM.C.RoyD.P.LindquistE.AduseiB.JusticeC.O.AltstattA. (2008): A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin. Remote Sens. Environ. 112: 2495-2513.

    • Search Google Scholar
    • Export Citation
  • HarveyK.R.HillG.J.E. (2001): Vegetation mapping of a tropical freshwater swamp in the northern territory, Australia: a comparison of aerial photography, Landsat TM and SPOT satellite imagery. Int. J. Remote Sens. 22: 2911-2925.

    • Search Google Scholar
    • Export Citation
  • HarveyK.R.HillG.J.E. (2003): Mapping the nesting habitats of Saltwater crocodiles (Crocodylus porosus) in Melacca Swamp and the Adelaide River wetlands, northern territory: an approach using remote sensing and GIS. Wildl. Res. 30: 365-375.

    • Search Google Scholar
    • Export Citation
  • HeK.S.BradleyB.A.CordA.F.RocchiniD.TuanmuM.N.SchmidtleinS.TurnerW.WegmannM.PettorelliN. (2015): Will remote sensing shape the next generation of species distribution models?. Remote Sens. Ecol. Conserv. 1: 4-8.

    • Search Google Scholar
    • Export Citation
  • HendersonF.M.LewisA.J. (2008): Radar detection of wetland ecosystems: a review. Int. J. Remote Sens. 29: 5809-5835.

  • HessL.L.MelackJ.M.AffonsoA.G.BarbosaC.Gastil-BuhlM.NovoE.M.L.M. (2015): Wetlands of the lowland Amazon basin: extent, vegetative cover, and dual-season inundated area as mapped with JERS-1 synthetic aperture radar. Wetlands 35: 745-756.

    • Search Google Scholar
    • Export Citation
  • HessL.L.MelackJ.M.FilosoS.WangY. (1995): Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 33: 896-904.

    • Search Google Scholar
    • Export Citation
  • HessL.L.MelackJ.M.NovoE.M.L.M.BarbosaC.C.F.GastilM. (2003): Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sens. Environ. 87: 404-428.

    • Search Google Scholar
    • Export Citation
  • HueteA.R. (1988): A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25: 295-309.

  • HueteA.R.LiuH.Q.BatchilyK.van LeeuwenW. (1997): A comparison of vegetation indices global set of TM images for EOS MODIS. Remote Sens. Environ. 59: 440-451.

    • Search Google Scholar
    • Export Citation
  • IhlowF.BonkeaR.HartmannaT.GeissleraP.BehlerbN.RödderD. (2014): Habitat suitability, coverage by protected areas and population connectivity for the Siamese crocodile Crocodylus siamensis Schneider, 1801. Aquat. Conservat. Mar. Freshwat. Ecosyst. 25: 544-554.

    • Search Google Scholar
    • Export Citation
  • IslamA.GaoJ.AhmadW.NeilD.BelP. (2004): A composite DOP approach to excluding bottom reflectance in mapping water parameters of shallow coastal zones from TM imagery. Remote Sens. Environ. 92: 40-51.

    • Search Google Scholar
    • Export Citation
  • JarihaniA.A.CallowJ.N.JohansenK.GouweleeuwB. (2013): Evaluation of multiple satellite altimetry data for studying inland water bodies and river floods. J. Hydrol. (Amsterdam Neth.) 505: 78-90.

    • Search Google Scholar
    • Export Citation
  • JenkinsJ.C.BirdseyR.A.PanY. (2001): Biomass and NPP estimation for the mid-Atlantic region (USA) using plot-level forest inventory data. Ecol. Applic. 11: 1174-1193.

    • Search Google Scholar
    • Export Citation
  • JensonS.K.DomingueJ.O. (1988): Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm. Eng. Remote Sens. 54: 1593-1600.

    • Search Google Scholar
    • Export Citation
  • JusticeC.O.TownshendJ.R.G.VermoteE.F.MasuokaE.WolfeR.E.SaleousN.RoyD.P.MorisetteJ.T. (2002): An overview of MODIS land data processing and product status. Remote Sens. Environ. 83: 3-15.

    • Search Google Scholar
    • Export Citation
  • KasischkeE.S.MelackJ.M.DobsonM.C. (1997): The use of imaging radars for ecological applications: a review. Remote Sens. Environ. 59: 141-156.

    • Search Google Scholar
    • Export Citation
  • KlemasV. (2011): Remote sensing of sea surface salinity: an overview with case studies. J. Coast. Res. 27: 830-838.

  • KummerowC.SimpsonJ.ThieleO.BarnesW.ChangA.T.C.StockerE.AdlerR.F.HouA.KakarR.WentzF.AshcroftP.KozuT.HongY.OkamotoK.IguchiT.KuroiwaH.ImE.HaddadZ.HuffmanG.FerrierB.OlsonW.S.ZipserE.SmithE.A.WilheitT.T.NorthG.KrishnamurtiT.NakamuraK. (2000): The status of the tropical rainfall measuring mission (TRMM) after two years in orbit. J. Appl. Meteor. 39: 1965-1982.

    • Search Google Scholar
    • Export Citation
  • KushwahaS.P.S.DwivediR.S.RaoB.R.M. (2000): Evaluation of various digital image processing techniques for detection of coastal wetlands using ERS-1 SAR data. Int. J. Remote Sensing 21: 565-579.

    • Search Google Scholar
    • Export Citation
  • LagerloefG.BoutinJ.ChaoY.DelcroixT.FontJ.NiilerP.ReulN.RiserS.SchmittR.StammerD.WentzF. (2010): Resolving the global surface salinity field and variations by blending satellite and in situ observations. In: Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society 2. Venice Italy 21-25 September 2009 pp. 587-597. HallJ.HarrisonD.E.StammerD. Eds ESA Publication WPP-306.

    • Search Google Scholar
    • Export Citation
  • LaydenA.MerchantC.MacCallumS. (2015): Global climatology of surface water temperatures of large lakes by remote sensing. Int. J. Climatol. 35: 44644479.

    • Search Google Scholar
    • Export Citation
  • LiX.GongP.LiangL. (2015): A 30-year (1984–2013) record of annual urban dynamics of Beijing city derived from Landsat data. Remote Sens. Environ. 166: 78-90.

    • Search Google Scholar
    • Export Citation
  • LihanT.SaitohS.-I.IidaT.HirawakeT.IidaK. (2008): Satellite-measured temporal and spatial variability of the Tokachi River plume. Estuarine Coastal and Shelf Sci. 78: 237-249.

    • Search Google Scholar
    • Export Citation
  • LoarieS.R.TamblingC.J.AsnerG.P. (2013): Lion hunting behaviour and vegetation structure in an African savanna. Anim. Behav. 85: 899-906.

    • Search Google Scholar
    • Export Citation
  • LyetA.SlabbertR.VersfeldW.F.LeslieA.J.BeytellP.C.PreezP.D. (2016): Using a binomial mixture model and aerial counts for an accurate estimate of Nile crocodile abundance and population size in the Kunene River, Namibia. Afr. J. Wildl. Res. 46: 71-86.

    • Search Google Scholar
    • Export Citation
  • MagnussonW.E.GriggG.C.TaylorJ.A. (1980): An aerial survey of potential nesting areas of Crocodylus prosus on the west coast of Cape York Peninsula. Wildl. Res. 7: 465-478.

    • Search Google Scholar
    • Export Citation
  • ManchandaM.L.KudratM.TiwariA.K. (2002): Soil survey and mapping using remote sensing. Trop. Ecol. 43: 61-74.

  • MarkhamB.L.HelderD.L. (2012): Forty-year calibrated record of Earth-reflected radiance from Landsat: a review. Remote Sens. Environ. 122: 30-40.

    • Search Google Scholar
    • Export Citation
  • McAlileyL.R.I.WillisR.E.RayD.A.WhiteP.S.BrochuC.A.Densmore IIIL.D. (2006): Are crocodiles really monophyletic? Evidence for subdivisions from sequence and morphological data. Mol. Phylogenet. Evol. 39: 16-32.

    • Search Google Scholar
    • Export Citation
  • McFeetersS.K. (1996): The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17: 1425-1432.

    • Search Google Scholar
    • Export Citation
  • MelackJ.M.HessL.L.SippelS. (1994): Remote sensing of lakes and floodplains in the Amazon basin. Remote Sens. Rev. 10: 127-142.

    • Search Google Scholar
    • Export Citation
  • MendozaJ.M. (2006): Caracterización de la vegetación y playas para la nidificación del Crocodylus intermedius, en el tramo norte del río Cojedes, Venezuela. Rev. Unell. Cienc. Tec. 24: 105-110.

    • Search Google Scholar
    • Export Citation
  • MillerB.A.SchaetzlR.J. (2014): The historical role of base maps in soil geography. Geoderma 230-231: 329-339.

  • MinasnyB.McBratneyA.B. (2016): Digital soil mapping: a brief history and some lessons. Geoderma 264: 301-311.

  • MolleriG.S.F.NovoE.M.L.M.KampelM. (2010): Space-time variability of the Amazon river plume based on satellite ocean color. Cont. Shelf. Res. 30: 342-352.

    • Search Google Scholar
    • Export Citation
  • MontanherO.C.NovoE.M.L.M.BarbosaC.C.F.RennóC.D.SilvaT.S.F. (2014): Empirical models for estimating the suspended sediment concentration in Amazonian white-water rivers using Landsat-5 TM. Int. J. Appl. Earth Obs. Geoinf. 29: 67-77.

    • Search Google Scholar
    • Export Citation
  • MoulatletG.M.RennóC.D.CostaF.R.C.EmilioT.SchiettiJ. (2015): Mapping hydrological environments in central Amazonia: ground validation and surface model based on SRTM-DEM data corrected for deforestation. Earth Syst. Sci. Data 7: 29-34.

    • Search Google Scholar
    • Export Citation
  • MouwC.B.GrebS.AurinD.DiGiacomoP.M.LeeZ.TwardowskiM.BindingC.HuC.MaR.MooreT.MosesW.CraigS.E. (2015): Aquatic color radiometry remote sensing of coastal and inland waters: challenges and recommendations for future satellite missions. Remote Sens. Environ. 160: 15-30.

    • Search Google Scholar
    • Export Citation
  • MulderV.L.de BruinS.SchaepmanM.E.MayrT.R. (2011): The use of remote sensing in soil and terrain mapping – a review. Geoderma 162: 1-19.

    • Search Google Scholar
    • Export Citation
  • MyneniR.B.NemaniR.R.RunningS.W. (1997): Estimation of global leaf area index and absorbed PAR using radiative transfer model. IEEE Trans. Geosci. Remote Sens. 35: 1380-1393.

    • Search Google Scholar
    • Export Citation
  • NagendraH.LucasR.HonradJ.P.JongmanR.H.G.TarantinoC.AdarnoM.MairotaP. (2013): Remote sensing for conservation monitoring: assessing protected areas, habitat extent, species diversity, and threats. Ecol. Indic. 33: 45-59.

    • Search Google Scholar
    • Export Citation
  • NaglerP.MorinoK.MurrayR.S.OsterbergJ.GlennE. (2009): An empirical algorithm for estimating agricultural and riparian evapotranspiration using MODIS enhanced vegetation index and ground measurements of ET. I. Description of method. Remote Sens. 1: 1273-1297.

    • Search Google Scholar
    • Export Citation
  • NOAA (2018): Global NOAA Next Generation Radar (NEXRAD) Level III Products. Available at https://data.noaa.gov. [Accessed 15 September 2018].

  • NobreA.D.CuartasL.A.MomoM.R.SeveroD.L.PinheiroA.NobreC.A. (2016): HAND contour: a new proxy predictor of inundation extent. Hydrol. Process. 30: 320-333.

    • Search Google Scholar
    • Export Citation
  • NovoE.M.L.M.CostaM.P.F.MantovaniJ.E.LimaI.B.T. (2002): Relationship between macrophyte stand variables and radar backscatter at L and C band, Tucuruí reservoir, Brazil. Int. J. Remote Sens. 23: 1241-1260.

    • Search Google Scholar
    • Export Citation
  • PettorelliN.OwenH.J.F.DuncanC. (2016): How do we want satellite remote sensing to support biodiversity conservation globally? Methods Ecol. Evol. 7: 656-665.

    • Search Google Scholar
    • Export Citation
  • PiolaA.R.RomeroS.I.ZajaczkovskiU. (2008): Space-time variability of the Plata plume inferred from ocean color. Cont. Shelf Res. 28: 1556-1567.

    • Search Google Scholar
    • Export Citation
  • PoliD.RemondinoF.AngiuliE.AgugiaroG. (2015): Radiometric and geometric evaluation of GeoEye-1, WorldView-2 and Pléiades-1A stereo images for 3D information extraction. ISPRS J. Photogramm. Remote Sens. 100: 35-47.

    • Search Google Scholar
    • Export Citation
  • PosseltR.MuellerR.TrentmannJ.StockliR.LinigerM.A. (2014): A surface radiation climatology across two Meteosat satellite generations. Remote Sens. Environ. 142: 103-110.

    • Search Google Scholar
    • Export Citation
  • RennóC.D.NobreA.D.CuartasL.A.SoaresJ.V.HodnettM.G.TomasellaJ.WaterlooM.J. (2008): HAND, a new terrain descriptor using SRTM-DEM: mapping terra-firme rainforest environments in Amazonia. Remote Sens. Environ. 112: 3469-3481.

    • Search Google Scholar
    • Export Citation
  • RigollierC.LefèvreM.WaldL. (2004): The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Sol. Energ. 77: 159-169.

    • Search Google Scholar
    • Export Citation
  • RouseJ.W.HaasR.H.SchellJ.A.DeeringD.W.HarlanJ.C. (1974): Monitoring the Vernal Advancements and Retrogradation (Green Wave Effect) of Natural Vegetation. Final Report. NASA/GSFCGreenbelt.

    • Search Google Scholar
    • Export Citation
  • SaalfeldT.ConwayW.C.CalkinsG.E. (2012): Nest success and hatchling survival of American alligators within inland wetlands of east Texas. J. Wildlife Manage. 76: 1568-1575.

    • Search Google Scholar
    • Export Citation
  • SalemA.H.I. (2013): Habitat vulnerability for the Nile crocodile (Crocodylus niloticus) in Nasser Lake (Egypt). Transylv. Rev. Syst. Ecol. Res. 15: 19-32.

    • Search Google Scholar
    • Export Citation
  • SartoriL.R.ImaiN.N.MuraJ.C.NovoE.M.L.M.SilvaT.S.F. (2011): Mapping macrophyte species in the Amazon floodplain wetlands using fully polarimetric ALOS PALSAR data. IEEE Trans. Geosci. Remote Sens. 49: 4717-4728.

    • Search Google Scholar
    • Export Citation
  • SchiettiJ.EmilioT.RennóC.D.DruckerD.P.CostaF.R.C.NogueiraA.BaccaroF.B.FigueiredoF.CastilhoC.V.KinuppV.GuillaumetJ.-L.GarciaA.R.M.LimaA.P.MagnussonW.E. (2014): Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest. Plant Ecol. Divers. 7: 241-253.

    • Search Google Scholar
    • Export Citation
  • SchwatkeC.DettmeringD.BoschW.SeitzF. (2015): DAHITI – an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrol. Earth Syst. Sci. 19: 4345-4364.

    • Search Google Scholar
    • Export Citation
  • SeoD.-J. (1998): Real-time estimation of rainfall fields using radar rainfall and rain gage data. J. Hydrol. 208: 37-52.

  • SilvaT.S.F.CostaM.P.F.MelackJ.M. (2010a): Assessment of two biomass estimation methods for aquatic vegetation growing on the Amazon floodplain. Aquat. Bot. 92: 161-167.

    • Search Google Scholar
    • Export Citation
  • SilvaT.S.F.CostaM.P.F.MelackJ.M. (2010b): Spatial and temporal variability of macrophyte cover and productivity in the eastern Amazon floodplain: a remote sensing approach. Remote Sens. Environ. 114: 1998-2010.

    • Search Google Scholar
    • Export Citation
  • SilvaT.S.F.CostaM.P.F.MelackJ.M.NovoE.M.L.M. (2008): Remote sensing of aquatic vegetation: theory and applications. Environ. Monit. Assess. 140: 131-145.

    • Search Google Scholar
    • Export Citation
  • SilvaT.S.F.MelackJ.M.NovoE.M.L.M. (2013): Responses of aquatic macrophyte cover and productivity to flooding variability on the Amazon floodplain. Glob. Chang. Biol. 19: 3379-3389.

    • Search Google Scholar
    • Export Citation
  • SilvaT.S.F.MelackJ.M.StreherA.S.Ferreira-FerreiraJ.FurtadoL.F.A. (2015): Capturing the dynamics of Amazonian wetlands using synthetic aperture radar: lessons learned and future directions. In: Remote Sensing of Wetlands: Applications and Advances p. 455-472. TinerR.LangM.KlemasV. Eds CRC PressBoca Raton, FL, USA.

    • Search Google Scholar
    • Export Citation
  • SomaweeraR.WebbJ.K.ShineR. (2011): Determinants of habitat selection by hatchling Australian freshwater crocodiles. PLoS One 6: e28533.

    • Search Google Scholar
    • Export Citation
  • SulistioadiY.B.TsengK.-H.ShumC.K.HidayatH.SumaryonoM.SuhardimanA.SetiawanF.SunarsoS. (2015): Satellite radar altimetry for monitoring small rivers and lakes in Indonesia. Hydrol. Earth Syst. Sci. 19: 341-359.

    • Search Google Scholar
    • Export Citation
  • ThomasA.C.WeatherbeeR.A. (2006): Satellite-measured temporal variability of the Columbia river plume. Remote Sens. Environ. 100: 167-178.

    • Search Google Scholar
    • Export Citation
  • TRMM (2018): Tropical Rainfall Measurement Mission (TRMM). Available at http://pmm.nasa.gov/trmm. [Accessed 9 June 2018].

  • TuanmuM.-N.Jetz W. (2014): A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Global Ecol. Biogeogr. 23: 1031-1045.

    • Search Google Scholar
    • Export Citation
  • TuanmuM.-N.JetzW. (2015): A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecol. Biogeogr. 24: 1329-1339.

    • Search Google Scholar
    • Export Citation
  • TuckerA.D.McCallumH.I.LimpusC.J.McDonaldK.R. (1998): Sex-biased dispersal in a long-lived polygynous reptile (Crocodylus johnstoni). Behav. Ecol. Sociobiol. 44: 85-90.

    • Search Google Scholar
    • Export Citation
  • TurnerW.SpectorS.GardinerN.FladelandM.SterlingE.SteiningerM. (2003): Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 18: 306-314.

    • Search Google Scholar
    • Export Citation
  • ValerianoM.M.KuplichT.M.StorinoM.AmaralB.D.MendesJ.N.Jr.LimaD.J. (2006): Modelling small watersheds in Brazilian Amazonia with shuttle radar topographic mission-90 m data. Comput. Geosci. 32: 1169-1181.

    • Search Google Scholar
    • Export Citation
  • VancutsemC.CeccatoP.DinkuT.ConnorS.J. (2010): Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens. Environ. 114: 449-465.

    • Search Google Scholar
    • Export Citation
  • VegaG.C.PertierraL.R.Olalla-TárragaM.A. (2017): MERRAclim, a high-resolution global dataset of remotely sensed bioclimatic variables for ecological modelling. Sci. Data 4: 170078.

    • Search Google Scholar
    • Export Citation
  • VillamarínF.MarioniB.ThorbjarnarsonJ.B.NelsonB.W.Botero-AriasR.MagnussonW.E. (2011): Conservation and management implications of nest-site selection of the sympatric crocodilians Melanosuchus niger and Caiman crocodilus in Central Amazonia, Brazil. Biol. Conserv. 144: 913-919.

    • Search Google Scholar
    • Export Citation
  • ViñaA.GitelsonA.A.Nguy-RobertsonA.L.PengY. (2011): Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ. 115: 3468-3478.

    • Search Google Scholar
    • Export Citation
  • WalkerN.D. (1996): Satellite assessment of Mississippi River plume variability: causes and predictability. Remote Sens. Environ. 58: 21-35.

    • Search Google Scholar
    • Export Citation
  • WaltariE.SchroederR.McDonaldK.AndersonR.P.CarnavalA. (2014): Bioclimatic variables derived from remote sensing: assessment and application for species distribution modelling. Methods Ecol. Evol. 5: 1033-1042.

    • Search Google Scholar
    • Export Citation
  • WardD.P.PettyA.SetterfieldS.A.DouglasM.M.FerdinandsK.HamiltonS.K.PhinnS. (2014): Floodplain inundation and vegetation dynamics in the Alligator Rivers region (Kakadu) of northern Australia assessed using optical and radar remote sensing. Remote Sens. Environ. 147: 43-55.

    • Search Google Scholar
    • Export Citation
  • WengaQ.LubD.SchubringaJ. (2004): Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 89: 467-483.

    • Search Google Scholar
    • Export Citation
  • WilsonE.H.SaderS.A. (2002): Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 80: 385-396.

    • Search Google Scholar
    • Export Citation
  • WilsonJ.W.BrandesA.E. (1979): Radar measurement of rainfall: a summary. Am. Meteorol. Soc. 60: 1048-1058.

  • XuH. (2006): Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 27: 3025-3033.

    • Search Google Scholar
    • Export Citation
  • YongE. (2011): Nile crocodile is two species. Available at https://www.nature.com/news/2011/110914/full/news.2011.535.html. [Accessed 26 August 2018].

  • ZhangC.QiuF. (2012): Mapping individual tree species in an urban forest using airborne lidar data and hyperspectral imagery. Photogramm. Eng. Remote Sens. 78: 1079-1087.

    • Search Google Scholar
    • Export Citation
Figures
  • View in gallery

    List of crocodilian living species including Alligatoridae, Crocodylidae and Gavialidae and their worldwide natural range (Source: http://reptile-database.reptarium.cz/).

  • View in gallery

    Relationship between general descriptions of crocodilian nesting habitats and environmental variables. Small and large pixel means a pixel size equal or smaller and greater than 30 m, respectively.

  • View in gallery

    Flow diagram summarising the literature search results and the exclusion criteria.

  • View in gallery

    Distribution of studies on crocodilian nesting habitat throughout the last seven decades (1949–2018). The methods used in the study are indicated by letters FB (only field-based methods) and RS (field-based and remote sensing methods combined).

  • View in gallery

    Number of relevant references on the nesting habitat of each crocodilian species in the last step of the literature search (List 4). For the crocodilian species Mecistops cataphractus, searches were also made for the synonym Crocodylus cataphractus.

  • View in gallery

    List of crocodilian living species of Alligatoridae, Crocodylidae and Gavialidae and the environmental variables that describe their nesting habitats. For each species, the respective importance of each variable was measured by the average number of times it was cited, and then expressed as a fraction of 5 and rounded to the nearest integer. The green highlighted cells represent the most important variables for a given species.

Index Card
Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 134 135 65
Full Text Views 17 17 15
PDF Downloads 3 3 3
EPUB Downloads 0 0 0