The effect of hunger on the exploratory behaviour of shoals of mosquitofish Gambusia holbrooki

In: Behaviour
View More View Less
  • 1 Animal Behaviour Lab, School of Biological Sciences, the University of Sydney, Sydney, NSW 2006, Australia

Purchase instant access (PDF download and unlimited online access):

€29.95$34.95

The question of how hunger affects locomotory behaviour, in particular how it affects the kinematics of movement and an animal’s interaction with the physical structures in its environment is of broad relevance in behavioural ecology. We experimentally manipulated the hunger levels of individual mosquitofish (Gambusia holbrooki) and recorded their swimming behaviour in shoals of 4 fish. We found that hungry individuals in shoals moved at greater speeds and had higher turning speeds than satiated individuals in shoals, as well as a greater variance in speed and turning speeds. We also found that hungry individuals explored more of the arena and used more of its internal space, away from the square arena’s walls and displayed less wall-following behaviour than satiated individuals. A functional explanation for this change in swimming behaviour and interaction with environmental heterogeneity is discussed in the context of social foraging, as is the consequence of these results for models of search patterns and collective movement.

  • Andersen N.G. (1998). The effect of meal size on gastric evacuation in whiting. — J. Fish Biol. 52: 743-755.

  • Barta Z., Flynn R., Giraldeau L.-A. (1997). Geometry for a selfish foraging group: a genetic algorithm approach. — Proc. Roy. Soc. Lond. B: Biol. Sci. 264: 1233-1238.

    • Search Google Scholar
    • Export Citation
  • Bazazi S., Romanczuk P., Thomas S., Schimansky-Geier L., Hale J.J., Miller G.A., Sword G.A., Simpson S.J., Couzin I.D. (2011). Nutritional state and collective motion: from individuals to mass migration. — Proc. Roy. Soc. Lond. B: Biol. Sci. 278: 356-363.

    • Search Google Scholar
    • Export Citation
  • Bhattacharya K., Vicsek T. (2013). Collective foraging in heterogeneous landscapes. — J. Roy. Soc. Interf. 11: 20140674.

  • Bode N.W.F., Faria J.J., Franks D.W., Krause J., Wood A.J. (2010). How perceived threat increases synchronization in collectively moving animal groups. — Proc. Roy. Soc. Lond. B: Biol. Sci. 277: 3065-3070.

    • Search Google Scholar
    • Export Citation
  • Branson K., Robie A.A., Bender J., Perona P., Dickinson M.H. (2009). High-throughput ethomics in large groups of Drosophila. — Nat. Meth. 6: 451-457.

    • Search Google Scholar
    • Export Citation
  • Carere C., Montanino S., Moreschini F., Zoratto F., Chiarotti F., Santucci D., Alleva E. (2009). Aerial flocking patterns of wintering starlings, Sturnus vulgaris, under different predation risk. — Anim. Behav. 77: 101-107.

    • Search Google Scholar
    • Export Citation
  • Casellas E., Gautrais J., Fournier R., Blanco S., Combe M., Fourcassié V., Theraulaz G., Jost C. (2008). From individual to collective displacements in heterogeneous environments. — J. Theor. Biol. 250: 424-434.

    • Search Google Scholar
    • Export Citation
  • Collett T.S., Collett M., Wehner R. (2001). The guidance of desert ants by extended landmarks. — J. Exp. Biol. 204: 1635-1639.

  • Creed R. Jr., Miller J. (1990). Interpreting animal wall-following behavior. — Experientia 46: 758-761.

  • Desrochers A., Fortin M.J. (2000). Understanding avian responses to forest boundaries: a case study with chickadee winter flocks. — Oikos 91: 376-384.

    • Search Google Scholar
    • Export Citation
  • Fraenkel G.S., Gunn D.L. (1961). The orientation of animals: kineses, taxes and compass reactions. — Dover Publications, New York, NY.

  • Gill A.B., Hart P.J. (1994). Feeding behaviour and prey choice of the threespine stickleback: the interacting effects of prey size, fish size and stomach fullness. — Anim. Behav. 47: 921-932.

    • Search Google Scholar
    • Export Citation
  • Graham P., Collett T.S. (2002). View-based navigation in insects: how wood ants (Formica rufa L.) look at and are guided by extended landmarks. — J. Exp. Biol. 205: 2499-2509.

    • Search Google Scholar
    • Export Citation
  • Gueron S., Levin S.A., Rubenstein D.I. (1996). The dynamics of herds: from individuals to aggregations. — J. Theor. Biol. 182: 85-98.

  • Hamilton W.D. (1971). Geometry for the selfish herd. — J. Theor. Biol. 31: 295-311.

  • Heusser D., Wehner R. (2002). The visual centring response in desert ants, Cataglyphis fortis. — J. Exp. Biol. 205: 585-590.

  • Hoare D.J., Couzin I.D., Godin J.G.J., Krause J. (2004). Context-dependent group size choice in fish. — Anim. Behav. 67: 155-164.

  • James R., Bennett P., Krause J. (2004). Geometry for mutualistic and selfish herds: the limited domain of danger. — J. Theor. Biol. 228: 107-113.

    • Search Google Scholar
    • Export Citation
  • Jander R., Daumer K. (1974). Guide-line and gravity orientation of blind termites foraging in the open (Termitidae: Macrotermes, Hospitalitermes). — Insect. Soc. 21: 45-69.

    • Search Google Scholar
    • Export Citation
  • Jeanson R., Blanco S., Fournier R., Deneubourg J.-L., Fourcassié V., Theraulaz G. (2003). A model of animal movements in a bounded space. — J. Theor. Biol. 225: 443-451.

    • Search Google Scholar
    • Export Citation
  • Johnson A., Wiens J., Milne B., Crist T. (1992). Animal movements and population dynamics in heterogeneous landscapes. — Landscape Ecol. 7: 63-75.

    • Search Google Scholar
    • Export Citation
  • Killen S.S., Marras S., McKenzie D.J. (2011). Fuel, fasting, fear: routine metabolic rate and food deprivation exert synergistic effects on risk-taking in individual juvenile European sea bass. — J. Anim. Ecol. 80: 1024-1033.

    • Search Google Scholar
    • Export Citation
  • Klotz J., Reid B. (1992). The use of spatial cues for structural guideline orientation in Tapinoma sessile and Camponotus pennsylvanicus (Hymenoptera: Formicidae). — J. Insect Behav. 5: 71-82.

    • Search Google Scholar
    • Export Citation
  • Klotz J., Reid B. (1993). Nocturnal orientation in the black carpenter ant Camponotus pennsylvanicus (DeGeer) (Hymenoptera: Formicidae). — Insect. Soc. 40: 95-106.

    • Search Google Scholar
    • Export Citation
  • Klotz J., Reid B., Hamilton J. (2000). Locomotory efficiency in ants using structural guidelines (Hymenoptera: Formicidae). — Sociobiology 35: 79-88.

    • Search Google Scholar
    • Export Citation
  • Krause J. (1993). The effect of ‘Schreckstoff’ on the shoaling behaviour of the minnow: a test of Hamilton’s selfish herd theory. — Anim. Behav. 45: 1019-1024.

    • Search Google Scholar
    • Export Citation
  • Kurvers R.H., Prins H.H., van Wieren S.E., van Oers K., Nolet B.A., Ydenberg R.C. (2010). The effect of personality on social foraging: shy barnacle geese scrounge more. — Proc. Roy. Soc. Lond. B: Biol. Sci. 277: 601-608.

    • Search Google Scholar
    • Export Citation
  • Lendvai Á.Z., Barta Z., Liker A. (2004). The effect of energy reserves on social foraging: hungry sparrows scrounge more. — Proc. Roy. Soc. Lond. B: Biol. Sci. 271: 2467-2472.

    • Search Google Scholar
    • Export Citation
  • Liker A., Barta Z. (2002). The effects of dominance on social foraging tactic use in house sparrows. — Behaviour 139: 1061-1076.

  • Lima S.L., Dill L.M. (1990). Behavioral decisions made under the risk of predation: a review and prospectus. — Can. J. Zool. 68: 619-640.

    • Search Google Scholar
    • Export Citation
  • Lorenzo M.G., Lazzari C.R. (1999). Temperature and relative humidity affect the selection of shelters by Triatoma infestans, vector of Chagas disease. — Acta Trop. 72: 241-249.

    • Search Google Scholar
    • Export Citation
  • Mathot K.J., Giraldeau L.-A. (2008). Increasing vulnerability to predation increases preference for the scrounger foraging tactic. — Behav. Ecol. 19: 131-138.

    • Search Google Scholar
    • Export Citation
  • Mónus F., Barta Z. (2008). The effect of within-flock spatial position on the use of social foraging tactics in free-living tree sparrows. — Ethology 114: 215-222.

    • Search Google Scholar
    • Export Citation
  • Morales J.M., Ellner S.P. (2002). Scaling up animal movements in heterogeneous landscapes: the importance of behavior. — Ecology 83: 2240-2247.

    • Search Google Scholar
    • Export Citation
  • Morgan M.J. (1988). The influence of hunger, shoal size and predator presence on foraging in bluntnose minnows. — Anim. Behav. 36: 1317-1322.

    • Search Google Scholar
    • Export Citation
  • Okada J., Toh Y. (2000). The role of antennal hair plates in object-guided tactile orientation of the cockroach (Periplaneta americana). — J. Comp. Physiol. A 186: 849-857.

    • Search Google Scholar
    • Export Citation
  • Pang X., Cao Z.-D., Peng J.-L., Fu S.-J. (2010). The effects of feeding on the swimming performance and metabolic response of juvenile southern catfish, Silurus meridionalis, acclimated at different temperatures. — Comp. Biochem. Physiol. A 155: 253-258.

    • Search Google Scholar
    • Export Citation
  • Pettersson L.B., Brönmark C. (1993). Trading off safety against food: state dependent habitat choice and foraging in crucian carp. — Oecologia 95: 353-357.

    • Search Google Scholar
    • Export Citation
  • Pitcher T., Magurran A., Winfield I. (1982). Fish in larger shoals find food faster. — Behav. Ecol. Sociobiol. 10: 149-151.

  • Pratt S.C., Brooks S.E., Franks N.R. (2001). The use of edges in visual navigation by the ant Leptothorax albipennis. — Ethology 107: 1125-1136.

    • Search Google Scholar
    • Export Citation
  • Priyadarshana T., Asaeda T., Manatunge J. (2006). Hunger-induced foraging behavior of two cyprinid fish: Pseudorasbora parva and Rasbora daniconius. — Hydrobiologia 568: 341-352.

    • Search Google Scholar
    • Export Citation
  • Reebs S.G., Saulnier N. (1997). The effect of hunger on shoal choice in golden shiners (Pisces: Cyprinidae, Notemigonus crysoleucas). — Ethology 103: 642-652.

    • Search Google Scholar
    • Export Citation
  • Riche M., Haley D., Oetker M., Garbrecht S., Garling D. (2004). Effect of feeding frequency on gastric evacuation and the return of appetite in tilapia Oreochromis niloticus (L.). — Aquaculture 234: 657-673.

    • Search Google Scholar
    • Export Citation
  • Robinson C., Pitcher T. (1989a). Hunger motivation as a promoter of different behaviours within a shoal of herring: selection for homogeneity in fish shoal?J. Fish Biol. 35: 459-460.

    • Search Google Scholar
    • Export Citation
  • Robinson C., Pitcher T. (1989b). The influence of hunger and ration level on shoal density, polarization and swimming speed of herring, Clupea harengus L.J. Fish Biol. 34: 631-633.

    • Search Google Scholar
    • Export Citation
  • Romey W.L. (1995). Position preferences within groups: do whirligigs select positions which balance feeding opportunities with predator avoidance?Behav. Ecol. Sociobiol. 37: 195-200.

    • Search Google Scholar
    • Export Citation
  • Schank J.C., Alberts J.R. (1997). Self-organized huddles of rat pups modeled by simple rules of individual behavior. — J. Theor. Biol. 189: 11-25.

    • Search Google Scholar
    • Export Citation
  • Sharma S., Coombs S., Patton P., de Perera T.B. (2009). The function of wall-following behaviors in the Mexican blind cavefish and a sighted relative, the Mexican tetra (Astyanax). — J. Comp. Physiol. A 195: 225-240.

    • Search Google Scholar
    • Export Citation
  • Simon P., Dupuis R., Costentin J. (1994). Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. — Behav. Brain Res. 61: 59-64.

    • Search Google Scholar
    • Export Citation
  • Sogard S.M., Olla B.L. (1997). The influence of hunger and predation risk on group cohesion in a pelagic fish, walleye pollock Theragra chalcogramma. — Environm. Biol. Fish. 50: 405-413.

    • Search Google Scholar
    • Export Citation
  • Suzuki K., Takagi T., Hiraishi T. (2003). Video analysis of fish schooling behavior in finite space using a mathematical model. — Fisheries Res. 60: 3-10.

    • Search Google Scholar
    • Export Citation
  • Tien J.H., Levin S.A., Rubenstein D.I. (2004). Dynamics of fish shoals: identifying key decision rules. — Evol. Ecol. Res. 6: 555-565.

  • Tischendorf L., Wissel C. (1997). Corridors as conduits for small animals: attainable distances depending on movement pattern, boundary reaction and corridor width. — Oikos 79: 603-611.

    • Search Google Scholar
    • Export Citation
  • Tóth Z., Bókony V., Lendvai Á.Z., Szabó K., Pénzes Z., Liker A. (2009). Effects of relatedness on social-foraging tactic use in house sparrows. — Anim. Behav. 77: 337-342.

    • Search Google Scholar
    • Export Citation
  • Treit D., Fundytus M. (1988). Thigmotaxis as a test for anxiolytic activity in rats. — Pharmacol. Biochem. Behav. 31: 959-962.

  • Wiens J.A., Chr N., Van Horne B., Ims R.A. (1993). Ecological mechanisms and landscape ecology. — Oikos 66: 369-380.

  • Bresenham J.E. (1965). Algorithm for computer control of a digital plotter. — IBM Syst. J. 4: 25-30.

  • Hall P., La Scala B. (1990). Methodology and algorithms of empirical likelihood. — Int. Stat. Rev. 58: 109-127.

  • Jeanson R., Blanco S., Fournier R., Deneubourg J.-L., Fourcassié V., Theraulaz G. (2003). A model of animal movements in a bounded space. — J. Theor. Biol. 225: 443-451.

    • Search Google Scholar
    • Export Citation
  • Schaerf T.M., Macaskill C. (2004). Detecting contour crossings in contour dynamical and contour-advective semi-Lagrangian simulations. — ANZIAM J. 45: 693-712.

    • Search Google Scholar
    • Export Citation
  • Schaerf T.M., Macaskill C. (2012). On contour crossings in contour-advective simulations — part 1 — algorithm for detection and quantification. — J. Comput. Phys. 231: 465-480.

    • Search Google Scholar
    • Export Citation
  • Weibull W. (1951). A statistical distribution function of wide applicability. — J. Appl. Mech. 18: 293-297.

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 306 110 27
Full Text Views 211 11 2
PDF Views & Downloads 36 10 1