Plasticity in incubation behaviour under experimentally prolonged vulnerability to nest predation

In: Behaviour
View More View Less
  • 1 Department of Biology, Section of Ecology, University of Turku, FI-20014, Finland

Login via Institution

Purchase instant access (PDF download and unlimited online access):

€25.00$30.00

Nest predation is the main cause of nest failures in many bird species. To counter this, birds have evolved different behavioural strategies to decrease the visibility of their nests, thus reducing the probability of nest detection. We manipulated the long-term perception of nest predation risk in pied flycatchers (Ficedula hypoleuca) by experimentally increasing the nest vulnerability to predators. We placed treatment and control nest-boxes for breeding pied flycatchers that appeared identical during the initial phase of breeding. But after the removal of a front panel, treatment boxes had an enlarged entrance hole, almost twice the initial diameter. This treatment increases actual predation risk and presumably parental perception of risk. Control boxes presented instead an entrance hole of the same size both before and after the manipulation. When breeding in enlarged entrance holes, females doubled the vigilance at the nest while males reduced the time spent at the nest, compared to pied flycatchers breeding in control boxes. Increased vulnerability of the nest site to predation risk, thus, induced pied flycatcher parents to increase nest vigilance while reducing their activity at the nest. These results highlight the existence of plasticity in incubation behaviours under long-term experimentally increased nest predation risk.

  • Caro T. (2005). Antipredator defences in birds and mammals. — University of Chicago Press, Chicago, IL.

  • Chalfoun A.D., Martin T.E. (2007). Latitudinal variation in avian incubation attentiveness and a test of the food limitation hypothesis. — Anim. Behav. 73: 579-585.

    • Search Google Scholar
    • Export Citation
  • Chalfoun A.D., Martin T.E. (2010). Parental investment decisions in response to ambient nest-predation risk versus actual predation on the prior nest. — Condor 112: 701-710.

    • Search Google Scholar
    • Export Citation
  • Clutton-Brock T. (1991). The evolution of parental care. — Princeton University Press, Princeton, NJ.

  • Conway C.J., Martin T.E. (2000a). Effects of ambient temperature on avian incubation behavior. — Behav. Ecol. 11: 178-188.

  • Conway C.J., Martin T.E. (2000b). Evolution of passerine incubation behavior: influence of food, temperature, and nest predation. — Evolution 54: 670-685.

    • Search Google Scholar
    • Export Citation
  • Creel S., Winnie J.A., Christianson D., Liley S. (2008). Time and space in general models of antipredator response: tests with wolves and elk. — Anim. Behav. 76: 1139-1146.

    • Search Google Scholar
    • Export Citation
  • Cresswell W. (1997). Nest predation: the relative effects of nest characteristics, clutch size and parental behaviour. — Anim. Behav. 53: 93-103.

    • Search Google Scholar
    • Export Citation
  • Cresswell W. (2008). Non-lethal effects of predation in birds. — Ibis 150: 3-17.

  • Dale S., Gustavsen R., Slagsvold T. (1996). Risk taking during parental care: a test of three hypotheses applied to the pied flycatcher. — Behav. Ecol. Sociobiol. 39: 31-42.

    • Search Google Scholar
    • Export Citation
  • Fontaine J.J., Martin T.E. (2006). Parent birds assess nest predation risk and adjust their reproductive strategies. — Ecol. Lett. 9: 428-434.

    • Search Google Scholar
    • Export Citation
  • Galvan I., Sanz J.J. (2011). Mate-feeding has evolved as a compensatory energetic strategy that affects breeding success in birds. — Behav. Ecol. 22: 1088-1095.

    • Search Google Scholar
    • Export Citation
  • Ghalambor C.K., Martin T.E. (2000). Parental investment strategies in two species of nuthatch vary with stage-specific predation risk and reproductive effort. — Anim. Behav. 60: 263-267.

    • Search Google Scholar
    • Export Citation
  • Ghalambor C.K., Martin T.E. (2002). Comparative manipulation of predation risk in incubating birds reveals variability in the plasticity of responses. — Behav. Ecol. 13: 101-108.

    • Search Google Scholar
    • Export Citation
  • Hepp G.R., Kennamer R.A., Johnson M.H. (2006). Maternal effects in Wood Ducks: incubation temperature influences incubation period and neonate phenotype. — Funct. Ecol. 20: 307-314.

    • Search Google Scholar
    • Export Citation
  • Ibáñez-Álamo J.D., Soler M. (2012). Predator-induced female behavior in the absence of male incubation feeding: an experimental study. — Behav. Ecol. Sociobiol. 66: 1067-1073.

    • Search Google Scholar
    • Export Citation
  • Korpimäki E., Hakkarainen H. (2012). The boreal owl: ecology, behaviour and conservation of a forest-dwelling predator. — Cambridge University Press, Cambridge.

    • Search Google Scholar
    • Export Citation
  • Kovarik P., Pavel V. (2011). Does threat to the nest affect incubation rhythm in a small passerine?Ethology 117: 181-187.

  • Lifjeld J.T., Slagsvold T. (1986). The function of courtship feeding during incubation in the pied flycatcher Ficedula-hypoleuca. — Anim. Behav. 34: 1441-1453.

    • Search Google Scholar
    • Export Citation
  • Lima S.L. (2009). Predators and the breeding bird: behavioral and reproductive flexibility under the risk of predation. — Biol. Rev. 84: 485-513.

    • Search Google Scholar
    • Export Citation
  • Londono G.A., Levey D.J., Robinson S.K. (2008). Effects of temperature and food on incubation behaviour of the northern mockingbird, Mimus polyglottos. — Anim. Behav. 76: 669-677.

    • Search Google Scholar
    • Export Citation
  • Lyon B.E., Montgomerie R.D. (1985). Incubation feeding in snow buntings — female manipulation or indirect male parental care. — Behav. Ecol. Sociobiol. 17: 279-284.

    • Search Google Scholar
    • Export Citation
  • Martin T.E. (1993). Nest predation and nest sites. — BioScience 43: 523-532.

  • Martin T.E., Ghalambor C.K. (1999). Males feeding females during incubation. I. Required by microclimate or constrained by nest predation. — Am. Nat. 153: 131-139.

    • Search Google Scholar
    • Export Citation
  • Martin T.E., Scott J., Menge C. (2000). Nest predation increases with parental activity: separating nest site and parental activity effects. — Proc. Roy. Soc. Lond. B: Biol. Sci. 267: 2287-2293.

    • Search Google Scholar
    • Export Citation
  • Martin T.E., Briskie J.V. (2009). Predation on dependent offspring a review of the consequences for mean expression and phenotypic plasticity in avian life history traits. — In: Year in evolutionary biology ( Schlichting C.D., Mousseau T.A., eds). Wiley-Blackwell, Malden, p.  201-217.

    • Search Google Scholar
    • Export Citation
  • Martin T.E., Arriero E., Majewska A. (2011). A trade-off between embryonic development rate and immune function of avian offspring is revealed by considering embryonic temperature. — Biol. Lett. 7: 425-428.

    • Search Google Scholar
    • Export Citation
  • Massaro M., Starling-Windhof A., Briskie J.V., Martin T.E. (2008). Introduced mammalian predators induce behavioural changes in parental care in an endemic New Zealand bird. — PlosOne 3: e2331.

    • Search Google Scholar
    • Export Citation
  • Montgomerie R.D., Weatherhead P.J. (1988). Risks and rewards of nest defense by parent birds. — Q. Rev. Biol. 63: 167-187.

  • Morosinotto C., Thomson R.L., Hänninen M., Korpimäki E. (2012). Higher nest predation risk in association with a top predator: mesopredator attraction?Oecologia 170: 507-515.

    • Search Google Scholar
    • Export Citation
  • Nilsson J.F., Stjernman M., Nilsson J.A. (2008). Experimental reduction of incubation temperature affects both nestling and adult blue tits Cyanistes caeruleus. — J. Avian Biol. 39: 553-559.

    • Search Google Scholar
    • Export Citation
  • Požgayová M., Procházka P., Honza M. (2009). Adjustment of incubation according to the threat posed: a further signal of enemy recognition in the Blackcap Sylvia atricapilla?J Ornithol. 150: 569-576.

    • Search Google Scholar
    • Export Citation
  • Remeš V. (2005). Nest concealment and parental behaviour interact in affecting nest survival in the blackcap (Sylvia atricapilla): an experimental evaluation of the parental compensation hypothesis. — Behav. Ecol. Sociobiol. 58: 326-333.

    • Search Google Scholar
    • Export Citation
  • Scheiner S.M. (1993). Genetics and evolution of phenotypic plasticity. — Annu. Rev. Ecol. Syst. 24: 35-68.

  • Sofaer H.R., Sillett T.S., Peluc S.I., Morrison S.A., Ghalambor C.K. (2013). Differential effects of food availability and nest predation risk on avian reproductive strategies. — Behav. Ecol. 24: 698-707.

    • Search Google Scholar
    • Export Citation
  • St Clair J.J.H., Garcia-Pena G.E., Woods R.W., Szekely T. (2010). Presence of mammalian predators decreases tolerance to human disturbance in a breeding shorebird. — Behav. Ecol. 21: 1285-1292.

    • Search Google Scholar
    • Export Citation
  • Thomson R.L., Forsman J.T., Mönkkönen M. (2011). Risk taking in natural predation risk gradients: support for risk allocation from breeding pied flycatchers. — Anim. Behav. 82: 1443-1447.

    • Search Google Scholar
    • Export Citation
  • Travers M., Clinchy M., Zanette L., Boonstra R., Williams T.D. (2010). Indirect predator effects on clutch size and the cost of egg production. — Ecol. Lett. 13: 980-988.

    • Search Google Scholar
    • Export Citation
  • Walsberg G.E., Schmidt C.A. (1992). Effects of variable humidity on embryonic-development and hatching success of mourning doves. — Auk 109: 309-314.

    • Search Google Scholar
    • Export Citation
  • Williams G.C. (1966). Natural selection, the costs of reproduction, and a refinement of Lack’s principle. — Am. Nat. 100: 687-690.

  • Zanette L.Y., White A.F., Allen M.C., Clinchy M. (2011). Perceived predation risk reduces the number of offspring songbirds produce per year. — Science 334: 1398-1401.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 510 260 7
Full Text Views 60 7 0
PDF Downloads 9 4 0