Influences of facultative paedomorphosis on kin selection in a larval salamander, Ambystoma talpoideum

in Behaviour
Beschränkter Zugang
Zugriff auf gesamten Text erhalten
Auf DeepDyve mieten

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Abstract

Kin selection in larval amphibians is hypothesized to increase survival to metamorphosis. While kin selection may benefit amphibians with obligate metamorphosis, increased survival within sibships may exert fitness costs on facultatively paedomorphic species, such as increased competition among kin. Consequently, it is unclear whether such species should engage in kin selection. We investigated kin selection in a facultatively paedomorphic salamander, Ambystoma talpoideum, using laboratory behavioural trials and microcosm experiments. Individuals were most aggressive towards familiar siblings, and full-sibship groups incurred more injuries than mixed-sibship groups; however, familiar siblings ultimately exhibited higher survival. Thus, while short-term responses appeared to reflect the hypothesized costs of kin recognition, long-term patterns of survival did not support this hypothesis. The inconsistencies between results suggest that short-term studies may not capture ontogenetic variation in kin selection, and that long-term studies are needed to better test the hypothesized effects of kin selection on survival and metamorphosis.

Influences of facultative paedomorphosis on kin selection in a larval salamander, Ambystoma talpoideum

in Behaviour

Überschriften

Verweisliste

  • AbramoffM.G.MagalhaesP.J. & RamS. (2004). Image processing with ImageJ. — Biophotonics 11: 36-42.

  • BlausteinA.R. (1983). Kin recognition mechanisms: phenotypic matching or recognition alleles? — Am. Nat. 121: 749-754.

  • BlausteinA.R. & O’HaraR.K. (1986). Kin recognition in tadpoles. — Sci. Am. 254: 108-116.

  • BlausteinA.R. & WaldmanB. (1992). Kin recognition in anuran amphibians. — Anim. Behav. 44: 207-221.

  • BlausteinA.R.YoshikawaT.AsohK. & WallsS.C. (1993). Ontogenetic shifts in tadpole kin recognition: loss of signal and perception. — Anim. Behav. 46: 525-538.

  • BourkeA.F.G. (1997). Sociality and kin selection in insects. — In: Behavioural ecology: an evolutionary approach4th edn. (KrebsJ.R. & DaviesN.B. eds). BlackwellOxford p. 203-227.

    • Über Google Scholar suchen
    • Zitierung exportieren
  • BranchL.C. & AltigR. (1981). Nocturnal stratification of three species of Ambystoma larvae. — Copeia: 870-873.

  • BrodmanR. (2004). Intraguild predation on congeners affects size, aggression, and survival among Ambystoma larvae. — J. Herpetol. 38: 21-26.

  • BrunkowP.E. & CollinsJ.P. (1998). Group size structure affects patterns of aggression in larval salamanders. — Behav. Ecol. 9: 508-514.

  • CaleyM.J. & BoutinS.A. (1987). Sibling and neighbor recognition in wild juvenile muskrats. — Anim. Behav. 35: 60-66.

  • CockburnA. (1998). Evolution of helping behavior in cooperatively breeding birds. — Annu. Rev. Ecol. Syst. 29: 141-177.

  • CraneA.MathisA. & McGraneC. (2012). Socially facilitated antipredator behavior by ringed salamander (Ambystoma annulatum). — Behav. Ecol. Sociobiol. 66: 811-817.

  • DenoelM.JolyP. & WhitemanH.H. (2005). Evolutionary ecology of facultative paedomorphosis in newts and salamanders. — Biol. Rev. 80: 663-671.

  • DugasM.B.McCormackL.GadauA. & MartinR.A. (2016). Choosy cannibals preferentially consume siblings with relatively low fitness prospects. — Am. Nat. 188: 124-131.

  • EmlenS.T. (1997). Predicting family dynamics in social vertebrates. — In: Behavioural ecology: an evolutionary approach4th edn. (KrebsJ.R. & DaviesN.B. eds). Wiley-BlackwellOxford p. 228-253.

    • Über Google Scholar suchen
    • Zitierung exportieren
  • FrankS.A. (1998). Foundations of social evolution. — Princeton University PressPrinceton, NJ.

  • GarzaS. & WaldmanB. (2015). Kin discrimination in polyphonic salamander larvae: trade-offs between inclusive fitness and pathogen transmission. — Behav. Ecol. Sociobiol. 69: 1473-1481.

    • Über Google Scholar suchen
    • Zitierung exportieren
  • GriffithsS.W. & ArmstrongJ.D. (2002). Kin-biased territory overlap and food sharing among Atlantic salmon. — J. Anim. Ecol. 71: 480-486.

  • HamiltonW.D. (1964). The genetic evolution of social behavior. I-II. — J. Theor. Biol. 7: 1-52.

  • HarrisR.N.VessT.J.HammondJ.I. & LindermuthC.J. (2003). Context-dependent kin discrimination in larval four-toed salamanders Hemidactylium scutatum (Caudata: Plethodontidae). — Herpetologica 59: 164-177.

    • Über Google Scholar suchen
    • Zitierung exportieren
  • HatchwellB.J. (2010). Cryptic kin selection: kin structure in vertebrate populations and opportunities for kin-directed cooperation. — J. Ethol. 116: 203-216.

  • HepperP.G. & ClelandJ. (1999). Developmental aspects of kin recognition. — Genetica 104: 199-205.

  • HokitG.D.WallsS.C. & BlausteinA.R. (1996). Context-dependent kin discrimination in larvae of the marbled salamander, Ambystoma opacum. — Anim. Behav. 52: 17-31.

  • HorneM.T. & DunsonW.A. (1995). Effects of low pH, metals, and water hardness on larval amphibians. — Arch. Environ. Con. Tox. 29: 500-505.

  • IrelandP.H. (1989). Larval survivorship in two populations of Ambystoma maculatum. — J. Herpetol. 23: 209-215.

  • KaplanR.H. (1980). The implications of ovum size variability for offspring fitness and clutch size with several populations of salamanders (Ambystoma). — Evolution 34: 51-64.

  • KareemA.M. & BarnardC.J. (1982). The importance of kinship and familiarity in social interactions between mice. — Anim. Behav. 30: 594-601.

  • KusanoT.KusanoH. & MiyashitaK. (1985). Size-related cannibalism among larval Hynobious nebulosus. — Copeia: 472-476.

  • LiebgoldE.B. & DibbleC.J. (2011). Better the devil you know: familiarity affects foraging activity of red-backed salamanders, Plethodon cinereus. — Anim. Behav. 82: 1059-1066.

  • MaretT.J. & CollinsJ.P. (1994). Individual responses to population size structure: the role of size variation in controlling expression of a trophic polyphenism. — Oecologia 100: 279-285.

    • Über Google Scholar suchen
    • Zitierung exportieren
  • MarkmanS.HillN.TodrankJ.HethG. & BlausteinL. (2009). Differential aggressiveness between fire salamander (Salamandra infraimmaculata) larvae covaries with their genetic similarity. — Behav. Ecol. Sociobiol. 8: 1149-1155.

    • Über Google Scholar suchen
    • Zitierung exportieren
  • MathisA.JaegerR.G.KeenW.H.DuceyP.K.WallsS.C. & BuchananB.W. (1995). Aggression and territoriality by salamanders and a comparison with the territorial behavior of frogs. — In: Amphibian biology Vol. 2 (HeatwoleH. & SullivanB.K. eds). Surrey Beatty & SonsChipping Norton, NSW p. 633-676.

    • Über Google Scholar suchen
    • Zitierung exportieren
  • MooreM.P.LandbergT. & WhitemanH.H. (2015). Maternal investment mediates offspring life history variation with context-dependent fitness consequences. — Ecology 96: 2499-2509.

    • Über Google Scholar suchen
    • Zitierung exportieren
  • MottC.L.AlbertS.E.SteffenM.A. & UzzardoJ.M. (2010). Assessment of digital image analyses for use in wildlife research. — Wild. Biol. 16: 93-100.

  • MottC.L. & MaretT.J. (2010). Species-specific patterns of agonistic behavior among larvae of three syntopic species of ambystomatid salamanders. — Copeia: 9-17.

  • OldhamR.S. (1966). Spring movements in the American toad, Bufo americanus. — Can. J. Zool. 44: 63-100.

  • PakkasmaaS. & LaurilaA. (2004). Are the effects of kinship modified by environmental conditions in Rana temporaria tadpoles? — Ann. Zool. Fenn. 41: 413-420.

  • PetrankaJ.W. (1984). Incubation, larval growth, and embryonic and larval survivorship of smallmouth salamanders (Ambystoma texanum) in streams. — Copeia: 862-868.

  • PetrankaJ.W. (1998). Salamanders of the United States and Canada. — Smithsonian Institute PressWashington, DC.

  • PfennigD.W. (1999). Cannibalistic tadpoles that pose the greatest threat to kin are most likely to discriminate kin. — Proc. Roy. Soc. Lond. B: Biol. Sci. 266: 57-61.

  • PfennigD.W.LoebM.L.G. & CollinsJ.P. (1991). Pathogens as a factor limiting the spread of cannibalism in tiger salamanders. — Oecologia 88: 161-166.

  • PfennigD.W.ReeveH.K. & ShermanP.W. (1993). Kin recognition and cannibalism in spadefoot toad tadpoles. — Anim. Behav. 46: 87-94.

  • PfennigD.W.ShermanP.W. & CollinsJ.P. (1994). Kin recognition and cannibalism in polyphenic salamanders. — Behav. Ecol. 5: 225-232.

  • PfennigD.W.CollinsJ.P. & ZiembaR.E. (1999). A test of alternative hypotheses for kin recognition in cannibalistic tiger salamanders. — Behav. Ecol. 10: 436-443.

  • PlattT.J. & BeverJ.D. (2009). Kin competition and the evolution of cooperation. — Trends Ecol. Evol. 24: 370-377.

  • RudolfV.H.W. & AntonovicsJ. (2007). Disease transmission by cannibalism: rare event or common occurrence? — Proc. Roy. Soc. Lond. B: Biol. Sci. 274: 1205-1210.

  • ScottD.E. (1994). The effect of larval density on adult demographic traits in Ambystoma opacum. — Ecology 75: 1383-1396.

  • ScottD.E.KomoroskiM.J.CroshawD.A. & DixonP.M. (2013). Terrestrial distribution of pond-breeding salamanders around an isolated wetland. — Ecology 94: 2537-2546.

  • SemlitschR.D. & ReichlingS.B. (1989). Density-dependent injury in larval salamanders. — Oecologia 81: 100-103.

  • Van BuskirkJ. & SmithD.C. (1991). Density-dependent population regulation in a salamander. — Ecology 72: 1747-1756.

  • WaldmanB. (1984). Kin recognition and sibling association among wood frog (Rana sylvatica) tadpoles. — Behav. Ecol. Sociobiol. 14: 171-180.

  • WaldmanB. (1988). The ecology of kin recognition. — Annu. Rev. Ecol. Syst. 19: 543-571.

  • WallsS.C. (1991). Ontogenetic shifts in the recognition of siblings and neighbors by juvenile salamanders. — Anim. Behav. 42: 423-434.

  • WallsS.C. & BlausteinA.R. (1994). Does kinship influence density dependence in a larval salamander? — Oikos 71: 459-468.

  • WallsS.C. & BlausteinA.R. (1995). Larval marbled salamanders, Ambystoma opacum, eat their kin. — Anim. Behav. 50: 537-545.

  • WallsS.C. & JaegerR.G. (1987). Aggression and exploitation as mechanisms of competition in larval salamanders. — Can. J. Zool. 65: 2938-2944.

  • WallsS.C. & RoudebushR.E. (1991). Reduced aggression towards siblings as evidence of kin recognition in cannibalistic salamanders. — Am. Nat. 138: 1027-1038.

  • WallsS.C. & SemlitschR.D. (1991). Visual and movement displays function as agonistic behavior in larval salamanders. — Copeia 1991: 936-942.

  • WardA.J.W. & HartP.J.B. (2003). The effects of kin and familiarity on interactions between fish. — Fish Fish. 4: 348-358.

  • West EberhardM.J. (1975). The evolution of social behavior by kin selection. — Q. Rev. Biol. 50: 1-33.

  • WhitemanH.H. (1997). Maintenance of polymorphism promoted by sex-specific fitness payoffs. — Evolution 51: 2039-2044.

  • WhitemanH.H. (1994). Evolution of facultative paedomorphosis in salamanders. — Q. Rev. Biol. 69: 205-221.

  • WhitemanH.H.WissingerS.A. & BrownW.S. (1996). Growth and foraging consequences of facultative paedomorphosis in the tiger salamander, Ambystoma tigrinum nebulosum. — Evol. Ecol. 10: 433-446.

    • Über Google Scholar suchen
    • Zitierung exportieren
  • WhitemanH.H.KrenzJ.D. & SemlitschR.D. (2006). Intermorph breeding and the potential for reproductive isolation in polymorphic mole salamanders (Ambystoma talpoideum). — Behav. Ecol. Sociobiol. 60: 52-61.

    • Über Google Scholar suchen
    • Zitierung exportieren
  • WilburH.M. & CollinsJ.P. (1973). Ecological aspects of amphibian metamorphosis. — Science 182: 1305-1314.

  • WildyE.L. & BlausteinA.R. (2001). Learned recognition of intraspecific predators in larval long-toed salamanders Ambystoma macrodactylum. — J. Ethol. 107: 479-493.

  • WildyE.L.ChiversD.P.KieseckerJ.M. & BlausteinA.R. (2001). The effects of food level and conspecific density on biting and cannibalism in larval long-toed salamanders, Ambystoma macrodactylum. — Oecologia 128: 202-209.

    • Über Google Scholar suchen
    • Zitierung exportieren
  • WinnB.E. & VestalB.M. (1986). Kin recognition and choice of males by wild female house mice (Mus musculus). — J. Comp. Psychol. 100: 72-75.

  • YdenbergR.C.GiraldeauL.A. & FallsJ.B. (1988). Neighbors, strangers, and the asymmetric war of attrition. — Anim. Behav. 36: 343-347.

  • ZiembaR.E. & CollinsJ.P. (1999). Development of size structure in tiger salamanders: the role of intraspecific interference. — Oecologia 120: 524-529.

Abbildungen

  • In Galerie anzeigen

    Experimental design and sample sizes of pairwise behavioural trials for the assessment of kin recognition in larval Ambystoma talpoideum. “A” and “B” represent egg masses from separate ponds, while all individuals with the same letters represent members of the same sibship. Partitions within each tank allowed for the exchange of visual and aqueous cues among tank mates, while opaque partitions between adjacent tanks prevented similar information exchange.

  • In Galerie anzeigen

    Mean number (±1 SE) of per-trial agonistic behaviours (arc-sine square root-transformed sum of observations of “move toward”, “lunge”, and “bite”) among 25 behavioural trials for larval Ambystoma talpoideum in each of four treatment groups. Letters above bars denote significant differences among treatments based on Dunn’s test.

  • In Galerie anzeigen

    (A) Mean frequency of injuries (% of injured individuals/tank), (B) survival, (C) variation in head width (CV) and (D) number of prey items consumed (all ±1 SE) among larval Ambystoma talpoideum following cohabitation with either clutch mates only (“full sibship”) or groups of mixed relatedness (“mixed sibship”). Fifteen tanks were maintained for each treatment, and injuries included missing phalanges, limbs, gill filaments, or tails.

  • In Galerie anzeigen

    Manova and Anovas of survival, head size variation, and growth rates among larval Ambystoma talpoideum in response to treatments of cohabitation with either full-sibship or mixed-sibship conspecifics.

  • In Galerie anzeigen

    MANOVA and ANOVAs of invertebrate prey mass, number of prey items consumed and the taxonomic diversity of prey items among larval Ambystoma talpoideum in response to treatments of cohabitation with either full-sibship or mixed-sibship conspecifics.

Index Card

Kennzahlen

Kennzahlen

Insgesamt Im letzten Jahr In den letzten 30 Tagen
Aufrufe von Kurzbeschreibungen 119 119 8
Gesamttextansichten 22 22 0
PDF-Downloads 13 13 0
EPUB-Downloads 0 0 0