Defences of a Neotropical harvestman against different levels of threat by the recluse spider

In: Behaviour
View More View Less
  • 1 Instituto de Biologia, Bloco 2D 25, Campus Umuarama — Uberlândia — MG — CEP 38400-902, Brazil
  • 2 Laboratório de Ecologia Sensorial e Comportamento de Artrópodes (LESCA), Escola de Artes Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Béttio, 1000 — Ermelino Matarazzo — 03828-000, São Paulo, SP, Brazil
  • 3 Programa de Pós Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
  • 4 Programa de Pós Graduação em Ecologia e Evolução, Universidade Federal de São Paulo, São Paulo, Brazil

Login via Institution

Purchase instant access (PDF download and unlimited online access):

€25.00$30.00

The threat sensitive hypothesis predicts that animals modulate the defensive behaviour with the level of threat. Therefore, responses to predator cues may differ from responses to the actual predator in close range. Also, in high threat situations, prey would be expected to use their most dangerous defences. The recluse spider Loxosceles gaucho (Araneae, Sicariidae) is known to prey upon well defended harvestmen such as the laniatorid Mischonyx cuspidatus (Opiliones, Gonyleptidae), which has been reported to use tanathosis, chemical defences, pinching with sharp apophyses on legs, chelicerae and pedipalps. Because of harvestmen’s dependence on chemical stimuli, we tested if M. cuspidatus would change its locomotory behaviour in the presence of chemicals of the recluse spider (low threat situation: spider vs blank vs chemical control; one at a time). Subsequently, we tested harvestmen behaviour in the presence of the spider in close range, a high-threat situation. Finally, we looked at the survival rate of spiders after being pierced by sharp apophyses that M. cuspidatus have on legs IV. The harvestmen only showed defensive behaviours in the high threat situation. Surprisingly, their mostly known defensive behaviours (chemical defence, tanathosis, pinching with chelicerae and pedipalps) were not seen even in the high threat situation. This is the first evidence that these behaviours are not used against a natural predator that has an almost 80% predation success when attacking harvestmen. Pinching with the sharp legs IV apophyses may perforate but do not kill the spiders. We highlight the importance of the traditional descriptive approach with natural predators to understand the specificities of defensive behaviours against different types of predator.

  • Barth F.G. (2002). A spider’s world: senses and behavior. — Springer, Dordrecht.

  • Botham M.S., Hayward R.K., Morrell L.J., Croft D.P., Ward J.R., Ramnarine I., Krause J. (2008). Risk-sensitive antipredator behavior in the Trinidadian guppy, Poecilia reticulata. — Ecology 89: 3174-3185.

    • Search Google Scholar
    • Export Citation
  • Carvalho L.A., Souza E.S., Willemart R.H. (2012). Analysis of the interaction between the spitting spider Scytodes globula (Araneae: Scytodidae) and the harvestman Discocyrtus invalidus (Opiliones: Gonyleptidae). — J. Arachnol. 40: 332-337.

    • Search Google Scholar
    • Export Citation
  • Chelini M.C., Willemart R.H., Hebets E.A. (2009). Costs and benefits of freezing behaviour in the harvestman Eumesosoma roeweri (Arachnida, Opiliones). — Behav. Proc. 82: 153-159.

    • Search Google Scholar
    • Export Citation
  • Chivers D.P., Mirza R.S., Bryer P.J., Kiesecker J.M. (2001). Threat-sensitive predator avoidance by slimy sculpins: understanding the importance of visual versus chemical information. — Can. J. Zool. 79: 867-873.

    • Search Google Scholar
    • Export Citation
  • Cook D.R., Smith A.T., Proud D.N., Víquez C., Townsend V.R. Jr. (2013). Defensive responses of Neotropical harvestmen (Arachnida, Opiliones) to generalist invertebrate predators. — Carib. J. Sci. 47: 334-343.

    • Search Google Scholar
    • Export Citation
  • Costa T.M., Willemart R.H. (2013). First experimental evidence that a harvestman (Arachnida, Opiliones) detects odors of non-rotten dead prey by olfaction. — Zoologia 30: 359-361.

    • Search Google Scholar
    • Export Citation
  • Crawford B.A., Hickman C.R., Luhring T.M. (2012). Testing the threat sensitive hypothesis with predator familiarity and dietary specificity. — Ethology 118: 41-48.

    • Search Google Scholar
    • Export Citation
  • Dias B.C., Willemart R.H. (2013). The effectiveness of post-contact defenses in a prey with no pre-contact detection. — Zoology 116: 168-174.

    • Search Google Scholar
    • Export Citation
  • Dias B.C., Souza E.S., Hara M.R., Willemart R.H. (2014). Intense leg tapping by the harvestman Mischonyx cuspidatus (Gonyleptidae): an undescribed defensive behavior in Opiliones?J. Arachnol. 42: 123-125.

    • Search Google Scholar
    • Export Citation
  • Edmunds M. (1974). Defence in animals: a survey of anti-predator defences. — Longman, Harlow.

  • Eisner T., Rossini C., González A., Eisner M. (2004). Chemical defense of an opilionid (Acanthopachylus aculeatus). — J. Exp. Biol. 207: 1313-1321.

    • Search Google Scholar
    • Export Citation
  • Eisner T., Eisner M., Siegler M. (2005). Secret weapons: defenses of insects, spiders, scorpions, and other many-legged creatures. — Harvard University Press, Cambridge, MA.

    • Search Google Scholar
    • Export Citation
  • Fenk L.M., Hoinkes T., Schmid A. (2010). Vision as a third sensory modality to elicit attack in a nocturnal spider. — J. Comp. Physiol. 196: 957-961.

    • Search Google Scholar
    • Export Citation
  • Ferrari M.C.F., Schausberger P. (2013). From repulsion to attraction: species-and spatial context-dependent threat sensitive response of the spider mite Tetranychus urticae to predatory mite cues. — Naturwissenschaften 100: 541-549.

    • Search Google Scholar
    • Export Citation
  • Fischer M.L., Vasconcellos-Neto J., dos Santos Neto L.G. (2006). The prey and predators of Loxosceles intermedia Mello-Leitao 1934 (Araneae, Sicariidae). — J. Arachnol. 34: 485-488.

    • Search Google Scholar
    • Export Citation
  • Gertsch W.J. (1967). The spider genus Loxosceles in South America (Araneae, Scytodidae). — Bull. Am. Mus. Nat. Hist. 136: 117-174.

  • Gnaspini P. (1996). Population ecology of Goniosoma spelaeum a cavernicolous harvestman from south-eastern Brazil (Arachnida: Opiliones: Gonyleptidae). — J. Zool. 239: 417-435.

    • Search Google Scholar
    • Export Citation
  • Gnaspini P., Hara M.R. (2007). Defense mechanisms. — In: Harvestmen: the biology of Opiliones ( Pinto-da-Rocha R., Machado G., Giribet G., eds). Harvard University Press, Cambridge, MA, p.  374-399.

    • Search Google Scholar
    • Export Citation
  • Gyssels F.G., Stoks R. (2005). Threat-sensitive responses to predator attacks in a damselfly. — Ethology 111: 411-423.

  • Hara M.R., Cavalheiro A.J., Gnaspini P., Santos D.Y. (2005). A comparative analysis of the chemical nature of defensive secretions of Gonyleptidae (Arachnida: Opiliones: Laniatores). — Bio. Syst. Ecol. 33: 1210-1225.

    • Search Google Scholar
    • Export Citation
  • Helfman G.S. (1989). Threat-sensitive predator avoidance in damselfish–trumpetfish interactions. — Behav. Ecol. Sociobiol. 24: 47-58.

    • Search Google Scholar
    • Export Citation
  • Kats L.B., Dill L.M. (1998). The scent of death: chemosensory assessment of predation risk by prey animals. — Ecoscience 5: 361-394.

  • Keyserling E. (1891). Die Spinnen Amerikas. Brasilianische Spinnen 3. — Nürnberg.

  • Kleindorfer S., Fessl B., Hoi H. (2005). Avian nest defence behaviour: assessment in relation to predator distance and type, and nest height. — Anim. Behav. 69: 307-313.

    • Search Google Scholar
    • Export Citation
  • Loof T.G., Schmidt O., Herwald H., Theopold U. (2010). Coagulation systems of invertebrates and vertebrates and their roles in innate immunity: the same side of two coins?J. Innat. Imm. 3: 34-40.

    • Search Google Scholar
    • Export Citation
  • Machado G., Raimundo R.L.G., Oliveira P.S. (2000). Daily activity schedule, gregariousness, and defensive behaviour in the Neotropical harvestman Goniosoma longipes (Arachnida: Opiliones: Gonyleptidae). — J. Nat. Hist. 34: 587-596.

    • Search Google Scholar
    • Export Citation
  • Machado G., Carrera P.C., Pomini A.M., Marsaioli A.J. (2005). Chemical defense in harvestmen (Arachnida, Opiliones): do benzoquinone secretions deter invertebrate and vertebrate predators?J. Chem. Ecol. 31: 2519-2539.

    • Search Google Scholar
    • Export Citation
  • Mathot K.J., van den Hout P.J., Piersma T. (2009). Differential responses of red knots Calidris canutus to perching and flying sparrowhawk Accipiter nisus models. — Anim. Behav. 77: 1179-1185.

    • Search Google Scholar
    • Export Citation
  • Mestre L.A.M., Pinto-da-Rocha R. (2004). Population dynamics of an isolated population of the harvestman Ilhaia cuspidata (Opiliones, Gonyleptidae), in Araucaria Forest (Curitiba, Paraná, Brazil). — J. Arachnol. 32: 208-220.

    • Search Google Scholar
    • Export Citation
  • Monclús R., Palomares F., Tablado Z., Martínez-Fontúrbel A., Palme R. (2009). Testing the threat-sensitive predator avoidance hypothesis: physiological responses and predator pressure in wild rabbits. — Oecologia 158: 615-623.

    • Search Google Scholar
    • Export Citation
  • Nelsen D.R., Kelln W., Hayes W.K. (2014). Poke but don’t pinch: risk assessment and venom metering in the western black widow spider, Latrodectus hesperus. — Anim. Behav. 89: 107-114.

    • Search Google Scholar
    • Export Citation
  • Papworth S., Milner-Gulland E.J., Slocombe K. (2013). Hunted woolly monkeys (Lagothrix poeppigii) show threat-sensitive responses to human presence. — PloS ONE 8: e62000.

    • Search Google Scholar
    • Export Citation
  • Pereira W., Elpino-Campos A., Del-Claro K., Machado G. (2004). Behavioral repertory of the neotropical harvestman Ilhaia cuspidata (Opiliones, Gonyleptidae). — J. Arachnol. 32: 22-30.

    • Search Google Scholar
    • Export Citation
  • Persons M.H., Walker S.E., Rypstra A.L., Marshall S.D. (2001). Wolf spider predator avoidance tactics and survival in the presence of diet-associated predator cues (Araneae, Lycosidae). — Anim. Behav. 61: 43-51.

    • Search Google Scholar
    • Export Citation
  • Persons M., Walker S.E., Rypstra A.L. (2002). Fitness costs and benefits of antipredator behavior mediated by chemotactile cues in the wolf spider Pardosa milvina (Araneae: Lycosidae). — Behav. Ecol. 13: 386-392.

    • Search Google Scholar
    • Export Citation
  • Pirhofer-Walzl K., Warrant E., Barth F.G. (2007). Adaptations for vision in dim light: impulse responses and bumps in nocturnal spider photoreceptor cells (Cupiennius salei Keys). — J. Comp. Physiol. 193: 1081-1087.

    • Search Google Scholar
    • Export Citation
  • Roewer C.F. (1913). Die Familie der Gonyleptiden der Opiliones-Laniatores. — Arch. Naturgeschichte 79: 1-472.

  • Sakaluk S.K., Campbell M.T., Clark A.P., Johnson J.C., Keorpes P.A. (2004). Hemolymph loss during nuptial feeding constrains male mating success in sagebrush crickets. — Behav. Ecol. 15: 845-849.

    • Search Google Scholar
    • Export Citation
  • Santos G.C., Hogan J.A., Willemart R.H. (2013). Associative learning in a harvestman (Arachnida, Opiliones). — Behav. Proc. 100: 64-66.

  • Segovia J.M.G., Del-Claro K., Willemart R.H. (2015). Delicate fangs, smart killing: the predation strategy of the recluse spider. — Anim. Behav., in press.

    • Search Google Scholar
    • Export Citation
  • Sih A. (1986). Antipredator responses and the perception of danger by mosquito larvae. — Ecology 67: 434-441.

  • Souza E.D.S., Willemart R.H. (2011). Harvest-Ironman: heavy armature, and not its defensive secretions, protects a harvestman against a spider. — Anim. Behav. 81: 127-133.

    • Search Google Scholar
    • Export Citation
  • Toledo L.F., Sazima I., Haddad C.F.B. (2010). Is it all death feigning? Case in anurans. — J. Nat. Hist. 44: 1979-1988.

  • Walzer A., Schausberger P. (2011). Threat-sensitive anti-intraguild predation behaviour: maternal strategies to reduce offspring predation risk in mites. — Anim. Behav. 81: 177-184.

    • Search Google Scholar
    • Export Citation
  • Wilder S.M., Rypstra A.L. (2004). Chemical cues from an introduced predator (Mantodea, Mantidae) reduce the movement and foraging of a native wolf spider (Araneae, Lycosidae) in the laboratory. — Environ. Entomol. 33: 1032-1036.

    • Search Google Scholar
    • Export Citation
  • Willemart R.H. (2002). Cases of intra- and inter-specific food competition among Brazilian harvestmen, in captivity (Opiliones, Laniatores, Gonyleptidae). — Rev. Arachnol. 14: 49-58.

    • Search Google Scholar
    • Export Citation
  • Willemart R.H., Chelini M.C. (2007). Experimental demonstration of close-range olfaction and contact chemoreception in the Brazilian harvestman, Iporangaia pustulosa. — Entomol. Exp. Appl. 123: 73-79.

    • Search Google Scholar
    • Export Citation
  • Willemart R.H., Farine J.P., Gnaspini P. (2009). Sensory biology of Phalangida harvestmen (Arachnida, Opiliones): a review, with new morphological data on 18 species. — Acta Zool. 90: 209-227.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 161 71 1
Full Text Views 165 3 2
PDF Downloads 9 1 1