Birds of a feather? Parrot and corvid cognition compared

in Behaviour
No Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Abstract

The last several decades of research on avian cognition have revealed surprising parallels between the abilities of birds — most notably corvids — and great apes. Parrots, albeit far less studied, are cited alongside corvids as “feathered apes”, but are these two taxa really that similar cognitively? In this review we aim to take a step back and present the broader picture, focusing on areas where there is now data from both parrots and corvids to facilitate first comparisons on a somewhat wider scale. By charting these birds’ performance in cognitive tasks, in many of which corvids perform on par with primates, we hope to highlight understudied areas and promising directions for future research. In reviewing the literature, the general pattern that emerges shows that different corvid and parrot species indeed perform similarly in a range of cognitive tasks to the extent that one may call them “feathered apes”.

Birds of a feather? Parrot and corvid cognition compared

in Behaviour

Sections

References

AgrilloC. & BisazzaA. (2014). Spontaneous versus trained numerical abilities. A comparison between the two main tools to study numerical competence in non-human animals. — J. Neurosci. Methods 234: 82-91.

Albiach-SerranoA.BugnyarT. & CallJ. (2012). Apes (Gorilla gorilla, Pan paniscus, P. troglodytes, Pongo abelii) versus corvids (Corvus corax, C. corone) in a support task: the effect of pattern and functionality. — J. Comp. Psychol. 126: 355-367.

AliN.J.FarabaughS. & DoolingR. (1993). Recognition of contact calls by the budgerigar (Melopsittacus undulatus). — Bull. Psychonomic. Soc. 31: 468-470.

AndersonJ.R. & GallupG.G. (2015). Mirror self-recognition: a review and critique of attempts to promote and engineer self-recognition in primates. — Primates 56: 317-326.

ArnottW.G. (2007). Birds in the ancient world from A to Z. — RoutledgeLondon.

Asakawa-HaasK.SchiestlM.BugnyarT. & MassenJ.J.M. (2016). Partner choice in raven (Corvus corax) cooperation. — PLoS ONE 11: e0156962.

AuerspergA.M.I. (2015). Exploration technique and technical innovations in corvids and parrots. — In: Animal creativity and innovation (KaufmanA.B. & KaufmanJ.C. eds). Academic PressNew York, NY p. 45-63.

AuerspergA.M.I.GajdonG.K. & HuberL. (2009). Kea (Nestor notabilis) consider spatial relationships between objects in the support problem. — Biol. Lett. 5: 455-458.

AuerspergA.M.I.GajdonG.K. & HuberL. (2010). Kea, Nestor notabilis, produce dynamic relationships between objects in a second-order tool use task. — Anim. Behav. 80: 783-789.

AuerspergA.M.I.von BayernA.M.P.GajdonG.K.HuberL. & KacelnikA. (2011). Flexibility in problem solving and tool use of kea and New Caledonian crows in a multi access box paradigm. — PLoS ONE 6: e20231.

AuerspergA.M.I.SzaboB.von BayernA.M.P. & KacelnikA. (2012). Spontaneous innovation in tool manufacture and use in a Goffin’s cockatoo. — Curr. Biol. 22: R903-R904.

AuerspergA.M.I.KacelnikA. & von BayernA.M.P. (2013a). Explorative learning and functional inferences on a five-step means-means-end problem in Goffin’s cockatoos. — PLoS ONE 8: e68979.

AuerspergA.M.I.LaumerI.B. & BugnyarT. (2013b). Goffin cockatoos wait for qualitative and quantitative gains but prefer ‘better’ to ‘more’. — Biol. Lett. 9: 20121092.

AuerspergA.M.I.SzaboB.von BayernA.M.P. & BugnyarT. (2014a). Object permanence in the Goffin cockatoo (Cacatua goffini). — J. Comp. Psychol. 128: 88-98.

AuerspergA.M.I.OswaldN.DomaneggM.GajdonG.K. & BugnyarT. (2014b). Unrewarded object combinations in captive parrots. — Anim. Behav. Cogn. 1: 470-488.

AuerspergA.M.I.von BayernA.M.I.WeberS.SzabadvariA.BugnyarT. & KacelnikA. (2014c). Social transmission of tool use and tool manufacture in goffin cockatoos (Cacatua goffini). — Proc. Roy. Soc. Lond. B: Biol. Sci. 281: 20140972.

AuerspergA.M.I.van HorikJ.O.BugnyarT.KacelnikA.EmeryN.J. & von BayernA.M.P. (2015). Combinatory actions during object play in psittaciformes (Diopsittaca nobilis, Pionites melanocephala, Cacatua goffini) and corvids (Corvus corax, C. monedula, C. moneduloides). — J. Comp. Psychol. 129: 62-71.

AuerspergA.M.I.BorasinskiS.LaumerI. & KacelnikA. (2016). Goffin’s cockatoos make the same tool type from different materials. — Biol. Lett. 12: 20160689.

AureliF.CordsM. & van SchaikC.P. (2002). Conflict resolution following aggression in gregarious animals: a predictive framework. — Anim. Behav. 64: 325-343.

AustU.RangeF.SteurerM. & HuberL. (2008). Inferential reasoning by exclusion in pigeons, dogs, and humans. — Anim. Cogn. 11: 587-597.

BabbS.J. & CrystalJ.D. (2006). Episodic-like memory in the rat. — Curr. Biol. 16: 1317-1321.

BagotskayaM.S.SmirnovaA.A. & ZorinaZ.A. (2012). Corvidae can understand logical structure in baited string-pulling tasks. — Neurosci. Behav. Physiol. 42: 36-42.

BagotskayaM.S.SmirnovaA.A. & ZorinaZ.A. (2013). Studying the ability of hooded crows (Corvus cornix l.) to solve trap tube test. — Biol. Bull. Rev. 3: 362-370.

BalakhonovD. & RoseJ. (2017). Crows rival monkeys in cognitive capacity. — Sci. Rep. 7: 8809.

BaldaR.P. (2007). Corvids in combat: with a weapon?Wilson J. Ornithol. 119: 100-102.

BaldaR.P. & KamilA.C. (1989). A comparative study of cache recovery by three corvid species. — Anim. Behav. 38: 486-495.

BaldaR.P. & KamilA.C. (2006). Linking life zones, life history traits, ecology and spatial cognition on four allopatric southwestern seed caching corvids. — In: Animal spatial cognition: comparative neural and computational approaches (BrownM.F. & CookR.G. eds). Available online at http://www.pigeon.psy.tufts.edu/asc/Balda/.

BalsbyT.J.S. & AdamsD.M. (2011). Vocal similarity and familiarity determine response to potential flockmates in orange-fronted conures (Psittacidae). — Anim. Behav. 81: 983-991.

BalsbyT.J. & BradburyJ.W. (2009). Vocal matching by orange-fronted conures (Aratinga canicularis). — Behav. Proc. 82: 133-139.

BalsbyT.J.S. & ScarlJ.C. (2008). Sex-specific responses to vocal convergence and divergence of contact calls in orange-fronted conures (Aratinga canicularis). — Proc. Roy. Soc. Lond. B: Biol. Sci. 275: 2147-2154.

BalsbyT.J.S.MombergJ.V. & DabelsteenT. (2012). Vocal imitation in parrots allows addressing of specific individuals in a dynamic communication network. — PLoS ONE 7: e49747.

BarrowcloughG.F.CracraftJ.KlickaJ. & ZinkR.M. (2016). How many kinds of birds are there and why does it matter?PLoS ONE 11: e0166307.

BeachF.A. (1950). The snark was a boojum. — Am. Psychol. 5: 115-124.

BebusS.E.SmallT.W.JonesB.C.ElderbrockE.K. & SchoechS.J. (2016). Associative learning is inversely related to reversal learning and varies with nestling corticosterone exposure. — Anim. Behav. 111: 251-260.

BeckS.R.ApperlyI.A.ChappellJ.GuthrieC. & CuttingN. (2011). Making tools isn’t child’s play. — Cognition 119: 301-306.

BeranM.J. (2015). The comparative science of “self-control”: what are we talking about?Front. Psychol. 6: 51.

BergK.S.DelgadoS.OkawaR.BeissingerS.R. & BradburyJ.W. (2011). Contact calls are used for individual mate recognition in free-ranging green-rumped parrotlets, Forpus passerinus. — Anim. Behav. 81: 241-248.

BirdC.D. & EmeryN.J. (2009a). Rooks use stones to raise the water level to reach a floating worm. — Curr. Biol. 19: 1410-1414.

BirdC.D. & EmeryN.J. (2009b). Insightful problem solving and creative tool modification by captive nontool-using rooks. — Proc. Natl. Acad. Sci. USA 106: 10370-10375.

BirdC.D. & EmeryN.J. (2010). Rooks perceive support relations similar to six-month-old babies. — Proc. Roy. Soc. Biol. Lond. B: Biol. Sci. 277: 147-151.

BoeckleM. & BugnyarT. (2012). Long-term memory for affiliates in ravens. — Curr. Biol. 22: 801-806.

BogaleB.A.KamataN.MiokoK. & SugitaS. (2011). Quantity discrimination in jungle crows, Corvus macrorhynchos. — Anim. Behav. 82: 635-641.

BondA.B.KamilA.C. & BaldaR.P. (2003). Social complexity and transitive inference in corvids. — Anim. Behav. 65: 479-487.

BondA.B.KamilA.C. & BaldaR.P. (2007). Serial reversal learning and the evolution of behavioral flexibility in three species of North American corvids (Gymnorhinus cyanocephalus, Nucifraga columbiana, Aphelocoma californica). — J. Comp. Psychol. 121: 372-379.

BondA.B.WeiC.A. & KamilA.C. (2010). Cognitive representation in transitive inference: a comparison of four corvid species. — Behav. Proc. 85: 283-292.

BorsariA. & OttoniE. (2005). Preliminary observations of tool use in captive hyacinth macaws (Anodorhynchus hyacinthinus). — Anim. Cogn. 8: 48-52.

BoucherieP.H.PoulinN. & DufourV. (2018). Not much ado about something: behavioural mechanisms of pair bond separation and formation in long-term pairing rooks. — Écoscience 25: 71-83.

BradburyJ.W. & BalsbyT.J.S. (2016). The functions of vocal learning in parrots. — Behav. Ecol. Sociobiol. 70: 293-312.

BräuerJ.KaminskiJ.RiedelJ.CallJ. & TomaselloM. (2006). Making inferences about the location of hidden food: social dog, causal ape. — J. Comp. Psychol. 120: 38-47.

BräuerJ.CallJ. & TomaselloM. (2009). Are apes inequity averse? New data on the token-exchange paradigm. — Am. J. Primatol. 71: 175-181.

BrechtK.F.WagenerL.OstojicL.ClaytonN.S. & NiederA. (2017). Comparing the face inversion effect in crows and humans. — J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 203: 1017-1027.

BrosnanS.F. & de WaalF.B.M. (2003). Monkeys reject unequal pay. — Nature 425: 297-299.

BrosnanS.F.TalbotC.AhlgrenM.LambethS.P. & SchapiroS.J. (2010). Mechanisms underlying responses to inequitable outcomes in chimpanzees, Pan troglodytes. — Anim. Behav. 79: 1229-1237.

BugnyarT. & HeinrichB. (2005). Ravens, Corvus corax, differentiate between knowledgeable and ignorant competitors. — Proc. Roy. Soc. Biol. Lond. B: Biol. Sci. 272: 1641-1646.

BugnyarT. & KotrschalK. (2002). Observational learning and the raiding of food caches in ravens, Corvus corax: is it ‘tactical’ deception?Anim. Behav. 64: 185-195.

BugnyarT.StöweM. & HeinrichB. (2004). Ravens, Corvus corax, follow gaze direction of humans around obstacles. — Proc. Roy. Soc. Lond. B: Biol. Sci. 271: 1331-1336.

BugnyarT.StöweM. & HeinrichB. (2007). The ontogeny of caching in ravens, Corvus corax. — Anim. Behav. 74: 757-767.

BugnyarT.ReberS.A. & BucknerC. (2016). Ravens attribute visual access to unseen competitors. — Nat. Commun. 7.

Buhrman-DeeverS.C.HobsonE.A. & HobsonA.D. (2008). Individual recognition and selective response to contact calls in foraging brown-throated conures, Aratinga pertinax. — Anim. Behav. 76: 1715-1725.

BurkartJ.M. & Van SchaikC.P. (2012). Group service in macaques (Macaca fuscata), capuchins (Cebus apella) and marmosets (Callithrix jacchus): a comparative approach to identifying proactive prosocial motivations. — J. Comp. Psychol. 127: 212-215.

BurkartJ.M.FehrE.EffersonC. & van SchaikC.P. (2007). Other-regarding preferences in a non-human primate: common marmosets provision food altruistically. — Proc. Natl. Acad. Sci. USA 104: 19762-19766.

BurkartJ.M.AllonO.AmiciF.FichtelC.FinkenwirthC.HeschlA.HuberJ.IslerK.KosonenZ.K.MartinsE.MeulmanE.J.RichigerR.RuethK.SpillmannB.WiesendangerS. & van SchaikC.P. (2014). The evolutionary origin of human hyper-cooperation. — Nature Commun. 5: 4747.

ButterfillS.A. & ApperlyI.A. (2013). How to construct a minimal theory of mind. — Mind. Lang. 28: 606-637.

ByrneR.W. & WhitenA. (1989). Machiavellian intelligence: social expertise and the evolution of intellect in monkeys apes and humans. — Oxford University PressNew York, NY.

CallJ. (2004). Inferences about the location of food in the great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, and Pongo pygmaeus). — J. Comp. Psychol. 118: 232-241.

CallJ. (2006). Inferences by exclusion in the great apes: the effect of age and species. — Anim. Cogn. 9: 393-403.

CallJ. (2012). Three ingredients for becoming a creative tool user. — In: Tool use in animals: cognition and ecology (SanzC.M.CallJ. & BoeschC. eds). Cambridge University PressCambridge p. 3-20.

CallJ. & CarpenterM. (2001). Do apes and children know what they have seen?Anim. Cogn. 4: 207-220.

CastroL. & WassermanE.A. (2017). Relational concept learning in birds. — In: Avian cognition (ten CateC. & HealyS.D. eds). Cambridge University PressCambridge p. 229-248.

CatchpoleC.K. & SlaterP.J.B. (2008). Bird song biological themes and variations. — Cambridge University PressCambridge.

Cesana-ArlottiN.MartinA.TeglasE.VorobyovaL.CetnarskiR. & BonattiL.L. (2018). Precursors of logical reasoning in preverbal human infants. — Science 359: 1263.

ChakrabortyM.WalløeS.NedergaardS.FridelE.E.DabelsteenT.PakkenbergB.BertelsenM.F.DorresteinG.M.BrauthS.E.DurandS.E. & JarvisE.D. (2015). Core and shell song systems unique to the parrot brain. — PLoS ONE 10: e0118496.

ChangL.ZhangS.PooM.-M. & GongN. (2017). Spontaneous expression of mirror self-recognition in monkeys after learning precise visual-proprioceptive association for mirror images. — Proc. Natl. Acad. Sci. USA 114: 3258-3263.

ChappellJ. & KacelnikA. (2002). Tool selectivity in a non-primate, the New Caledonian crow (Corvus moneduloides). — Anim. Cogn. 5: 71-78.

ChappellJ. & KacelnikA. (2004). Selection of tool diameter by New Caledonian crows Corvus moneduloides. — Anim. Cogn. 7: 121-127.

Chaves MolinaA.B.CullellT.M. & MimóM.C. (2019). String-pulling in African grey parrots (Psittacus erithacus): performance in discrimination tasks. — Behaviour 156: BEH 3511.

ChekeL.G.BirdC.D. & ClaytonN.S. (2011). Tool-use and instrumental learning in the Eurasian jay (Garrulus glandarius). — Anim. Cogn. 14: 441-455.

ChristieS.GentnerD.CallJ. & HaunD.B. (2016). Sensitivity to relational similarity and object similarity in apes and children. — Curr. Biol. 26: 531-535.

CibulskiL.WascherC.A.F.WeissB.M. & KotrschalK. (2014). Familiarity with the experimenter influences the performance of common ravens (Corvus corax) and carrion crows (Corvus corone corone) in cognitive tasks. — Behav. Proc. 103: 129-137.

ClaryD. & KellyD.M. (2011). Cache protection strategies of a non-social food-caching corvid, Clark’s nutcracker (Nucifraga columbiana). — Anim. Cogn. 14: 735-744.

ClaryD. & KellyD.M. (2016). Graded mirror self-recognition by Clark’s nutcrackers. — Sci. Rep. 6: 36459.

ClaytonN.S. & KrebsJ.R. (1994a). One-trial associative memory: comparison of food-storing and nonstoring species of birds. — Anim. Learn. Behav. 22: 366-372.

ClaytonN.S. & KrebsJ.R. (1994b). Memory for spatial and object-specific cues in food-storing and non-storing birds. — J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 174: 371-379.

ClaytonN.S. & DickinsonA. (1998). Episodic-like memory during cache recovery by scrub jays. — Nature 395: 272-274.

ClaytonN.S.GriffithsD.P.EmeryN.J. & DickinsonA. (2001). Elements of episodic-like memory in animals. — Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 356: 1483-1491.

ClaytonN.S.DallyJ. & EmeryN.J. (2007). Social cognition by food-caching corvids: the western scrub-jay as a natural psychologist. — Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 362: 507-522.

CookR.G. & WassermanE.A. (2007). Learning and transfer of relational matching-to-sample by pigeons. — Psychon. Bull. Rev. 14: 1107-1114.

CoolsA.K.A.Van HoutA.J.-M. & NelissenM.H.J. (2008). Canine reconciliation and third-party-initiated postconflict affiliation: do peacemaking social mechanisms in dogs rival those of higher primates?Ethology 114: 53-63.

CornellH.N.MarzluffJ.M. & PecoraroS. (2012). Social learning spreads knowledge about dangerous humans among American crows. — Proc. Roy. Soc. Lond. B: Biol. Sci. 279: 499-508.

CorreiaS.P.DickinsonA. & ClaytonN.S. (2007). Western scrub-jays anticipate future needs independently of their current motivational state. — Curr. Biol. 17: 856-861.

CozziA.SighieriC.GazzanoA.NicolC.J. & BaragliP. (2010). Post-conflict friendly reunion in a permanent group of horses (Equus caballus). — Behav. Proc. 85: 185-190.

CroninK.A.SchroederK.K.E.RothwellE.S.SilkJ.B. & SnowdonC.T. (2009). Cooperatively breeding cottontop tamarins (Saguinus oedipus) do not donate rewards to their long-term mates. — J. Comp. Psychol. 123: 231-241.

CroninK.A.SchroederK.K.E. & SnowdonC.T. (2010). Prosocial behaviour emerges independent of reciprocity in cottontop tamarins. — Proc. Roy. Soc. Biol. Lond. B: Biol. Sci. 277: 3845-3851.

CussenV.A. (2017). Psittacine cognition: individual differences and sources of variation. — Behav. Proc. 134: 103-109.

DaleR.Quervel-ChaumetteM.HuberL.RangeF. & Marshall-PesciniS. (2016). Task differences and prosociality; investigating pet dogs’ prosocial preferences in a token choice paradigm. — PLoS ONE 11: e0167750.

DallyJ.EmeryN.J. & ClaytonN.S. (2004). Cache protection strategies by western scrub-jays (Aphelocoma californica): hiding food in the shade. — Behaviour 142: 961-977.

DallyJ.EmeryN.J. & ClaytonN.S. (2005). The social suppression of caching in western scrub-jays. — Behaviour 142: 961-977.

DavidsonG.MillerR.LoisselE.ChekeL.G. & ClaytonN.S. (2017). The development of support intuitions and object causality in juvenile Eurasian jays (Garrulus glandarius). — Sci. Rep. 7: 40062.

DavidsonG.L.ClaytonN.S. & ThorntonA. (2015). Wild jackdaws, Corvus monedula, recognize individual humans and may respond to gaze direction with defensive behaviour. — Anim. Behav. 108: 17-24.

de KortS.R.EmeryN.J. & ClaytonN.S. (2006). Food sharing in jackdaws, Corvus monedula: what, why and with whom?Anim. Behav. 72: 297-304.

de Mendonça-FurtadoO. & OttoniE.B. (2008). Learning generalization in problem solving by a blue-fronted parrot (Amazona aestiva). — Anim. Cogn. 11: 719-725.

De VeerM.W. & van den BosR. (1999). A critical review of methodology and interpretation of mirror self-recognition research in nonhuman primates. — Anim. Behav. 58: 459-468.

de WaalF.B.M.LeimgruberK. & GreenbergA.R. (2008). Giving is self-rewarding for monkeys. — Proc. Natl. Acad. Sci. USA 105: 13685-13689.

DerégnaucourtS. & BovetD. (2016). The perception of self in birds. — Neurosci. Biobehav. Rev. 69: 1-14.

DewsburyD.A. (2012). Comparative psychology in historical perspective. — In: Handbook of psychology2nd edn. (WeinerI. & FreedheimD.K. eds). WileyNew York, NY.

Di LascioF.NyffelerF.BsharyR. & BugnyarT. (2013). Ravens (Corvus corax) are indifferent to the gains of conspecific recipients or human partners in experimental tasks. — Anim. Cogn. 16: 35-43.

DiamondA. (1990). The development and neural bases of memory functions as indexed by the AB and delayed response tasks in human infants and infant monkeys. — Ann. NY Acad. Sci. 608: 267-309discussion 309-317.

DiamondA. (2013). Executive functions. — Annu. Rev. Psychol. 64: 135-168.

DiamondJ. & BondA.B. (1989). Lasting responsiveness of a kea (Nestor notabilis) toward its mirror image. — Avicult. Mag. 95: 92-94.

DitzH.M. & NiederA. (2016). Numerosity representations in crows obey the Weber–Fechner law. — Proc. Roy. Soc. Biol. Lond. B: Biol. Sci. 283: 20160083.

dos AnjosL.DebusS.MadgeS. & MarzluffJ. (2009). Corvidae. — In: Handbook of the birds of the world (dos AnjosL.ElliottA. & ChristieD.A. eds). Lynx EdicionsBarcelona.

dos ReisM.ThawornwattanaY.AngelisK.TelfordM.J.DonoghueP.C. & YangZ. (2015). Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. — Curr. Biol. 25: 2939-2950.

DufourV.PeleM.SterckE.H.M. & ThierryB. (2007). Chimpanzee (Pan troglodytes) anticipation of food return: coping with waiting time in an exchange task. — J. Comp. Psychol. 121: 145-155.

DufourV.WascherC.A.BraunA.MillerR. & BugnyarT. (2012). Corvids can decide if a future exchange is worth waiting for. — Biol. Lett. 8: 201-204.

DumasC. & WilkieD.M. (1995). Object permanence in ring doves (Streptopelia risoria). — J. Comp. Psychol. 109: 142-150.

DunbarR.I.M. (1998). The social brain hypothesis. — Evol. Anthropol. 6: 178-190.

DuqueJ.F. & StevensJ.R. (2016). Voluntary food sharing in pinyon jays: the role of reciprocity and dominance. — Anim. Behav. 122: 135-144.

DuqueJ.F.LeichnerW.AhmannH. & StevensJ.R. (2018). Mesotocin influences pinyon jay prosociality. — Biol. Lett. 14: 20180105.

DymondS. & StewartI. (2016). Relational and analogical reasoning in comparative cognition. — Int. J. Comp. Psychol. 51: 15-27.

EmeryN.J. & ClaytonN.S. (2001). Effects of experience and social context on prospecting caching strategies by scrub jays. — Nature 414: 443-448.

EmeryN.J. & ClaytonN.S. (2004a). The mentality of crows: covergent evolution of intelligence in corvids and apes. — Science 306: 1903-1909.

EmeryN.J. & ClaytonN.S. (2005). Evolution of the avian brain and intelligence. — Curr. Biol. 15: R946-R950.

EmeryN.J.DallyJ. & ClaytonN.S. (2004). Western scrub-jays (Aphelocoma californica) use cognitive strategies to pretect their caches from thieving conspecifics. — Anim. Cogn. 7: 37-43.

EmeryN.J.SeedA.Von BayernA.M.P. & ClaytonN.S. (2007a). Cognitive adaptations of social bonding in birds. — Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 362: 489-505.

EmeryN.J. (2004). Are corvids ‘feathered apes’? Cognitive evolution in crows, jays, rooks and jackdaws. — In: Comparative analysis of minds (WatanabeS. ed.). Keio University PressTokyo p. 181-213.

EmeryN.J. & ClaytonN.S. (2004b). Comparing the complex cognition of birds and primates. — In: Comparative vertebrate cognition: are primates superior to non-primates? (RogersL.J. & KaplanG. eds). Springer USBoston, MA p. 3-55.

EmeryN.J. (2006). Cognitive ornithology: the evolution of avian intelligence. — Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 361: 23-43.

EmeryN.J.ClaytonN.S. & FrithC.D. (2007b). Introduction. Social intelligence: from brain to culture. — Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 362: 485-488.

Enggist-DueblinP. & PfisterU. (2002). Cultural transmission of vocalizations in ravens, Corvus corax. — Anim. Behav. 64: 831-841.

ErdőhegyiÁ.TopálJ.VirányiZ. & MiklósiÁ. (2007). Dog-logic: inferential reasoning in a two-way choice task and its restricted use. — Anim. Behav. 74: 725-737.

EvansT.A. & BeranM.J. (2007). Delay of gratification and delay maintenance by rhesus macaques (Macaca mulatta). — J. Gen. Psychol. 134: 199-216.

EvansT.A. & WestergaardG.C. (2006). Self-control and tool use in tufted capuchin monkeys (Cebus apella). — J. Comp. Psychol. 120: 163-166.

FagotJ. (2017). Analogical reasoning. — In: Encyclopedia of animal cognition and behavior (VonkJ. & ShackelfordT.K. eds). SpringerNew York, NY.

FagotJ. & ParronC. (2010). Relational matching in baboons (Papio papio) with reduced grouping requirements. — J. Exp. Psychol. Anim. Behav. Proc. 36: 184-193.

FehrE. & FischbacherU. (2003). The nature of human altruism. — Nature 425: 785-791.

FlemmingT.M.ThompsonR.K.R. & FagotJ. (2013). Baboons, like humans, solve analogy by categorical abstraction of relations. — Anim. Cogn. 16: 519-524.

FraserO.N. & BugnyarT. (2010). Do ravens show consolation? Responses to distressed others. — PLoS ONE 5: e10605.

FraserO.N. & BugnyarT. (2011). Ravens reconcile after aggressive conflicts with valuable partners. — PLoS ONE 6: e18118.

FritzJ. & KotrschalK. (1999). Social learning in common ravens, Corvus corax. — Anim. Behav. 57: 785-793.

FunkM.S. (1996). Development of object permanence in the New Zealand parakeet (Cyanoramphus auriceps). — Anim. Learn. Behav. 24: 375-383.

FunkM.S. (2002). Problem solving skills in young yellow-crowned parakeets (Cyanoramphus auriceps). — Anim. Cogn. 5: 167-176.

GagneM.LevesqueK.NutileL. & LocurtoC. (2012). Performance on patterned string problems by common marmosets (Callithrix jacchus). — Anim. Cogn. 15: 1021-1030.

GajdonG.K.FijnN. & HuberL. (2004). Testing social learning in a wild mountain parrot, the kea (Nestor notabilis). — Learn. Behav. 32: 62-71.

GajdonG.K.FijnN. & HuberL. (2006). Limited spread of innovation in a wild parrot, the kea (Nestor notabilis). — Anim. Cogn. 9: 173-181.

GajdonG.K.AmannL. & HuberL. (2011). Keas rely on social information in a tool use task but abandon it in favour of overt exploration. — Interact. Stud. 12: 304-323.

GalefB.G. & GiraldeauL.-A. (2001). Social influences on foraging in vertebrates: causal mechanisms and adaptive functions. — Anim. Behav. 61: 3-15.

GallupG.G. (1970). Chimpanzees: self-recognition. — Science 167: 86-87.

GallupG.G. (1982). Self-awareness and the emergence of mind in primates. — Am. J. Primatol. 2: 237-248.

GallupG.G. (1998). Self-awareness and the evolution of social intelligence. — Behav. Proc. 42: 239-247.

GillF. & DonskerD. (2018). Ioc world bird list (v8.2). — Avaialble online at https://www.worldbirdnames.org/ioc-lists/crossref/.

GiretN.MiklosiA.KreutzerM. & BovetD. (2009). Use of experimenter-given cues by African gray parrots (Psittacus erithacus). — Anim. Cogn. 12: 1-10.

GómezJ.-C. (2005). Species comparative studies and cognitive development. — Trends Cogn. Sci. 9: 118-125.

GossetteR.L. (1968). Examination of retention decrement explanation of comparative successive discrimination reversal learning by birds and mammals. — Percept. Mot. Skills. 27: 1147-1152.

GossetteR.L.GossetteM.F. & RiddellW. (1966). Comparisons of successive discrimination reversal performances among closely and remotely related avian species. — Anim. Behav. 14: 560-564.

GotoK. & WatanabeS. (2009). Visual working memory of jungle crows (Corvus macrorhynchos) in operant delayed matching-to-sample. — Jpn. Psychol. Res. 51: 122-131.

GotoK. & WatanabeS. (2012). Large-billed crows (Corvus macrorhynchos) have retrospective but not prospective metamemory. — Anim. Cogn. 15: 27-35.

GreggorA.L. (2016). A critical evaluation of neophobia in corvids: causes consequences and conservation implications. — PhD thesis University of Cambridge Cambridge.

GrodzinskiU. & ClaytonN.S. (2010). Problems faced by food-caching corvids and the evolution of cognitive solutions. — Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 365: 977-987.

GrosenickL.ClementT.S. & FernaldR.D. (2007). Fish can infer social rank by observation alone. — Nature 445: 429-432.

GuezD. & AudleyC. (2013). Transitive or not: a critical appraisal of transitive inference in animals. — Ethology 119: 703-726.

GüntürkünO. & BugnyarT. (2016). Cognition without cortex. — Trends Cogn. Sci. 20: 291-303.

GüntürkünO.StröckensF.ScarfD. & ColomboM. (2017). Apes, feathered apes, and pigeons: differences and similarities. — Curr. Opin. Behav. Sci. 16: 35-40.

HanusD. & CallJ. (2011). Chimpanzee problem-solving: contrasting the use of causal and arbitrary cues. — Anim. Cogn. 14: 871-878.

HarveyD.P. (2015). Innovative problem solving in wild Steller’s jays. — Humboldt State UniversityArcata, CA.

HealyS.D.ClaytonN.S. & KrebsJ.R. (1994). Development of hippocampal specialisation in two species of tit (Parus spp.). — Behav Brain Res 61: 23-28.

HeaneyM.GrayR.D. & TaylorA.H. (2017a). Kea show no evidence of inequity aversion. — Roy. Soc. Open. Sci. 4: 160461.

HeaneyM.GrayR.D. & TaylorA.H. (2017b). Keas perform similarly to chimpanzees and elephants when solving collaborative tasks. — PLoS ONE 12: e0169799.

HeinrichB. (1989). Ravens in winter. — Summit Books of Simon & SchusterNew York, NY.

HeinrichB. (1995). An experimental investigation of insight in common ravens (Corvus corax). — Auk 112: 994-1003.

HeinrichB. (1999). Mind of the raven: investigations and adventures with wolf-birds. — Harper CollinsNew York, NY.

HeinrichB. & BugnyarT. (2005). Testing problem solving in ravens: string-pulling to reach food. — Ethology 111: 962-976.

HeinrichB.MarzluffJ. & AdamsW. (1995). Fear and food recognition in naive common ravens. — Auk 112: 499-503.

HeinsohnR.ZdenekC.N.CunninghamR.B.EndlerJ.A. & LangmoreN.E. (2017). Tool-assisted rhythmic drumming in palm cockatoos shares key elements of human instrumental music. — Sci. Adv. 3: e1602399.

Herculano-HouzelS. (2017). Numbers of neurons as biological correlates of cognitive capability. — Curr. Opin. Behav. Sci. 16: 1-7.

HeyesC.M. (1994). Reflections on self-recognition in primates. — Anim. Behav. 47: 909-919.

HeyesC.M. (2014). Submentalizing: I am not really reading your mind. — Perspect. Psychol. Sci. 9: 131-143.

HeyesC.M. (2015). Animal mindreading: what’s the problem?Psychon. Bull. Rev. 22: 313-327.

HeyesC. & SaggersonA. (2002). Testing for imitative and nonimitative social learning in the budgerigar using a two-object/two-action test. — Anim. Behav. 64: 851-859.

HileA.G. & StriedterG.F. (2000). Call convergence within groups of female budgerigars (Melopsittacus undulatus). — Ethology 106: 1105-1114.

HillemannF.BugnyarT.KotrschalK. & WascherC.A.F. (2014). Waiting for better, not for more: corvids respond to quality in two delay maintenance tasks. — Anim. Behav. 90: 1-10.

HobsonE.A.AveryM.L. & WrightT.F. (2014). The socioecology of monk parakeets: insights into parrot social complexity. — Auk 131: 756-775.

HodosW. & CampbellC.B. (1969). Scala naturae — why there is no theory in comparative psychology. — Psychol. Rev. 76: 337.

HoffmannA.RüttlerV. & NiederA. (2011). Ontogeny of object permanence and object tracking in the carrion crow, Corvus corone. — Anim. Behav. 82: 359-367.

HofmannM.M.ChekeL.G. & ClaytonN.S. (2016). Western scrub-jays (Aphelocoma californica) solve multiple-string problems by the spatial relation of string and reward. — Anim. Cogn. 19: 1103-1114.

HolzhaiderJ.C.HuntG.R. & GrayR.D. (2010). Social learning in New Caledonian crows. — Learn. Behav. 38: 206-219.

HoppS.L.JablonskiP. & BrownJ.L. (2001). Recognition of group membership by voice in Mexican jays, Aphelocoma ultramarina. — Anim. Behav. 62: 297-303.

HornL.ScheerC.BugnyarT. & MassenJ.J.M. (2016). Proactive prosociality in a cooperatively breeding corvid, the azure-winged magpie (Cyanopica cyana). — Biol. Letters. 12: 20160649.

HornerV.CarterJ.D.SuchakM. & de WaalF.B.M. (2011). Spontaneous prosocial choice by chimpanzees. — Proc. Natl. Acad. Sci. USA 108: 13847-13851.

HuberL. & GajdonG.K. (2006). Technical intelligence in animals: the kea model. — Anim. Cogn. 9: 295-305.

HuberL.RechbergerS. & TaborskyM. (2001). Social learning affects object exploration and manipulation in keas, Nestor notabilis. — Anim. Behav. 62: 945-954.

HumphreyN.K. (1976). The social function of intellect. — In: Growing points in ethology (BatesonP.G. & HindeR.A. eds). Cambridge University PressCambridge p. 303-317.

HuntG.R. (1996). Manufacture and use of hook-tools by New Caledonian crows. — Nature 379: 249-251.

HuntG.R. & GrayR.D. (2003). Diversification and cumulative evolution in New Caledonian crow tool manufacture. — Proc. Roy. Soc. Biol. Lond. B: Biol. Sci. 270: 867-874.

HuntR.G.RutledgeB.R. & GrayD.R. (2006). The right tool for the job: what strategies do wild New Caledonian crows use?Anim. Cogn. 9: 307-316.

IkkataiY.WatanabeS. & IzawaE.-I. (2016). Reconciliation and third-party affiliation in pair-bond budgerigars. — Behaviour 153: 1173-1193.

IoannidisJ.P.A.MunafòM.R.Fusar-PoliP.NosekB.A. & DavidS.P. (2014). Publication and other reporting biases in cognitive sciences: detection, prevalence and prevention. — Trends. Cogn. Sci. 18: 235-241.

Irie-SugimotoN.KobayashiT.SatoT. & HasegawaT. (2008). Evidence of means–end behavior in Asian elephants (Elephas maximus). — Anim. Cogn. 11: 359-365.

JaakkolaK. (2014). Do animals understand invisible displacement? A critical review. — J. Comp. Psychol. 128: 225-239.

JacobsI.F. & OsvathM. (2016). Nonhuman tool use. — In: Encyclopedia of evolutionary psychological science (ShackelfordT.K. & Weekes-ShackelfordV.A. eds). SpringerNew York, NY.

JacobsI.F. & OsvathM. (2015). The string-pulling paradigm in comparative psychology. — J. Comp. Psychol. 129: 89-120.

JacobsI.F.OsvathM.OsvathH.MioduszewskaB.von BayernA.M.P. & KacelnikA. (2014). Object caching in corvids: incidence and significance. — Behav. Proc. 102: 25-32.

JacobsI.F.von BayernA.M.P.Martin-OrdasG.Rat-FischerL. & OsvathM. (2015). Corvids create novel causal interventions after all. — Proc. Roy. Soc. Biol. Lond. B: Biol. Sci. 282: 20142504.

JacobsI.F.von BayernA. & OsvathM. (2016). A novel tool-use mode in animals: New Caledonian crows insert tools to transport objects. — Anim. Cogn. 19: 1249-1252.

JarvisE.D.GüntürkünO.BruceL. & The Avian Brain Nomenclature Consortium (2005). Avian brains and a new understanding of vertebrate brain evolution. — Nature Rev. Neurosci. 6: 151-159.

JarvisE.D.MirarabS.AbererA.J.LiB.HoudeP.LiC.HoS.Y.W.FairclothB.C.NabholzB.HowardJ.T.SuhA.WeberC.C.da FonsecaR.R.LiJ.W.ZhangF.LiH.ZhouL.NarulaN.LiuL.GanapathyG.BoussauB.BayzidM.S.ZavidovychV.SubramanianS.GabaldonT.Capella-GutierrezS.Huerta-CepasJ.RekepalliB.MunchK.SchierupM.LindowB.WarrenW.C.RayD.GreenR.E.BrufordM.W.ZhanX.J.DixonA.LiS.B.LiN.HuangY.H.DerryberryE.P.BertelsenM.F.SheldonF.H.BrumfieldR.T.MelloC.V.LovellP.V.WirthlinM.SchneiderM.P.C.ProsdocimiF.SamaniegoJ.A.VelazquezA.M.V.Alfaro-NunezA.CamposP.F.PetersenB.Sicheritz-PontenT.PasA.BaileyT.ScofieldP.BunceM.LambertD.M.ZhouQ.PerelmanP.DriskellA.C.ShapiroB.XiongZ.J.ZengY.L.LiuS.P.LiZ.Y.LiuB.H.WuK.XiaoJ.YinqiX.ZhengQ.M.ZhangY.YangH.M.WangJ.SmedsL.RheindtF.E.BraunM.FjeldsaJ.OrlandoL.BarkerF.K.JonssonK.A.JohnsonW.KoepfliK.P.O’BrienS.HausslerD.RyderO.A.RahbekC.WillerslevE.GravesG.R.GlennT.C.McCormackJ.BurtD.EllegrenH.AlstromP.EdwardsS.V.StamatakisA.MindellD.P.CracraftJ.BraunE.L.WarnowT.JunW.GilbertM.T.P. & ZhangG.J. (2014). Whole-genome analyses resolve early branches in the tree of life of modern birds. — Science 346: 1320-1331.

JelbertS.A.TaylorA.H.ChekeL.G.ClaytonN.S. & GrayR.D. (2014). Using the Aesop’s fable paradigm to investigate causal understanding of water displacement by New Caledonian crows. — PLoS ONE 9: e92895.

JelbertS.A.SinghP.J.GrayR.D. & TaylorA.H. (2015a). New Caledonian crows rapidly solve a collaborative problem without cooperative cognition. — PLoS ONE 10: e0133253.

JelbertS.A.TaylorA.H. & GrayR.D. (2015b). Investigating animal cognition with the Aesop’s fable paradigm: current understanding and future directions. — Commun. Integr. Biol. 8: e1035846.

JelbertS.A.TaylorA.H. & GrayR.D. (2016). Does absolute brain size really predict self-control? Hand-tracking training improves performance on the A-not-B task. — Biol. Letters. 12: 20150871.

JelbertS.A.HoskingR.J.TaylorA.H. & GrayR.D. (2018). Mental template matching is a potential cultural transmission mechanism for New Caledonian crow tool manufacturing traditions. — Sci. Rep. 8: 8956.

JollyA. (1966). Lemur social behavior and primate intelligence — step from prosimian to monkey intelligence probably took place in a social context. — Science 153: 501-506.

Jozet-AlvesC.BertinM. & ClaytonN.S. (2013). Evidence of episodic-like memory in cuttlefish. — Curr. Biol. 23: R1033-R1035.

KabadayiC. & OsvathM. (2017). Ravens parallel great apes in flexible planning for tool-use and bartering. — Science 357: 202-204.

KabadayiC.TaylorL.A.von BayernA.M.P. & OsvathM. (2016). Ravens, New Caledonian crows and jackdaws parallel great apes in motor self-regulation despite smaller brains. — Roy. Soc. Open. Sci. 3: 160104.

KabadayiC.JacobsI. & OsvathM. (2017a). The development of motor self-regulation in ravens. — Front. Psychol. 8: 2100.

KabadayiC.KrasheninnikovaA.O’NeillL.van de WeijerJ.OsvathM. & von BayernA.M.P. (2017b). Are parrots poor at motor self-regulation or is the cylinder task poor at measuring it?Anim. Cogn. 20: 1137-1146.

KabadayiC.BobrowiczK. & OsvathM. (2018). The detour paradigm in animal cognition. — Anim. Cogn. 21: 21-35.

KacelnikA.ChappellJ.KenwardB. & WeirA.A.S. (2006). Cognitive adaptations for tool-related behavior in New Caledonian crows. — In: Comparative cognition: experimental explorations of animal intelligence (WassermanE.A. & ZentallT.R. eds). Oxford University PressOxford p. 515-528.

KaminskiJ.RiedelJ.CallJ. & TomaselloM. (2005). Domestic goats, Capra hircus, follow gaze direction and use social cues in an object choice task. — Anim. Behav. 69: 11-18.

KeefnerA. (2016). Corvids infer the mental states of conspecifics. — Biol. Philos. 31: 267-281.

KenwardB.RutzC.WeirA.A.S. & KacelnikA. (2006). Development of tool use in New Caledonian crows: inherited action patterns and social influences. — Anim. Behav. 72: 1329-1343.

KenwardB.SchloeglC.RutzC.WeirA.A.S.BugnyarT. & KacelnikA. (2011). On the evolutionary and ontogenetic origins of tool-oriented behaviour in New Caledonian crows (Corvus moneduloides). — Biol. J. Linn. Soc. Lond. 102: 870-877.

KingS.L. & McGregorP.K. (2016). Vocal matching: the what, the why and the how. — Biol. Lett. 12: 20160666.

KingS.L. & JanikV.M. (2013). Bottlenose dolphins can use learned vocal labels to address each other. — Proc. Natl. Acad. Sci. USA 110: 13216-13221.

KleinE.D. & ZentallT.R. (2003). Imitation and affordance learning by pigeons (Columba livia). — J. Comp. Psychol. 117: 414-419.

KlumpB.C.van der WalJ.E.M.St ClairJ.J.H. & RutzC. (2015). Context-dependent ‘safekeeping’ of foraging tools in New Caledonian crows. — Proc. Roy. Soc. Biol. Lond. B: Biol. Sci. 282: 20150278.

KoepkeA.E.GrayS.L. & PepperbergI.M. (2015). Delayed gratification: a grey parrot (Psittacus erithacus) will wait for a better reward. — J. Comp. Psychol. 129: 339-346.

KondoN.IzawaE.-I. & WatanabeS. (2012). Crows cross-modally recognize group members but not non-group members. — Proc. Roy. Soc. Biol. Lond. B: Biol. Sci. 279: 1937-1942.

KrasheninnikovaA. (2013). Patterned-string tasks: relation between fine motor skills and visual-spatial abilities in parrots. — PLoS ONE 8: e85499.

KrasheninnikovaA. (2014). Physical cognition in parrots: a comparative approach. — Doctoral dissertation University of Hamburg Hamburg.

KrasheninnikovaA. & SchneiderJ.M. (2014). Testing problem-solving capacities: differences between individual testing and social group setting. — Anim. Cogn. 17: 1227-1232.

KrasheninnikovaA.BragerS. & WankerR. (2013). Means-end comprehension in four parrot species: explained by social complexity. — Anim. Cogn. 16: 755-764.

KubitzaR.J.BugnyarT. & SchwabC. (2015). Pair bond characteristics and maintenance in free-flying jackdaws Corvus monedula: effects of social context and season. — J. Avian Biol. 46: 206-215.

KulahciI.G.RubensteinD.I.BugnyarT.HoppittW.MikusN. & SchwabC. (2016). Social networks predict selective observation and information spread in ravens. — Roy. Soc. Open. Sci. 3: 160256.

KusayamaT.BischofH.-J. & WatanabeS. (2000). Responses to mirror-image stimulation in jungle crows (Corvus macrorhynchos). — Anim. Cogn. 3: 61-64.

LambertM.L.SeedA.M. & SlocombeK.E. (2015). A novel form of spontaneous tool use displayed by several captive greater vasa parrots (Coracopsis vasa). — Biol. Lett. 11: 20150861.

LambertM.L.MassenJ.J.M.SeedA.M.BugnyarT. & SlocombeK.E. (2017a). An ‘unkindness’ of ravens? Measuring prosocial preferences in Corvus corax. — Anim. Behav. 123: 383-393.

LambertM.L.SchiestlM.SchwingR.TaylorA.H.GajdonG.K.SlocombeK.E. & SeedA.M. (2017b). Function and flexibility of object exploration in kea and New Caledonian crows. — Roy. Soc. Open. Sci. 4: 170652.

LaumerI.B.BugnyarT. & AuerspergA.M.I. (2016). Flexible decision-making relative to reward quality and tool functionality in Goffin cockatoos (Cacatua goffiniana). — Sci. Rep. 6: 28380.

LaumerI.B.BugnyarT.ReberS.A. & AuerspergA.M.I. (2017). Can hook-bending be let off the hook? Bending/unbending of pliant tools by cockatoos. — Proc. Roy. Soc. Biol. Lond. B: Biol. Sci. 284: 20171026.

LazarevaO.F. (2012). Transitive inference in nonhuman animals. — In: The Oxford handbook of comparative cognition (ZentallT.R. & WassermanE. eds). Oxford University PressOxford p. 718-735.

LazarevaO.F.SmirnovaA.A.BagozkajaM.S.ZorinaZ.A.RayevskyV.V. & WassermanE.A. (2004). Transitive responding in hooded crows requires linearly ordered stimuli. — J. Exp. Anal. Behav. 82: 1-19.

LeeW.Y.LeeS.I.ChoeJ.C. & JablonskiP.G. (2011). Wild birds recognize individual humans: experiments on magpies, Pica pica. — Anim. Cogn. 14: 817-825.

LefebvreL. (2013). Brains, innovations, tools and cultural transmission in birds, non-human primates, and fossil hominins. — Front. Hum. Neurosci. 7: 245.

LefebvreL.NicolakakisN. & BoireD. (2002). Tools and brains in birds. — Behaviour 139: 939-973.

LefebvreL.ReaderS.M. & SolD. (2004). Brains, innovations and evolution in birds and primates. — Brain Behav. Evol. 63: 233-246.

LeggE.W. & ClaytonN.S. (2014). Eurasian jays (Garrulus glandarius) conceal caches from onlookers. — Anim. Cogn. 17: 1223-1226.

LeggE.W.OstojićL. & ClaytonN.S. (2016). Caching at a distance: a cache protection strategy in Eurasian jays. — Anim. Cogn. 19: 753-758.

LiedtkeJ.WerdenichD.GajdonG.K.HuberL. & WankerR. (2010). Big brains are not enough: performance of three parrot species in the trap-tube paradigm. — Anim. Cogn. 14: 143-149.

LoepeltJ.ShawR.C. & BurnsK.C. (2016). Can you teach an old parrot new tricks? Cognitive development in wild kaka (Nestor meridionalis). — Proc. Roy. Soc. Biol. Lond. B: Biol. Sci. 283: 20153056.

LoganC.J.EmeryN.J. & ClaytonN.S. (2013a). Alternative behavioral measures of postconflict affiliation. — Behav. Ecol. 24: 98-112.

LoganC.J.OstojićL. & ClaytonN.S. (2013b). Rook, but not jackdaw, post-conflict third-party affiliation reduces aggression for aggressors. — Ethology 119: 427-435.

LoganC.J.BreenA.J.TaylorA.H.GrayR.D. & HoppittW.J.E. (2016a). How New Caledonian crows solve novel foraging problems and what it means for cumulative culture. — Learn. Behav. 44: 18-28.

LoganC.J.HarveyB.D.SchlingerB.A. & RenselM. (2016b). Western scrub-jays do not appear to attend to functionality in Aesop’s fable experiments. — PeerJ 4: e1707.

LorenzK. (2003). King Solomon’s ring. — RoutledgeNew York, NY.

LuefE.M.Ter MaatA. & PikaS. (2017). Vocal similarity in long-distance and short-distance vocalizations in raven pairs (Corvus corax) in captivity. — Behav. Proc. 142: 1-7.

LurzR.W. (2011). Mindreading animals. — Massachusetts Institute of Technology PressCambridge, MA.

MackintoshN.J.WilsonB. & BoakesR.A. (1985). Differences in mechanisms of intelligence among vertebrates. — Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 308: 53-65.

MacLeanE.L.MatthewsL.J.HareB.A.NunnC.L.AndersonR.C.AureliF.BrannonE.M.CallJ.DreaC.M.EmeryN.J.HaunD.B.M.HerrmannE.JacobsL.F.PlattM.L.RosatiA.G.SandelA.A.SchroepferK.K.SeedA.M.TanJ.Z.van SchaikC.P. & WobberV. (2012). How does cognition evolve? Phylogenetic comparative psychology. — Anim. Cogn. 15: 223-238.

MacLeanE.L.HareB.NunnC.L.AddessiE.AmiciF.AndersonR.C.AureliF.BakerJ.M.BaniaA.E.BarnardA.M.BoogertN.J.BrannonE.M.BrayE.E.BrayJ.BrentL.J.N.BurkartJ.M.CallJ.CantlonJ.F.ChekeL.G.ClaytonN.S.DelgadoM.M.DiVincentiL.J.FujitaK.HerrmannE.HiramatsuC.JacobsL.F.JordanK.E.LaudeJ.R.LeimgruberK.L.MesserE.J.E.de A. MouraA.C.OstojićL.PicardA.PlattM.L.PlotnikJ.M.RangeF.ReaderS.M.ReddyR.B.SandelA.A.SantosL.R.SchumannK.SeedA.M.SewallK.B.ShawR.C.SlocombeK.E.SuY.TakimotoA.TanJ.TaoR.van SchaikC.P.VirányiZ.VisalberghiE.WadeJ.C.WatanabeA.WidnessJ.YoungJ.K.ZentallT.R. & ZhaoY. (2014). The evolution of self-control. — Proc. Natl. Acad. Sci. USA 111: E2140-E2148.

MagatM. & BrownC. (2009). Laterality enhances cognition in Australian parrots. — Proc. Roy. Soc. Biol. Lond. B: Biol. Sci. 276: 4155-4162.

ManriqueH.M.MolinaA.C.PosadaS. & ColellM. (2017). Vertical string-pulling in green jays (Cyanocorax yncas). — Behav. Proc. 140: 74-80.

MarhounovaL.FryntaD.FuchsR. & LandovaE. (2017). Object permanence in the food-storing coal tit (Periparus ater) and the non-storing great tit (Parus major): is the mental representation required?J. Comp. Psychol. 131: 115-127.

MarshH.L.ViningA.Q.LevendoskiE.K. & JudgeP.G. (2015). Inference by exclusion in lion-tailed macaques (Macaca silenus), a hamadryas baboon (Papio hamadryas), capuchins (Sapajus apella), and squirrel monkeys (Saimiri sciureus). — J. Comp. Psychol. 129: 256-267.

Marshall-PesciniS.DaleR.Quervel-ChaumetteM. & RangeF. (2016). Critical issues in experimental studies of prosociality in non-human species. — Anim. Cogn. 19: 679-705.

Martin-OrdasG.HaunD.ColmenaresF. & CallJ. (2010). Keeping track of time: evidence for episodic-like memory in great apes. — Anim. Cogn. 13: 331-340.

MarzluffJ.M. (1988). Vocal recognition of mates by breeding pinyon jays, Gymnorhinus cyanocephalus. — Anim. Behav. 36: 296-298.

MarzluffJ.M.WallsJ.CornellH.N.WitheyJ.C. & CraigD.P. (2010). Lasting recognition of threatening people by wild American crows. — Anim. Behav. 79: 699-707.

MassenJ.J.M.PašukonisA.SchmidtJ. & BugnyarT. (2014). Ravens notice dominance reversals among conspecifics within and outside their social group. — Nature Commun. 5: 4679.

MassenJ.J.M.LambertM.SchiestlM. & BugnyarT. (2015a). Subadult ravens generally don’t transfer valuable tokens to conspecifics when there is nothing to gain for themselves. — Front. Psychol. 6: 885.

MassenJ.J.M.RitterC. & BugnyarT. (2015b). Tolerance and reward equity predict cooperation in ravens (Corvus corax). — Sci. Rep. 5.

McCormackT.HoerlC. & ButerfillS.A. (2011). Tool use and causal cognition. — Oxford University PressOxford.

McGrewW.C. (2013). Is primate tool use special? Chimpanzee and New Caledonian crow compared. — Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 368: 20120422.

McIvorG.E.LeeV.E. & ThorntonA. (2018). Testing social learning of anti-predator responses in juvenile jackdaws: The importance of accounting for levels of agitation. — Roy. Soc. Open. Sci. 5: 171571.

MedinaF.S.TaylorA.H.HuntG.R. & GrayR.D. (2011). New Caledonian crows’ responses to mirrors. — Anim. Behav. 82: 981-993.

Medina-GarciaA.JaworJ.M. & WrightT.F. (2017). Cognition, personality, and stress in budgerigars, Melopsittacus undulatus. — Behav. Ecol. 28: 1504-1516.

MelisA.P.HareB. & TomaselloM. (2006). Chimpanzees recruit the best collaborators. — Science 311: 1297-1300.

Mettke-HofmannC.WinklerH. & LeislerB. (2002). The significance of ecological factors for exploration and neophobia in parrots. — Ethology 108: 249-272.

MiklosiA.PongraczN.LakatosG.TopalJ. & CsanyiV. (2005). A comparative study of the use of visual communicative signals in interactions between dogs (Canis familiaris) and humans and cats (Felis catus) and humans. — J. Comp. Psychol. 119: 179-186.

MikolaschS.KotrschalK. & SchloeglC. (2011). African grey parrots (Psittacus erithacus) use inference by exclusion to find hidden food. — Biol. Lett. 7: 875-877.

MikolaschS.KotrschalK. & SchloeglC. (2012). Is caching the key to exclusion in corvids? The case of carrion crows (Corvus corone corone). — Anim. Cogn. 15: 73-82.

MikolaschS.KotrschalK. & SchloeglC. (2013). Transitive inference in jackdaws (Corvus monedula). — Behav. Proc. 92: 113-117.

MillerR.SchiestlM.WhitenA.SchwabC. & BugnyarT. (2014). Tolerance and social facilitation in the foraging behaviour of free-ranging crows (Corvus corone corone; C. c. cornix). — Ethology 120: 1248-1255.

MillerR.BugnyarT.PölzlK. & SchwabC. (2015). Differences in exploration behaviour in common ravens and carrion crows during development and across social context. — Behav. Ecol. Sociobiol. 69: 1209-1220.

MillerR.LoganC.J.ListerK. & ClaytonN.S. (2016a). Eurasian jays do not copy the choices of conspecifics, but they do show evidence of stimulus enhancement. — PeerJ 4: e2746.

MillerR.SchwabC. & BugnyarT. (2016b). Explorative innovators and flexible use of social information in common ravens (Corvus corax) and carrion crows (Corvus corone). — J. Comp. Psychol. 130: 328-340.

MioduszewskaB.AuerspergA.M.I. & von BayernA.M.P. (2015). Jackdaws, crows, and stones — social learning of a stone tool-use task. — In: International ethological conference. Cairns, Australia.

ModyS. & CareyS. (2016). The emergence of reasoning by the disjunctive syllogism in early childhood. — Cognition 154: 40-48.

Morales PicardA. (2016). Relationship quality and cognition in orange-winged amazons (Amazona amazonica) and blue and gold macaws (Ara ararauna). — PhD thesis University of York York.

MorinA. (2011). Self-recognition, theory-of-mind, and self-awareness: what side are you on?Laterality 16: 367-383.

MorrisonL.L. (2009). Sociality and reconciliation in monk parakeets. — University of Nebraska-LincolnLincoln, NE.

MottleyK. & HeyesC. (2003). Budgerigars (Melopsittacus undulatus) copy virtual demonstrators in a two-action test. — J. Comp. Psychol. 117: 363-370.

MüllerJ.J.A.MassenJ.J.M.BugnyarT. & OsvathM. (2017). Ravens remember the nature of a single reciprocal interaction sequence over 2 days and even after a month. — Anim. Behav. 128: 69-78.

NawrothC.von BorellE. & LangbeinJ. (2014). Exclusion performance in dwarf goats (Capra aegagrus hircus) and sheep (Ovis orientalis aries). — PLoS ONE 9: e93534.

NeilandsP.D.JelbertS.A.BreenA.J.SchiestlM. & TaylorA.H. (2016). How insightful is ‘insight’? New Caledonian crows do not attend to object weight during spontaneous stone dropping. — PLoS ONE 11: e0167419.

NoëR. (2006). Cooperation experiments: coordination through communication versus acting apart together. — Anim. Behav. 71: 1-18.

ObozovaT.SmirnovaA.ZorinaZ. & WassermanE. (2015). Analogical reasoning in amazons. — Anim. Cogn. 18: 1363-1371.

O’HaraM. & AuerspergA.M.I. (2017). Object play in parrots and corvids. — Curr. Opin. Behav. Sci. 16: 119-125.

O’HaraM.HuberL. & GajdonG.K. (2015a). The advantage of objects over images in discrimination and reversal learning by kea, Nestor notabilis. — Anim. Behav. 101: 51-60.

O’HaraM.AuerspergA.M.I.BugnyarT. & HuberL. (2015b). Inference by exclusion in Goffin cockatoos (Cacatua goffini). — PLoS ONE 10: e0134894.

O’HaraM.SchwingR.FederspielI.GajdonG.K. & HuberL. (2016). Reasoning by exclusion in the kea (Nestor notabilis). — Anim. Cogn. 19: 965-975.

O’HaraM.MioduszewskaB.HaryokoT.PrawiradilagaD.M.HuberL. & AuerspergA.M.I. (2019). Extraction without tooling around — The first comprehensive description of the foraging- and socio-ecology of wild Goffin’s cockatoos (Cacatua goffiniana). — Behaviour 156: BEH 3523.

OlkowiczS.KocourekM.LučanR.K.PortešM.FitchW.T.Herculano-HouzelS. & NěmecP. (2016). Birds have primate-like numbers of neurons in the forebrain. — Proc. Natl. Acad. Sci. USA 113: 7255-7260.

OstojićL.ShawR.C.ChekeL.G. & ClaytonN.S. (2013). Evidence suggesting that desire-state attribution may govern food sharing in Eurasian jays. — Proc. Natl. Acad. Sci. USA 110: 4123-4128.

OstojićL.LeggE.W.ShawR.C.ChekeL.G.MendlM. & ClaytonN.S. (2014). Can male Eurasian jays disengage from their own current desire to feed the female what she wants?Biol. Lett. 10: 20140042.

Osuna-MascaróA.J. & AuerspergA.M.I. (2018). On the brink of tool use? Could object combinations during foraging in a feral Goffin’s cockatoo (Cacatua goffiniana) result in tool innovations?Anim. Behav. Cogn. 5: 229-234.

OsvathM. & OsvathH. (2008). Chimpanzee (Pan troglodytes) and orangutan (Pongo abelii) forethought: self-control and pre-experience in the face of future tool use. — Anim. Cogn. 11: 661-674.

OsvathM.KabadayiC. & JacobsI. (2014). Independent evolution of similar complex cognitive skills: the importance of embodied degrees of freedom. — Behav. Cogn. 1: 249-264.

PalagiE. & CordoniG. (2009). Postconflict third-party affiliation in Canis lupus: do wolves share similarities with the great apes?Anim. Behav. 78: 979-986.

ParkerS.T. & McKinneyM.L. (1999). Origins of intelligence: the evolution of cognitive development in monkeys apes and humans. — John Hopkins University PressLondon.

Paz-y-MinoG.BondA.B.KamilA.C. & BaldaR.P. (2004). Pinyon jays use transitive inference to predict social dominance. — Nature 430: 778-781.

PennD.C.HolyoakK.J. & PovinelliD.J. (2008). Darwin’s mistake: explaining the discontinuity between human and nonhuman minds. — Behav. Brain. Sci. 31: 109-130; discussion 130-178.

PepperbergI.M. (1987). Acquisition of the same/different concept by an African grey parrot (Psittacus erithacus): learning with respect to categories of color, shape, and material. — Anim. Learn. Behav. 15: 423-432.

PepperbergI.M. (1999). The Alex studies. — Harvard University PressCambridge, MA.

PepperbergI.M. (2004). “Insightful” string-pulling in grey parrots (Psittacus erithacus) is affected by vocal competence. — Anim. Cogn. 7: 263-266.

PepperbergI.M. (2006). Ordinality and inferential abilities of a grey parrot (Psittacus erithacus). — J. Comp. Psychol. 120: 205-216.

PepperbergI.M. (2012). Further evidence for addition and numerical competence by a grey parrot (Psittacus erithacus). — Anim. Cogn. 15: 711-717.

PepperbergI.M. & CareyS. (2012). Grey parrot number acquisition: the inference of cardinal value from ordinal position on the numeral list. — Cognition 125: 219-232.

PepperbergI.M. & FunkM. (1990). Object permanence in four species of psittacine birds: an African grey parrot (Psittacus erithacus), an illiger mini macaw (Ara maracana), a parakeet (Melopsittacus undulatus), and a cockatiel (Nymphicus hollandicus). — Learn. Behav. 18: 97-108.

PepperbergI.M. & KozakF.A. (1986). Object permanence in the African grey parrot (Psittacus erithacus). — Anim. Learn. Behav. 14: 322-330.

PepperbergI.M.GarciaS.E.JacksonE.C. & MarconiS. (1995). Mirror use by African grey parrots (Psittacus erithacus). — J. Comp. Psychol. 109: 182-195.

PepperbergI.M.WillnerM.R. & GravitzL.B. (1997). Development of Piagetian object permanence in a grey parrot (Psittacus erithacus). — J. Comp. Psychol. 111: 63-75.

PepperbergI.M.SandeferR.M. & NoelD.A. (2000). Vocal learning in the grey parrot (Psittacus erithacus): effects of species identity and number of trainers. — J. Comp. Psychol. 114: 371-380.

PepperbergI.M.KoepkeA.LivingstonP.GirardM. & HartsfieldL.A. (2013). Reasoning by inference: further studies on exclusion in grey parrots (Psittacus erithacus). — J. Comp. Psychol. 127: 272-281.

PéronF.Rat-FischerL.NagleL. & BovetD. (2010). ‘Unwilling’ versus ‘unable’: do grey parrots understand human intentional actions?Interact. Stud. 11: 428-441.

PéronF.Rat-FischerL.LalotM.NagleL. & BovetD. (2011a). Cooperative problem solving in African grey parrots (Psittacus erithacus). — Anim. Cogn. 14: 545-553.

PéronF.ChardardC.NagleL. & BovetD. (2011b). Do African grey parrots (Psittacus erithacus) know what a human experimenter does and does not see?Behav. Proc. 87: 237-240.

PéronF.JohnM.SapowiczS.BovetD. & PepperbergI.M. (2013). A study of sharing and reciprocity in grey parrots (Psittacus erithacus). — Anim. Cogn. 16: 197-210.

PiagetJ. (1954). The construction of reality in the child. — Basic BooksNew York, NY.

PlotnikJ.M.de WaalF.B.M. & ReissD. (2006). Self-recognition in an Asian elephant. — Proc. Natl. Acad. Sci. USA 103: 17053-17057.

PlotnikJ.M.ShawR.C.BrubakerD.L.TillerL.N. & ClaytonN.S. (2014). Thinking with their trunks: elephants use smell but not sound to locate food and exclude nonrewarding alternatives. — Anim. Behav. 88: 91-98.

PollokB.PriorH. & GüntürkünO. (2000). Development of object permanence in food-storing magpies (Pica pica). — J. Comp. Psychol. 114: 148-157.

PovinelliD. & PennD. (2011). Through a floppy tool darkly. — In: Tool use and causal cognition (McCormackT.HoerlC. & ButerfillS.A. eds). Oxford University PressOxford p. 69-87.

PovinelliD.J. & VonkJ. (2003). Chimpanzee minds: suspiciously human?Trends Cogn. Sci. 7: 157-160.

PremackD. & PremackA.J. (1994). Levels of causal understanding in chimpanzees and children. — Cognition 50: 347-362.

PriorH.SchwarzA. & GüntürkünO. (2008). Mirror-induced behavior in the magpie (Pica pica): evidence of self-recognition. — PLoS Biol. 6: e202.

PrumR.O.BervJ.S.DornburgA.FieldD.J.TownsendJ.P.LemmonE.M. & LemmonA.R. (2015). A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. — Nature 526: 569-573.

Quervel-ChaumetteM.DaleR.Marshall-PesciniS. & RangeF. (2015). Familiarity affects other-regarding preferences in pet dogs. — Sci. Rep. 5: 18102.

RabyC.R.AlexisD.M.DickinsonA. & ClaytonN.S. (2007). Planning for the future by western scrub-jays. — Nature 445: 919-921.

RahdeT. (2014). Stufen der mentalen repräsentation bei keas (Nestor notabilis). — Freie Universität BerlinBerlin.

RamseyerA.PeléM.DufourV.ChauvinC. & ThierryB. (2006). Accepting loss: the temporal limits of reciprocity in brown capuchin monkeys. — Proc. Roy. Soc. Biol. Lond. B: Biol. Sci. 273: 179-184.

RangeF.BugnyarT.SchlöglC. & KotrschalK. (2006). Individual and sex differences in learning abilities of ravens. — Behav. Proc. 73: 100-106.

RangeF.BugnyarT. & KotrschalK. (2008). The performance of ravens on simple discrimination tasks: a preliminary study. — Acta Ethologica 11: 34-41.

RangeF.MöslingerH. & VirányiZ. (2012). Domestication has not affected the understanding of means-end connections in dogs. — Anim. Cogn. 15: 597-607.

ReissD. & MarinoL. (2001). Mirror self-recognition in the bottlenose dolphin: a case of cognitive convergence. — Proc. Natl. Acad. Sci. USA 98: 5937-5942.

RheindtF.E.ChristidisL.KuhnS.de KloetS.NormanJ.A. & FidlerA. (2014). The timing of diversification within the most divergent parrot clade. — J. Avian. Biol. 45: 140-148.

RosatiA.G. & HareB. (2009). Looking past the model species: diversity in gaze-following skills across primates. — Current Opin. Neurobiol. 19: 45-51.

RøskaftE. & EspmarkY. (1984). Sibling recognition in the rook (Corvus frugilegus). — Behav. Proc. 9: 223-230.

RutzC.KlumpB.C.KomarczykL.LeightonR.KramerJ.WischnewskiS.SugasawaS.MorrisseyM.B.JamesR.St ClairJ.J.H.SwitzerR.A. & MasudaB.M. (2016a). Discovery of species-wide tool use in the Hawaiian crow. — Nature 537: 403.

RutzC.SugasawaS.van der WalJ.E.M.KlumpB.C. & St ClairJ.J.H. (2016b). Tool bending in New Caledonian crows. — Royal. Soc. Open. Sci. 3.

SabbatiniG.TruppaV.HribarA.GambettaB.CallJ. & VisalberghiE. (2012). Understanding the functional properties of tools: chimpanzees (Pan troglodytes) and capuchin monkeys (Cebus apella) attend to tool features differently. — Anim. Cogn. 15: 577-590.

SanzC.M.CallJ. & BoeschC. (2013). Tool use in animals: cognition and ecology. — Cambridge University PressCambridge.

SaundersD.A. (1983). Vocal repertoire and individual vocal recognition in the short-billed white-tailed black cokcatoo, Calyptorhynchus funereus latirostris carnaby. — Wildl. Res. 10: 527-536.

ScarlJ.C. & BradburyJ.W. (2009). Rapid vocal convergence in an Australian cockatoo, the galah Eolophus roseicapillus. — Anim. Behav. 77: 1019-1026.

ScheidC. & NoëR. (2010). The performance of rooks in a cooperative task depends on their temperament. — Anim. Cogn. 13: 545-553.

ScheidC.SchmidtJ. & NoeR. (2008). Distinct patterns of food offering and co-feeding in rooks. — Anim. Behav. 76: 1701-1707.

SchloeglC. (2011). What you see is what you get–reloaded: can jackdaws (Corvus monedula) find hidden food through exclusion?J. Comp. Psychol. 125: 162-174.

SchloeglC. & FischerJ. (2017). Causal reasoning in nonhuman animals. — In: The Oxford handbook of causal reasoning (WaldmannM.R. ed.). Oxford University PressOxford p. 699-714.

SchloeglC.KotrschalK. & BugnyarT. (2008a). Do common ravens (Corvus corax) rely on human or conspecific gaze cues to detect hidden food?