The Art of Shaping Materials

In: Art & Perception
Author: Filipp Schmidt1
View More View Less
  • 1 Justus Liebig University Giessen, General Psychology, Germany

Purchase instant access (PDF download and unlimited online access):

€29.95$34.95

Material perception — the visual perception of stuff — is an emerging field in vision research. We recognize materials from shape, color and texture features. This paper is a selective review and discussion of how artists have been using shape features to evoke vivid impressions of specific materials and material properties. A number of examples are presented in which visual artists render materials or their transformations, such as soft human skin, runny or viscous fluids, or wrinkled cloth. They achieve this by expressing the telltale shape features of these materials and transformations, often by carving them from a single block of marble or wood. Vision research has just begun to investigate these very shape features, making material perception a prime example of how art can inform science.

  • Adelson, E. H. (2001). On seeing stuff: the perception of materials by humans and machines, Proceedings Volume 4299, Human Vision and Electronic Imaging VI, San Jose, CA, USA, pp. 112.

    • Search Google Scholar
    • Export Citation
  • Aliaga, C. , O’Sullivan, C., Gutierrez, D. and Tamstorf, R. (2015). Sackcloth or silk?: the impact of appearance vs dynamics on the perception of animated cloth, SAP ‘15 Proceedings of the ACM SIGGRAPH Symposium on Applied Perception, New York, NY, USA, pp. 4146.

    • Search Google Scholar
    • Export Citation
  • Anderson, B. L. (2011). Visual perception of materials and surfaces, Curr. Biol. 21, R978R983.

  • Arnheim, R. (1974). Art and visual perception: a psychology of the creative eye (new exp. and rev. ed.), University of California Press, Berkeley, CA, USA.

    • Search Google Scholar
    • Export Citation
  • Baumgartner, E. , Wiebel, C. B. and Gegenfurtner, K. R. (2013). Visual and haptic representations of material properties, Multisens. Res. 26, 429455.

    • Search Google Scholar
    • Export Citation
  • Baumgartner, E. , Wiebel, C. B. and Gegenfurtner, K. R. (2015). A comparison of haptic material perception in blind and sighted individuals, Vision Res. 115, 238245.

    • Search Google Scholar
    • Export Citation
  • Bell, S. , Upchurch, P. , Snavely, N. and Bala, K. (2015). Material recognition in the wild with the Materials in Context Database, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) ,Boston, MA, USA, pp. 34793487.

    • Search Google Scholar
    • Export Citation
  • Bi, W. and Xiao, B. (2016). Perceptual constancy of mechanical properties of cloth under variation of external forces, SAP ‘16 Proceedings of the ACM Symposium on Applied Perception, New York, NY, USA, pp. 1923.

    • Search Google Scholar
    • Export Citation
  • Bi, W. , Jin, P. , Nienborg, H. and Xiao, B. (2018). Estimating mechanical properties of cloth from videos using dense motion trajectories: Human psychophysics and machine learning, J. Vis. 18, 12. doi: 10.1167/18.5.12.

    • Search Google Scholar
    • Export Citation
  • Bouman, K. L. , Xiao, B. , Battaglia, P. and Freeman, W. T. (2014). Estimating the material properties of fabric from video. In 2013 IEEE International Conference on Computer Vision, New York, NY, USA, pp. 19841991.

    • Search Google Scholar
    • Export Citation
  • Caesar, H. , Uijlings, J. and Ferrari, V. (2018). COCO-stuff: Thing and stuff classes in context. In 2018 IEEE/CVF International Conference on Computer Vision and Pattern Recognition, New York, NY, USA, pp. 12091218.

    • Search Google Scholar
    • Export Citation
  • Cavanagh, P. (2005). The artist as neuroscientist, Nature, 434, 301307.

  • Cavanagh, P. , Chao, J. and Wang, D. (2008). Reflections in art, Spat. Vis. 21, 261270.

  • Chadwick, A. C. and Kentridge, R. W. (2015). The perception of gloss: A review, Vision Res. 109, 221235.

  • Chen, Y.-C. and Scholl, B. J. (2016). The perception of history: seeing causal history in static shapes induces illusory motion perception, Psychol. Sci. 27, 923930.

    • Search Google Scholar
    • Export Citation
  • Cutting, J. E. (1982). Blowing in the wind: Perceiving structure in trees and bushes, Cognition 12, 2544.

  • Cutting, J. E. (2002). Representing motion in a static image: constraints and parallels in art, science, and popular culture, Perception 31, 11651193.

    • Search Google Scholar
    • Export Citation
  • Daneyko, O. , Stucchi, N. and Zavagno, D. (2011). San Lorenzo and the Poggendorff illusion in Ravenna, I-Perception 2, 502507.

  • Di Cicco, F. , Wijntjes, M. and Pont, S. (2018). Beurs’ historical recipe and material perception of grapes in Dutch Golden Age still-lifes, IS&T Int. Symp. Electronic Imaging Science and Technology 2018, Burlingame, CA, USA, pp. 16.

    • Search Google Scholar
    • Export Citation
  • DiCarlo, J. J. , Zoccolan, D. and Rust, N. C. (2012). How does the brain solve visual object recognition? Neuron 73, 415434.

  • Drewing, K. (2014). Exploratory movement strategies in softness perception, in: M. Di Luca (Ed.), Multisensory softness, Springer series on touch and haptic systems, pp. 109125, Springer, London, UK.

    • Search Google Scholar
    • Export Citation
  • Drewing, K. and Kruse, O. (2014). Weights in visuo-haptic softness perception are not sticky, Proceedings 9th International Conference, EuroHaptics 2014 ,Versailles, France, pp. 6876.

    • Search Google Scholar
    • Export Citation
  • Ekroll, V. , Sayim, B. and Wagemans, J. (2017). The other side of magic, Perspect. Psychol. Sci. 12, 91106. doi: 10.1177/1745691616654676.

    • Search Google Scholar
    • Export Citation
  • Fleming, R. W. (2014). Visual perception of materials and their properties, Vision Res. 94, 6275.

  • Fleming, R. W. (2017). Material perception, Annu. Rev. Vis. Sci. 3, 365388.

  • Fleming, R. W. and Schmidt, F. (2019). Getting “fumpered”: Classifying objects by what has been done to them. J. Vis. 19, 15.

  • Fleming, R. W. , Wiebel, C. and Gegenfurtner, K. (2013). Perceptual qualities and material classes, J. Vis. 13, 9. doi: 10.1167/13.8.9.

    • Search Google Scholar
    • Export Citation
  • Gerbino, W. and Zabai, C. (2003). The joint, Acta Psychol. 114, 331353.

  • Goda, N. , Tachibana, A. , Okazawa, G. and Komatsu, H. (2014). Representation of the material properties of objects in the visual cortex of nonhuman primates, J. Neurosci. 34, 26602673.

    • Search Google Scholar
    • Export Citation
  • Gombrich, E. H. (1960). Art and illusion: A study in the psychology of pictorial representation, Pantheon Books, New York, NY, USA.

  • Gregory, R. L. , Harris, S. , Heard, P. and Rose, D. (1995). The artful eye, Oxford University Press, Oxford, UK.

  • Grossberg, S. and Zajac, L. (2017). How humans consciously see paintings and paintings illuminate how humans see, Art Percept. 5, 195. doi: 10.1163/22134913-00002059.

    • Search Google Scholar
    • Export Citation
  • Hecht, H. , Schwartz, R. and Atherton, M. (2003). Looking into pictures: An interdisciplinary approach to pictorial space, MIT, Cambridge, MA, USA.

    • Search Google Scholar
    • Export Citation
  • Hespos, S. J. , Ferry, A. L. and Rips, L. J. (2009). Five-month-old infants have different expectations for solids and liquids, Psychol. Sci. 20, 603611.

    • Search Google Scholar
    • Export Citation
  • Hespos, S. J. , Ferry, A. L. , Anderson, E. M. , Hollenbeck, E. N. and Rips, L. J. (2016). Five-month-old infants have general knowledge of how nonsolid substances behave and interact, Psychol. Sci. 27, 244256.

    • Search Google Scholar
    • Export Citation
  • Jacobs, R. H. A. H. , Baumgartner, E. and Gegenfurtner, K. R. (2014). The representation of material categories in the brain, Front. Psychol. 5, 146. doi: 10.3389/fpsyg.2014.00146.

    • Search Google Scholar
    • Export Citation
  • Kanizsa, G. (1979). Organization in vision: essays on Gestalt perception, Praeger Publishers, New York, NY, USA.

  • Kawabe, T. , Maruya, K. , Fleming, R. W. and Nishida, S. (2015a). Seeing liquids from visual motion, Vision Res. 109, 125138.

  • Kawabe, T. , Maruya, K. and Nishida, S. (2015b). Perceptual transparency from image deformation, Proc. Natl Acad. Sci. USA 112, E4620E4627.

    • Search Google Scholar
    • Export Citation
  • Kemp, M. (1990). The science of art: optical themes in western art from Brunelleschi to Seurat ,Yale University Press, New Haven, CT, USA.

    • Search Google Scholar
    • Export Citation
  • Kersten, D. , Mamassian, P. and Yuille, A. (2004). Object perception as Bayesian inference, Annu. Rev. Psychol. 55, 271304.

  • Koffka, K. (1935). Principles of Gestalt psychology, Harcourt Brace, Oxford, UK.

  • Kriegeskorte, N. (2015). Deep neural networks: a new framework for modeling biological vision and brain information processing, Annu. Rev. Vis. Sci. 1, 417446.

    • Search Google Scholar
    • Export Citation
  • Kubovy, M. (1986). The psychology of perspective and Renaissance art, Cambridge University Press, Cambridge, UK.

  • Leymarie, F. F. and Aparajeya, P. (2017). Medialness and the perception of visual art, Art Percept. 5, 169232.

  • Leyton, M. (1989). Inferring causal history from shape, Cogn. Sci. 13, 357387.

  • Lezkan, A. , Metzger, A. and Drewing, K. (2018). Active haptic exploration of softness: indentation force is systematically related to prediction, sensation and motivation, Front. Integr. Neurosci. 12, 59. doi: 10.3389/fnint.2018.00059.

    • Search Google Scholar
    • Export Citation
  • Livingstone, M. (2014). Vision and art: The biology of seeing (rev. and exp. ed.), Abrams Harry N. , New York, NY, USA.

  • Logothetis, N. K. and Sheinberg, D. L. (1996). Visual object recognition, Annu. Rev. Neurosci. 19, 577621.

  • Ludden, G. D.S. , Schifferstein, H. N.J. and Hekkert, P. (2008). Surprise as a design strategy, Des. Issues 24, 2838.

  • Macknik, S. L. , King, M. , Randi, J. , Robbins, A. , Teller, J. T. and Martinez-Conde, S. (2008). Attention and awareness in stage magic: turning tricks into research, Nat. Rev. Neurosci. 9, 871879.

    • Search Google Scholar
    • Export Citation
  • Maloney, L. T. and Brainard, D. H. (2010). Color and material perception: Achievements and challenges, J. Vis. 10, 19. doi: 10.1167/10.9.19.

    • Search Google Scholar
    • Export Citation
  • Mamassian, P. (2008). Ambiguities and conventions in the perception of visual art, Vision Res. 48, 21432153.

  • Mark, L. S. and Todd, J. T. (1985). Describing perceptual information about human growth in terms of geometric invariants, Percept. Psychophys. 37, 249256.

    • Search Google Scholar
    • Export Citation
  • Metzger, A. , Lezkan, A. and Drewing, K. (2018). Integration of serial sensory information in haptic perception of softness, J. Exp. Psychol. 44, 551565.

    • Search Google Scholar
    • Export Citation
  • Morgenstern, Y. and Kersten, D. J. (2017). The perceptual dimensions of natural dynamic flow, J. Vis. 17, 7. doi: 10.1167/17.12.7.

  • Motoyoshi, I. , Nishida, S. , Sharan, L. and Adelson, E. H. (2007). Image statistics and the perception of surface qualities, Nature 447, 206209.

    • Search Google Scholar
    • Export Citation
  • Muth, C. and Carbon, C.-C. (2016). SeIns: semantic instability in art, Art Percept. 4, 145184.

  • Ons, B. and Wagemans, J. (2012). Generalization of visual shapes by flexible and simple rules, Seeing Perceiving 25, 237261.

  • Pasupathy, A. , El-Shamayleh, Y. and Popovkina, D. V. (2018). Visual shape and object perception, in: Oxford Research Encyclopedias ,Oxford University Press, Oxford, UK. doi: 10.1093/acrefore/9780190264086.013.75.

    • Search Google Scholar
    • Export Citation
  • Paulun, V. C. , Kawabe, T. , Nishida, S. and Fleming, R. W. (2015). Seeing liquids from static snapshots, Vision Res. 115, 163174.

  • Paulun, V. C. , Schmidt, F. , van Assen, J. J. R. and Fleming, R. W. (2017). Shape, motion, and optical cues to stiffness of elastic objects, J. Vis. 17, 20. doi: 10.1167/17.1.20.

    • Search Google Scholar
    • Export Citation
  • Pepperell, R. (2015). Artworks as dichotomous objects: implications for the scientific study of aesthetic experience, Front. Hum. Neurosci. 9, 295. doi: 10.3389/fnhum.2015.00295.

    • Search Google Scholar
    • Export Citation
  • Phillips, F. and Fleming, R. W. (2017). The Veiled Virgin Project: Causal layering of 3D shape, J. Vis. 17, 406. doi: 10.1167/17.10.406.

    • Search Google Scholar
    • Export Citation
  • Pinna, B. (2007). Art as a scientific object: toward a visual science of art, Spat. Vis. 20, 493508.

  • Pinna, B. (2010). New Gestalt principles of perceptual organization: an extension from grouping to shape and meaning, Gestalt Theory, 32, 1178.

    • Search Google Scholar
    • Export Citation
  • Pinna, B. (2012). Perceptual organization of shape, color, shade, and lighting in visual and pictorial objects, I-Perception 3, 257281.

    • Search Google Scholar
    • Export Citation
  • Pinna, B. (2013). Why are paintings painted as they are? the place of children’s drawings in vision and art, Art Percept. 1, 75104.

    • Search Google Scholar
    • Export Citation
  • Pinna, B. and Deiana, K. (2015). Material properties from contours: New insights on object perception, Vision Res. 115, 280301.

  • Pittenger, J. B. and Todd, J. T. (1983). Perception of growth from changes in body proportions, J. Exp. Psychol. 9, 945954.

  • Ramachandran, V. S. and Hirstein, W. (1999). The science of art: A neurological theory of aesthetic experience, J. Consc. Stud. 6, 1551.

    • Search Google Scholar
    • Export Citation
  • Riesenhuber, M. and Poggio, T. (2002). Neural mechanisms of object recognition, Curr. Opin. Neurobiol. 12, 162168.

  • Rubin, N. (2015). Banksy’s graffiti art reveals insights about perceptual surface completion, Art Percept. 3, 117.

  • Sayim, B. and Cavanagh, P. (2011). The art of transparency, I-Perception 2, 679696.

  • Schmid, A. C. and Doerschner, K. (2018). Shatter and splatter: The contribution of mechanical and optical properties to the perception of soft and hard breaking materials, J. Vis. 18, 14. doi: 10.1167/18.1.14.

    • Search Google Scholar
    • Export Citation
  • Schmid, A. C. and Doerschner, K. (2019). Representing stuff in the human brain, Curr. Opin. Behav. Sci. 30, 178–185. doi: 10.1016/j.cobeha.2019.10.007.

    • Search Google Scholar
    • Export Citation
  • Schmidt, F. and Fleming, R. W. (2018). Identifying shape transformations from photographs of real objects, PloS One, 13, e0202115. doi: 10.1371/journal.pone.0202115.

    • Search Google Scholar
    • Export Citation
  • Schmidt, F. , Paulun, V. C. , van Assen, J. J. R. and Fleming, R. W. (2017). Inferring the stiffness of unfamiliar objects from optical, shape, and motion cues, J. Vis. 17, 18. doi: 10.1167/17.3.18.

    • Search Google Scholar
    • Export Citation
  • Schmidt, F. , Phillips, F. and Fleming, R. W. (2019). Visual perception of shape-transforming processes: ‘Shape scission’, Cognition 189, 167180.

    • Search Google Scholar
    • Export Citation
  • Schwartz, G. and Nishino, K. (2018). Recognizing material properties from images. Retrieved from http://adsabs.harvard.edu/abs/2018arXiv180103127S.

    • Search Google Scholar
    • Export Citation
  • Sharan, L. , Rosenholtz, R. and Adelson, E. (2009). Material perception: What can you see in a brief glance? J. Vis., 784. doi: 10.1167/9.8.784.

    • Search Google Scholar
    • Export Citation
  • Spröte, P. and Fleming, R. W. (2013). Concavities, negative parts, and the perception that shapes are complete, J. Vis. 13, 3. doi: 10.1167/13.14.3.

    • Search Google Scholar
    • Export Citation
  • Spröte, P. and Fleming, R. W. (2016). Bent out of shape: The visual inference of non-rigid shape transformations applied to objects, Vision Res. 126, 330346.

    • Search Google Scholar
    • Export Citation
  • Spröte, P. , Schmidt, F. and Fleming, R. W. (2016). Visual perception of shape altered by inferred causal history, Sci. Rep. 6, 36245. doi: 10.1038/srep36245.

    • Search Google Scholar
    • Export Citation
  • Tse, P. U. (2017). Modal and amodal completion in the artwork of Coles Phillips, Perception 46, 10111013.

  • Van Assen, J. J. R. , Barla, P. and Fleming, R. W. (2018). Visual features in the perception of liquids, Curr. Biol. 28, 452458.

  • Van Assen, J. J. R. and Fleming, R. W. (2016). Influence of optical material properties on the perception of liquids, J. Vis. 16, 12. doi: 10.1167/16.15.12.

    • Search Google Scholar
    • Export Citation
  • Van Assen, J. J. R. , Wijntjes, M. W. A. and Pont, S. C. (2016). Highlight shapes and perception of gloss for real and photographed objects, J. Vis. 16, 6. doi: 10.1167/16.6.6.

    • Search Google Scholar
    • Export Citation
  • Wertheimer, M. (1923). Untersuchungen zur Lehre von der Gestalt. II, Psychol. Forsch. 4, 301350.

  • Wiebel, C. B. , Valsecchi, M. and Gegenfurtner, K. R. (2013). The speed and accuracy of material recognition in natural images, Atten. Percept. Psychophys. 75, 954966.

    • Search Google Scholar
    • Export Citation
  • Wiebel, C. B. , Valsecchi, M. and Gegenfurtner, K. R. (2014). Early differential processing of material images: Evidence from ERP classification, J. Vis. 14, 10. doi: 10.1167/14.7.10.

    • Search Google Scholar
    • Export Citation
  • Zeki, S. (1999). Inner vision: An exploration of art and the brain, Oxford University Press, Oxford, UK.

  • Zöller, A. C. , Lezkan, A. , Paulun, V. C. , Fleming, R. W. and Drewing, K. (2019). Integration of prior knowledge during haptic exploration depends on information type, J. Vis. 19, 20. doi: 10.1167/19.4.20.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 236 235 17
Full Text Views 20 20 2
PDF Views & Downloads 25 25 3