A resident-nepotistic-tolerant dominance style in wild white-nosed coatis (Nasua narica)?

in Behaviour
No Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Abstract

Dominance relationships imply consistent asymmetries in social relationships. Socioecological models predict that resource distribution determines the mode of competition that animals will face and, ultimately, the nature of their social relationships. Here, we provide the first systematic investigation of dominance style in white-nosed coatis (Nasua narica). Coatis live in cohesive female-resident groups, and have a diet based on clumped (fruits) and dispersed (insects) food items, which are predicted to favour despotic and egalitarian social styles, respectively. Our results revealed moderate linearity and steepness in dominance relationships over time, with variations attributed to stages of reproductive season, rather than presumed variations in food resources. Primary social bonds and coalitions were found to mediate dominance rank. Overall, our results suggest some similarities between coatis and despotic-tolerant primate species, at least under particular ecological circumstances, and we discuss their potential for affording a deeper understanding on the sources of variation in mammal social systems.

A resident-nepotistic-tolerant dominance style in wild white-nosed coatis (Nasua narica)?

in Behaviour

Sections

References

  • AltmannJ. (1974). Observational study of behavior: sampling methods. — Behaviour 49: 227-267. DOI:10.1163/156853974X00534.

  • Alves-CostaC.P.da FonsecaG.A.B. & ChristófaroC. (2004). Variation in the diet of the brown-nosed coati (Nasua nasua) in southeastern Brazil. — J. Mamm. 85: 478-482. DOI:10.1644/1545-1542(2004)085<0478:VITDOT>2.0.CO;2.

  • AureliF. & de WaalF.B.M. (eds) (2000). Natural conflict resolution. — University of California PressBerkeley, CA.

  • AureliF. & SchaffnerC.M. (2007). Aggression and conflict management at fusion in spider monkeys. — Biol. Lett. 3: 147-149. DOI:10.1098/rsbl.2007.0041.

  • AureliF.CordsM. & van SchaikC.P. (2002). Conflict resolution following aggression in gregarious animals: a predictive framework. — Anim. Behav. 64: 325-343. DOI:10.1006/anbe.2002.3071.

  • Balaguera-ReinaS.A.CepedaA.Zárrate-CharryD. & González-MayaJ.F. (2009). The state of knowledge of western mountain coati Nasuella olivacea in Colombia, and extent of occurrence in the northern Andes. — Small Carniv. Conserv. 41: 35-40. Available online at http://www.smallcarnivoreconservation.org/issue-41.html.

  • BalasubramaniamK.N.DittmarK.BermanC.M.ButovskayaM.CooperM.A.MajoloB.OgawaH.SchinoG.ThierryB. & de WaalF.B.M. (2012). Hierarchical steepness, counter-aggression, and macaque social style scale. — Am. J. Primatol. 74: 915-925. DOI:10.1002/ajp.22044.

  • Booth-BinczikS.D. (2001). Ecology of coati social behavior in Tikal National Park Guatemala. — PhD Dissertation University of Florida. Available online at http://www.carnivoreconservation.org/files/thesis/booth_binczik_2001_phd.pdf.

  • BroomM.KoeningA. & BorriesC. (2009). Variation in dominance hierarchies among group-living animals: modeling stability and the likelihood of coalitions. — Behav. Ecol. 20: 844-855. DOI:10.1093/beheco/arp069.

  • ButovskayaM. (1993). Kinship and different dominance styles in groups of three species of the genus Macaca (M. arctoides, M. mulatta, M. fascicularis). — Fol. Primatol. 60: 210-224. DOI:10.1159/000156694.

  • CarmerS.G. & SwansonM.R. (1973). An evaluation of ten pairwise multiple comparison procedures by Monte Carlo methods. — J. Am. Stat. Ass. 68: 66-74. DOI:10.2307/2284140.

  • CastlesD.L.AureliF. & de WaalF.B.M. (1996). Variation in conciliatory tendency and relationship quality across groups of pigtail macaques. — Anim. Behav. 52: 389-403. DOI:10.1006/anbe.1996.0183.

  • ChapaisB. (2004). How kinship generates dominance structures in macaques: a compara-tive perspective. — In: Macaque societies: a model for the study of social organization (ThierryB.SinghM. & KaumannsW. eds). Cambridge University PressCambridge p. 186-203.

  • Clutton-BrockT. (2009). Structure and function in mammalian societies. — Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 364: 3229-3242. DOI:10.1098/rstb.2009.0120.

  • Clutton-BrockT. & HuchardE. (2013a). Social competition and selection in males and females. — Philos. Trans. R. Soc. Lond. B Biol. Sci. 368. DOI:10.1098/rstb.2013.0074.

  • Clutton-BrockT. & HuchardE. (2013b). Social competition and its consequences in female mammals. — J. Zool. 289: 151-171. DOI:10.1111/jzo.12023.

  • Clutton-BrockT. & JansonC. (2012). Primate socioecology at the crossroads: past, present, and future. — Evol. Anthropol. 21: 136-150. DOI:10.1002/evan.21316.

  • Clutton-BrockT.H. & HarveyP.H. (1976). Evolutionary rules and primate societies. — In: Growing points in ethology (BatesonP.P.G. & HindeR.A. eds). Cambridge University PressCambridge p. 195-237.

  • CohenJ.CohenP.WestS. & AikenL. (2003). Applied multiple regression/correlation analysis for the behavioral sciences3rd edn.Lawrence Erlbaum AssociatesUpper Saddle River, NJ.

  • CONANP (2008). Anteproyecto programa de manejo Parque Nacional El Tepozteco México. — Available online at http://www.conanp.gob.mx/anp/consulta/Anteproyecto16may08.pdf.

  • CurleyJ.P. (2016). Compete: analyzing social hierarchies. — R package version 0.1.

  • de la OC. & Mondragón-CeballosR. (2014). Resolución de conflictos sociales en primates: 35 años de investigación. — Act. Zool. Mex. 30: 662-687. Available online at http://www.scielo.org.mx/pdf/azm/v30n3/v30n3a15.pdf.

  • de-la-Rosa-AranaJ.L.Muñoz-GarcíaC.I.Godínez-GarcíaV.H.Villanueva-GarcíaC.Gama-CampilloL.M.Almanza-GonzálezA. & Rendón-FrancoE. (2016). Serological survey of anti-Salmonella antibodies in coatis (Nasua narica) and raccoons (Procyon lotor) in southeast Mexico. — Arch. Med. Vet. 48: 283-288. Available online at http://www.redalyc.org/articulo.oa?id=173047612005.

  • de VriesH. (1995). An improved test of linearity in dominance hierarchies containing unknown or tied relationships. — Anim. Behav. 50: 1375-1389. DOI:10.1016/0003-3472(95)80053-0.

  • de VriesH.StevensJ.M.G. & VervaeckeH. (2006). Measuring and testing the steepness of dominance hierarchies. — Anim. Behav. 71: 585-592. DOI:10.1016/j.anbehav.2005.05.015.

  • de WaalF.B.M. (1982). Chimpanzee politics: power and sex among apes. — The Johns Hopkins University PressBaltimore, MD.

  • de WaalF.B.M. (1986). The integration of dominance and social bonding in primates. — Q. Rev. Biol. 61: 459-479. DOI:10.1086/415144.

  • Di FioreA. & RendallD. (1994). Evolution of social organization: a reappraisal for primates by using phylogenetic methods. — Proc. Natl. Acad. Sci. USA 91: 9941-9945. http://www.pnas.org/content/91/21/9941.abstract.

  • DietzE.J. (1983). Permutation tests for association between two distance matrices. — Syst. Zool. 32: 21-26. DOI:10.1093/sysbio/32.1.21.

  • DrewsC. (1993). The concept and definition of dominance in animal behaviour. — Behaviour 125: 283-313. DOI:10.1163/156853993X00290.

  • DuboscqJ.MichelettaJ.AgilM.HodgesK.ThierryB. & EngelhardtA. (2013). Social tolerance in wild female crested macaques (Macaca nigra) in Tangkoko-Batuangus Nature Reserve, Sulawesi, Indonesia. — Am. J. Primatol. 75: 361-375. DOI:10.1002/ajp.22114.

  • DunnP.K. & SmythG.K. (2005). Series evaluation of Tweedie exponential dispersion model densities. — Stat. Comput. 15: 267-280. DOI:10.1007/s11222-005-4070-y.

  • FediganL.M. (1992). Primate paradigms: sex roles and social bonds. — University of Chicago PressChicago, IL.

  • FerreiraG.A.Nakano-OliveiraE.GenaroG. & Lacerda-ChavesA.K. (2013). Diet of the coati Nasua nasua (Carnivora: Procyonidae) in an area of woodland inserted in an urban environment in Brazil. — Rev. Chil. Hist. Nat. 86: 95-102. DOI:10.4067/S0716-078X2013000100008.

  • FrankL.G. (1986). Social organization of the spotted hyaena Crocuta crocuta. II. Dominance and reproduction. — Anim. Behav. 34: 1510-1527. DOI:10.1016/S0003-3472(86)80221-4.

  • FreckletonR.P. (2011). Dealing with collinearity in behavioural and ecological data: model averaging and the problems of measurement error. — Behav. Ecol. Sociobiol. 65: 91-101. DOI:10.1007/s00265-010-1045-6.

  • GompperM.E. (1995). Nasua narica. — Mammal. Species 487: 1-10. DOI:10.2307/3504195.

  • GompperM.E. (1996). Sociality and asociality in white-nosed coatis (Nasua narica): foraging costs and benefits. — Behav. Ecol. 7: 254-263. DOI:10.1093/beheco/7.3.254.

  • GompperM.E. & DeckerD.M. (1998). Nasua nasua. — Mammal. Species 580: 1-9. DOI:10.2307/3504444.

  • GompperM.E. & KrinsleyJ.S. (1992). Variation in social behavior of adult male coatis (Nasua narica) in Panama. — Biotropica 24: 216-219. DOI:10.2307/2388677.

  • GompperM.E.GittlemanJ.L. & WayneR.K. (1997). Genetic relatedness, coalitions and social behaviour of white-nosed coatis, Nasua narica. — Anim. Behav. 53: 781-797. DOI:10.1006/anbe.1996.0344.

  • GustD.A. & GordonT.P. (1991). Female rank instability in newly formed groups of familiar sooty mangabeys (Cercocebus torquatus atys). — Primates 32: 465-471. DOI:10.1007/BF02381937.

  • HabigB. & ArchieE.A. (2015). Social status, immune response and parasitism in males: a meta-analysis. — Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 370: 20140109. DOI:10.1098/rstb.2014.0109.

  • HamiltonW.D. (1963). The evolution of altruistic behavior. — Am. Nat. 97: 354-356. DOI:10.1086/497114.

  • HandJ.L. (1986). Resolution of social conflicts: dominance, egalitarianism, spheres of dominance, and game theory. — Q. Rev. Biol. 61: 201-220. DOI:10.1086/414899.

  • HardinJ.W. & HilbeJ.M. (2013). Generalized estimating equations2nd edn.CRC PressBoca Raton, FL.

  • HarveyP.H.MartinR.D. & Clutton-BrockT.H. (1987). Life histories in comparative perspective. — In: Primate societies (SmutsB.B.CheneyD.L.SeyfarthR.M.WranghamR.W. & StruhsakerT.T. eds). University of Chicago PressChicago, IL p. 181-196.

  • HassC.C. & ValenzuelaD. (2002). Anti-predator benefits of group living in white-nosed coatis (Nasua narica). — Behav. Ecol. Sociobiol. 51: 570-578. DOI:10.1007/s00265-002-0463-5.

  • HausfaterG. (1975). Dominance and reproduction in Baboons (Papio cynocephalus). A quantitative analysis. — In: Contributions to primatology Vol. 7. KargerBasel p. 2-150.

  • HemelrijkC.K. (1990). Models of, and tests for, reciprocity, unidirectionality and other social interaction patterns at a group level. — Anim. Behav. 39: 1013-1029. DOI:10.1016/S0003-3472(05)80775-4.

  • HenziS.P. & BarrettL. (1999). The value of grooming to female primates. — Primates 40: 47-59. DOI:10.1007/BF02557701.

  • HindeR. (1976). Interactions, relationships, and social structure. — Man 11: 1-17. DOI:10.2307/2800384.

  • HirschB.T. (2007). Spoiled brats: is extreme juvenile agonism in ring-tailed coatis (Nasua nasua) dominance or tolerated aggression?Ethology 113: 446-456. DOI:10.1111/j.1439-0310.2007.01348.x.

  • HirschB.T. (2009). Seasonal variation in the diet of ring-tailed coatis (Nasua nasua) in Iguazu, Argentina. — J. Mammal. 90: 136-143. DOI:10.1644/08-MAMM-A-050.1.

  • HirschB.T. (2011). Long-term adult male sociality in ring-tailed coatis (Nasua nasua). — Mammalia 75: 301-304. DOI:10.1515/mamm.2011.030.

  • HirschB.T. & GompperM.E. (2017). Causes and consequences of coati sociality. — In: Biology and conservation of musteloids (MacdonaldD.W.NewmanC. & HarringtonL.A. eds). Oxford University PressOxford p. 515-526. DOI:10.1093/oso/9780198759805.003.0028.

  • HirschB.T. & MaldonadoJ.E. (2011). Familiarity breeds progeny: sociality increases reproductive success in adult male ring-tailed coatis (Nasua nasua). — Mol. Ecol. 20: 409-419. DOI:10.1111/j.1365-294X.2010.04940.x.

  • HirschB.T.StantonM.A. & MaldonadoJ.E. (2012). Kinship shapes affiliative social networks but not aggression in ring-tailed coatis. — PloS One 7: e37301. DOI:10.1371/journal.pone.0037301.

  • HobsonE.A. & DeDeoS. (2015). Social feedback and the emergence of rank in animal society. — PloS Comput. Biol. 11: e1004411. DOI:10.1371/journal.pcbi.1004411.

  • HolekampK.E. & SmaleL. (1991). Dominance acquisition during mammalian social development: the “inheritance” of maternal rank. — Am. Zool. 31: 306-317. DOI:10.1093/icb/31.2.306.

  • InglesL.G. (1957). Observations on behavior of the coatimundi. — J. Mammal. 38: 263-264. DOI:10.2307/1376326.

  • IsbellL.A. (1991). Contest and scramble competition: patterns of female aggression and ranging behavior among primates. — Behav. Ecol. 2: 143-155. DOI:10.1093/beheco/2.2.143.

  • IsbellL.A. & YoungT.P. (2002). Ecological models of female social relationships in primates: similarities, disparities, and some directions for future clarity. — Behaviour 139: 177-202. DOI:10.1163/156853902760102645.

  • JansonC.H. (2000). Primate socio-ecology: the end of a golden age. — Evol. Anthropol. 9: 73-86. DOI:10.1002/(SICI)1520-6505(2000)9:2<73::AID-EVAN2>3.0.CO;2-X.

  • JohnsonD.D.KaysR.BlackwellP.G. & MacdonaldD.W. (2002). Does the resource dispersion hypothesis explain group living?TRENDS Ecol. Evol. 117: 563-570. DOI:10.1016/S0169-5347(02)02619-8.

  • JonesJ.H. (2011). Primates and the evolution of long, slow life histories. — Curr. Biol. 21: R708-R717. DOI:10.1016/j.cub.2011.08.025.

  • KappelerP.M. (1993). Female dominance in primates and other mammals. — In: Perspectives in ethology Vol. 10: Behavior and evolution (BatesonP.P.G.KlopferP.H. & ThompsonN.S. eds). Plenum PressNew York p. 143-158.

  • KaufmannJ.H. (1962). Ecology and social behavior of the coati Nasua narica on Barro Colorado Island Panama. — University of California PressBerkeley, CA.

  • KawamuraS. (1958). The matriarchal social order in the Minoo-B group. — Primates 1: 149-156. DOI:10.1007/BF01813701.

  • KingA.J.DouglasC.M.HuchardE.IsaacN.J. & CowlishawG. (2008). Dominance and affiliation mediate despotism in a social primate. — Curr. Biol. 18: 1833-1838. DOI:10.1016/j.cub.2008.10.048.

  • KlassK. & CordsM. (2011). Effect of unknown relationships on linearity, steepness and rank ordering of dominance hierarchies: simulation studies based on data from wild monkeys. — Behav. Process. 88: 168-176.

  • KlassK. & CordsM. (2015). Agonism and dominance in female blue monkeys. — Am. J. Primatol. 77: 1299-1315. DOI:10.1002/ajp.22481.

  • KoenigA. & BorriesC. (2009). The lost dream of ecological determinism: time to say goodbye? or a white queen’s proposal?Evol. Anthropol. 18: 166-174. DOI:10.1002/evan.20225.

  • KummerH. (1978). On the value of social relationships to nonhuman primates: a heuristic scheme. — Soc. Sc. Inform. 17: 687-705. DOI:10.1177/053901847801700418.

  • KutsukakeN. & Clutton-BrockT.H. (2008). Do meerkats engage in conflict management following aggression? Reconciliation, submission and avoidance. — Anim. Behav. 75: 1441-1453. DOI:10.1016/j.anbehav.2007.09.018.

  • LeaA.J.LearnN.H.TheusM.J.AltmannJ. & AlbertsS.C. (2014). Complex sources of variance in female dominance rank in a nepotistic society. — Anim. Behav. 94: 87-99. DOI:10.1016/j.anbehav.2014.05.019.

  • LeivaD. & de VriesH. (2014). Steepness: testing steepness of dominance hierarchies. — R package version 0.2-2. R Foundation for Statistical Computing Vienna.

  • LiangK.Y. & ZegerS.L. (1986). Longitudinal data analysis using generalized linear models. — Biometrika 73: 13-22. DOI:10.2307/2336267.

  • LittellR.C.PendergastJ. & NatarajanR. (2000). Tutorial in biostatistics: modelling covariance structure in the analysis of repeated measures data. — Stat. Med. 19: 1793-1819. DOI:10.1002/1097-0258(20000715)19:13<1793::AID-SIM482>3.0.CO;2-Q.

  • MacLennanR.N. (1993). Interrater reliability with SPSS for Windows 5.0. — Am. Stat. 47: 292-296. Available online at http://www.tandfonline.com/doi/abs/10.1080/00031305.1993.10476000.

  • MárquezJ. (2003). Ecological patterns in necrophilous Staphylinidae (Insecta: Coleoptera) from Tlayacapan, Morelos, México. — Act. Zool. Mex. 89: 69-83. Available online at http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0065-17372003000200006.

  • MatsumuraS. (1999). The evolution of “egalitarian” and “despotic” social systems among macaques. — Primates 40: 23-31. DOI:10.1007/BF02557699.

  • McCowanB.AndersonK.HeagartyA. & CameronA. (2008). Utility of social network analysis for primate behavioral management and well-being. — Appl. Anim. Behav. Sci. 109: 396-405. DOI:10.1016/j.applanim.2007.02.009.

  • McToldridgeE.R. (1969). Notes on breeding ring-tailed coatis: Nasua nasua: at Santa Barbara Zoo. — Int. Zool. Yearb. 9: 89-90. DOI:10.1111/j.1748-1090.1969.tb02633.x.

  • MundryR. (2011). Issues in information theory-based statistical inference — a commentary from a frequentist’s perspective. — Behav. Ecol. Sociobiol. 65: 57-68. DOI:10.1007/s00265-010-1040-y.

  • OstnerJ. & SchülkeO. (2012). Ecological and social influences on sociality. — In: The evolution of primate societies (MitaniJ.C.CallJ.KappelerP.M.PalombitR.A. & SilkJ.B. eds). University of Chicago PressUSA p. 195-219.

  • PellegriniA.D. (2008). The roles of aggressive and affiliative behaviors in resource control: a behavioral ecological perspective. — Dev. Rev. 28: 461-487. DOI:10.1016/j.dr.2008.03.001.

  • PereiraM.E. & KappelerP.M. (1997). Divergent systems of agonistic behaviour in lemurid primates. — Behaviour 134: 225-274. DOI:10.1163/156853997X00467.

  • Piedra-MalagónE.M.Ramírez RodríguezR. & Ibarra-ManríquezG. (2006). El género Ficus (Moraceae) en el estado de Morelos, México. — Acta Bot. Mex. 75: 45-75. Available online at http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-71512006000200003.

  • PreuschoftS. & van SchaikC.P. (2000). Dominance and communication. — In: Natural conflict resolution (AureliF. & de WaalF.B.M. eds). University of California PressBerkeley, CA p. 77-105.

  • PuseyA.E. & PackerC. (1997). The ecology of relationships. — In: Behavioural ecology. An evolutionary approach4th edn. (KrebsJ.R. & DaviesN.B. eds). BlackwellSingapore p. 254-283.

  • R Development Core Team (2013). R: a language and environment for statistical computing. — R Foundation for Statistical ComputingVienna.

  • RedfordK.H. & DoreaJ.G. (1984). The nutritional value of invertebrates with emphasis on ants and termites as food for mammals. — J. Zool. 203: 385-395. DOI:10.1111/j.1469-7998.1984.tb02339.x.

  • Rodríguez-BolañosA.CadenaA. & SánchezP. (2000). Trophic characteristics in social groups of the mountain coati, Nasuella olivacea (Carnivora: Procyonidae). — Small Carniv. Conserv. 29: 1-6. Available online at http://www.smallcarnivoreconservation.org/older-issues-volumes-19-25-.html.

  • RomeroT. & AureliF. (2007). Spatial association and social behaviour in zoo-living female ring-tailed coatis (Nasua nasua). — Behaviour 144: 179-193. DOI:10.1163/156853907779947355.

  • RomeroT. & AureliF. (2008). Reciprocity of support in coatis (Nasua nasua). — J. Comp. Psychol. 122: 19-25. DOI:10.1037/0735-7036.122.1.19.

  • RossC. (1998). Primate life histories. — Evol. Anthropol. 6: 54-63. DOI:10.1002/(SICI)1520-6505(1998)6:2<54::AID-EVAN3>3.0.CO;2-W.

  • RussellJ. (1983). Altruism in coati bands: nepotism or reciprocity. — In: Social behavior of female vertebrates (WasserS.K. ed.). Academic PressSan Diego, CA p. 263-290.

  • SapolskyR.M. (2005). The influence of social hierarchy on primate health. — Science 308: 648-652. DOI:10.1126/science.1106477.

  • SazimaI. (2010). What coatis and mongooses have in common?Biota Neotrop. 10: 457-461. DOI:10.1590/S1676-06032010000300040.

  • SEMARNAT (2003). NORMA OFICIAL MEXICANA NOM-126-SEMARNAT-(2000). Available online at http://www.profepa.gob.mx/innovaportal/file/3358/1/nom-126-semarnat-(2000).pdf.

  • ShizukaD. & McDonaldD.B. (2012). A social network perspective on measurements of dominance hierarchies. — Anim. Behav. 83: 925-934. DOI:10.1016/j.anbehav.2012.01.011.

  • ShizukaD. & McDonaldD.B. (2015). The network motif architecture of dominance hierarchies. — J. Roy. Soc. Interface 12: 20150080. DOI:10.1098/rsif.2015.0080.

  • SilkJ.B.SeyfarthR.M. & CheneyD.L. (1999). The structure of social relationships among female savanna baboons in Moremi Reserve, Botswana. — Behaviour 136: 679-703. DOI:10.1163/156853999501522.

  • SmithH.J. (1977). Social behaviour of the coati (Nasua narica) in captivity. — PhD Dissertation University of Arizona. Available online at http://arizona.openrepository.com/arizona/handle/10150/289681.

  • SmithJ.E.MemenisS.K. & HolekampK.E. (2007). Rank-related partner choice in the fission–fusion society of the spotted hyena (Crocuta crocuta). — Behav. Ecol. Sociobiol. 61: 753-765. DOI:10.1007/s00265-006-0305-y.

  • SmithJ.E.Van HornR.C.PowningK.S.ColeA.R.GrahamK.E.MemenisS.K. & HolekampK.E. (2010). Evolutionary forces favoring intragroup coalitions among spotted hyenas and other animals. — Behav. Ecol. 21: 284-303. DOI:10.1093/beheco/arp181.

  • SmytheN. (1970). The adaptive value of the social organization of the coati (Nasua narica). — J. Mammal. 51: 818-820. DOI:10.2307/1378318.

  • SpeakmanJ.R. (2008). The physiological costs of reproduction in small mammals. — Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 363: 375-398. DOI:10.1098/rstb.2007.2145.

  • SterckE.H. & SteenbeekR. (1997). Female dominance relationships and food competition in the sympatric Thomas langur and long-tailed macaque. — Behaviour 134: 749-774. DOI:10.1163/156853997X00052.

  • SterckE.H.WattsD.P. & van SchaikC.P. (1997). The evolution of female social relationships in nonhuman primates. — Behav. Ecol. Sociobiol. 41: 291-309. DOI:10.1007/s002650050390.

  • ThierryB. (2000). Covariation of conflict management patterns across macaque species. — In: Natural conflict resolution (AureliF. & de WaalF.B.M. eds). University of California PressBerkeley, CA p. 106-128.

  • ThierryB. (2008). Primate socioecology, the lost dream of ecological determinism. — Evol. Anthropol. 17: 93-96. DOI:10.1002/evan.20168.

  • Toledo-HernándezV.H.RifkindJ.Corona-LópezA.M.Flores-PalaciosA. & Leavengood JrJ.M. (2015). Faunistic Composition of Cleridae (Coleoptera) in El Limón de Cuauchichinola, Morelos, Mexico. — Ann. Entomol. Soc. Am. 108: 771-776. DOI:10.1093/aesa/sav039.

  • ValenzuelaD. (1998). Natural history of the white-nosed coati, Nasua narica, in a tropical dry forest of western Mexico. — Rev. Mex. Mastozool. 3: 26-44. Retrieved from http://revistamexicanademastozoologia.com.mx/ojs/index.php/rmm/article/view/59.

  • ValenzuelaD. & MacdonaldD.W. (2002). Home-range use by white-nosed coatis (Nasua narica): limited water and a test of the resource dispersion hypothesis. — J. Zool. 258: 247-256. DOI:10.1017/S0952836902001358.

  • van HooffJ.A.R.A.M. & WensingJ.A.B. (1987). Dominance and its behavioral measures in a captive wolf pack. — In: Man and wolf (FrankH.W. ed.). Junk PublishersThe Hague p. 219-252.

  • van SchaikC.P. (1989). The ecology of social relationships amongst female primates. — In: Comparative socioecology. The behavioural ecology of humans and other mammals (StandenV. & FoleyR.A. eds). BlackwellOxford p. 195-218.

  • VervaeckeH.StevensJ.M.VandemoorteleH.SigurjónsdóttirH. & De VriesH. (2007). Aggression and dominance in matched groups of subadult Icelandic horses (Equus caballus). — J. Ethol. 25: 239-248. DOI:10.1007/s10164-006-0019-7.

  • VogelE.R.MunchS.B. & JansonC.H. (2007). Understanding escalated aggression over food resources in white-faced capuchin monkeys. — Anim. Behav. 74: 71-80. DOI:10.1016/j.anbehav.2007.02.003.

  • WattsD.P. (2010). Dominance, power, and politics in nonhuman and human primates. — In: Mind the gap (KappelerP.M. & SilkJ.B. eds). SpringerHeidelberg p. 109-138.

  • WellsR.S.ScottM.D. & IrvineA.B. (1987). The social structure of free-ranging bottlenose dolphins. — In: Current mammalogy (GenowaysH.H. ed.). Plenum PressNew York, NY p. 247-305. DOI:10.1007/978-1-4757-9909-5_7.

  • WhiteheadH. (2009). SOCPROG programs: analysing animal social structures. — Behav. Ecol. Sociobiol. 63: 765-778. DOI:10.1007/s00265-008-0697-y.

  • WilsonE.O. (1980). Sociobiology: the abridged edition. — Belknap Press of Harvard University PressCambridge, MA.

  • WittemyerG. & GetzW.M. (2007). Hierarchical dominance structure and social organization in African elephants, Loxodonta africana. — Anim. Behav. 73: 671-681. DOI:10.1016/j.anbehav.2006.10.008.

  • WranghamR.W. (1980). An ecological model of female-bonded primate groups. — Behaviour 75: 262-300. DOI:10.1163/156853980X00447.

  • WrightE. & RobbinsM.M. (2014). Proximate mechanisms of contest competition among Female Bwindi mountain gorillas (Gorilla beringei beringei). — Behav. Ecol. Sociobiol. 68: 1785-1797. DOI:10.1007/s00265-014-1788-6.

Figures

  • View in gallery

    Characteristics of coati agonistic conflicts across the study period for N=23 white-nosed coatis. Average values computed from the whole dataset.

  • View in gallery

    Dominance parameters (Corrected Landau h, Steepness) across the study period for N=23 white-nosed coatis.

  • View in gallery

    Dominance ranks (normalised David’s scores) as a function of ordinal rank for N=23 white-nosed coatis across four observation periods: (a) middle dry season/mating season, (b) late dry season/gestation period, (c) early rain season/birthing and nesting period, (d) late rainy season/new litters become part of the group. Steepness of the hierarchy is represented by the slope of the regression line.

  • View in gallery

    Silk’s Reciprocity Index (RI), directional consistency index for aggression (DCI), Dietz R-test and Hemelrijk Rr-test (with respective p values for the latter two) across the study period for N=23 white-nosed coatis.

  • View in gallery

    N=23 coatis’ ordinal rank across four observation periods. Animals ranked at the top (N=4) and bottom (N=3) positions of the dominance hierarchy are most stable and are represented by coloured lines. Capital letters at the right of the graph represent these animals’ ID codes. First and last ordinal numbers correspond to the alpha and omega animals, respectively.

  • View in gallery

    Differences in dominance (Normalised David’s Scores) among five adult–young units, assumed from observed affiliative grooming patterns.

  • View in gallery

    White-nosed coati band age-sex class composition, adult–young units defined from grooming data (and named after the adult female), and focal samples conducted.

  • View in gallery

    Behavioural definitions.

  • View in gallery

    Win–loss sociomatrix for N=22 white-nosed coatis during the February–March period.

  • View in gallery

    Win–loss sociomatrix for N=23 white-nosed coatis during the April–May period.

  • View in gallery

    Win–loss sociomatrix for N=22 white-nosed coatis during the June–July period.

  • View in gallery

    Win–loss sociomatrix for N=22 white-nosed coatis during the August–October period.

  • View in gallery

    Dominance parameters (Corrected Landau h, Steepness) across the study period for N=23 white-nosed coatis. Conflicts involving coalitionary support were excluded from these analyses.

  • View in gallery

    Dominance parameters (Corrected Landau h, Steepness) across the study period, based on grooming interactions among N=23 white-nosed coatis.

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 381 381 381
Full Text Views 29 29 29
PDF Downloads 16 16 16
EPUB Downloads 1 1 1