Gut microbiome development affects infant health and postnatal physiology. The gut microbe assemblages of preterm infants have been reported to be different from that of healthy term infants. However, the patterns of ecosystem development and inter-individual differences remain poorly understood. We investigated hospitalised preterm infant gut microbiota development using 16S rRNA gene amplicons and the metabolic profiles of 268 stool samples obtained from 17 intensive care and 42 term infants to elucidate the dynamics and equilibria of the developing microbiota. Infant gut microbiota were predominated by Gram-positive cocci, Enterobacteriaceae or Bifidobacteriaceae, which showed sequential transitions to Bifidobacteriaceae-dominated microbiota. In neonatal intensive care unit preterm infants (NICU preterm infants), Staphylococcaceae abundance was higher immediately after birth than in healthy term infants, and Bifidobacteriaceae colonisation tended to be delayed. No specific NICU-cared infant enterotype-like cluster was observed, suggesting that the constrained environment only affected the pace of transition, but not infant gut microbiota equilibrium. Moreover, infants with Bifidobacteriaceae-dominated microbiota showed higher acetate concentrations and lower pH, which have been associated with host health. Our data provides an in-depth understanding of gut microbiota development in NICU preterm infants and complements earlier studies. Understanding the patterns and inter-individual differences of the preterm infant gut ecosystem is the first step towards controlling the risk of diseases in premature infants by targeting intestinal microbiota.
Aagaard, K., Ma, J., Antony, K.M., Ganu, R., Petrosino, J. and Versalovic, J., 2014. The placenta harbors a unique microbiome. Science Translational Medicine 6: 237ra265.
'The placenta harbors a unique microbiome ' () 6 Science Translational Medicine : 237ra265.
Arboleya, S., Binetti, A., Salazar, N., Fernández, N., Solis, G., Hernández-Barranco, A., Margolles, A., de Los Reyes-Gavilán, C.G. and Gueimonde, M., 2012. Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiology Ecology 79: 763-772.
'Establishment and development of intestinal microbiota in preterm neonates ' () 79 FEMS Microbiology Ecology : 763 -772.
Asahara, T., Shimizu, K., Nomoto, K., Hamabata, T., Ozawa, A. and Takeda, Y., 2004. Probiotic bifidobacteria protect mice from lethal infection with Shiga toxin-producing Escherichia coli O157:H7. Infection and Immunity 72: 2240-2247.
'Probiotic bifidobacteria protect mice from lethal infection with Shiga toxin-producing Escherichia coli O157:H7 ' () 72 Infection and Immunity : 2240 -2247.
Azarian, T., Cook, R.L., Johnson, J.A., Guzman, N., McCarter, Y.S., Gomez, N., Rathore, M.H., Morris, J.G. and Salemi, M., 2015. Whole-genome sequencing for outbreak investigations of methicillin-resistant Staphylococcus aureus in the neonatal intensive care unit: time for routine practice? Infection Control & Hospital Epidemiology 36: 777-785.
'Whole-genome sequencing for outbreak investigations of methicillin-resistant Staphylococcus aureus in the neonatal intensive care unit: time for routine practice? ' () 36 Infection Control & Hospital Epidemiology : 777 -785.
Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., Li, Y., Xia, Y., Xie, H., Zhong, H., Khan, M.T., Zhang, J., Li, J., Xiao, L., Al-Aama, J., Zhang, D., Lee, Y.S., Kotowska, D., Colding, C., Tremaroli, V., Yin, Y., Bergman, S., Xu, X., Madsen, L., Kristiansen, K., Dahlgren, J. and Jun, W., 2015. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17: 690-703.
'Dynamics and stabilization of the human gut microbiome during the first year of life ' () 17 Cell Host Microbe : 690 -703.
Björkstén, B., Sepp, E., Julge, K., Voor, T. and Mikelsaar, M., 2001. Allergy development and the intestinal microflora during the first year of life. Journal of Allergy and Clinical Immunology 108: 516-520.
'Allergy development and the intestinal microflora during the first year of life ' () 108 Journal of Allergy and Clinical Immunology : 516 -520.
Brooks, B., Firek, B.A., Miller, C.S., Sharon, I., Thomas, B.C., Baker, R., Morowitz, M.J. and Banfield, J.F., 2014. Microbes in the neonatal intensive care unit resemble those found in the gut of premature infants. Microbiome 2: 1.
'Microbes in the neonatal intensive care unit resemble those found in the gut of premature infants ' () 2 Microbiome : 1.
Brooks, B., Olm, M.R., Firek, B.A., Baker, R., Thomas, B.C., Morowitz, M.J. and Banfield, J.F., 2017. Strain-resolved analysis of hospital rooms and infants reveals overlap between the human and room microbiome. Nature Communications 8: 1814.
'Strain-resolved analysis of hospital rooms and infants reveals overlap between the human and room microbiome ' () 8 Nature Communications : 1814.
Brown, C.T., Sharon, I., Thomas, B.C., Castelle, C.J., Morowitz, M.J. and Banfield, J.F., 2013. Genome resolved analysis of a premature infant gut microbial community reveals a Varibaculum cambriense genome and a shift towards fermentation-based metabolism during the third week of life. Microbiome 1: 30.
'Genome resolved analysis of a premature infant gut microbial community reveals a Varibaculum cambriense genome and a shift towards fermentation-based metabolism during the third week of life ' () 1 Microbiome : 30.
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J. and Knight, R., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7: 335-336.
'QIIME allows analysis of high-throughput community sequencing data ' () 7 Nature Methods : 335 -336.
Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S.M., Betley, J., Fraser, L., Bauer, M., Gormley, N., Gilbert, J.A., Smith, G. and Knight, R., 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. Isme Journal 6: 1621-1624.
'Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms ' () 6 Isme Journal : 1621 -1624.
Chernikova, D.A., Madan, J.C., Housman, M.L., Zain-Ul-Abideen, M., Lundgren, S.N., Morrison, H.G., Sogin, M.L., Williams, S.M., Moore, J.H., Karagas, M.R. and Hoen, A.G., 2018. The premature infant gut microbiome during the first 6 weeks of life differs based on gestational maturity at birth. Pediatric Research 84: 71-79.
'The premature infant gut microbiome during the first 6 weeks of life differs based on gestational maturity at birth ' () 84 Pediatric Research : 71 -79.
Cho, I., Yamanishi, S., Cox, L., Methé, B.A., Zavadil, J., Li, K., Gao, Z., Mahana, D., Raju, K., Teitler, I., Li, H., Alekseyenko, A.V. and Blaser, M.J., 2012. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488: 621-626.
'Antibiotics in early life alter the murine colonic microbiome and adiposity ' () 488 Nature : 621 -626.
Cong, X., Xu, W., Romisher, R., Poveda, S., Forte, S., Starkweather, A. and Henderson, W.A., 2016. Gut microbiome and infant health: brain-gut-microbiota axis and host genetic factors. Yale Journal of Biology and Medicine 89: 299-308.
'Gut microbiome and infant health: brain-gut-microbiota axis and host genetic factors ' () 89 Yale Journal of Biology and Medicine : 299 -308.
Cox, L.M., Yamanishi, S., Sohn, J., Alekseyenko, A.V., Leung, J.M., Cho, I., Kim, S.G., Li, H., Gao, Z., Mahana, D., Zárate Rodriguez, J.G., Rogers, A.B., Robine, N., Loke, P. and Blaser, M.J., 2014. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158: 705-721.
'Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences ' () 158 Cell : 705 -721.
Dogra, S., Sakwinska, O., Soh, S.E., Ngom-Bru, C., Brück, W.M., Berger, B., Brüssow, H., Lee, Y.S., Yap, F., Chong, Y.S., Godfrey, K.M. and Holbrook, J.D., 2015. Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. MBio 6: e02419-e02414.
'Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity ' () 6 MBio : e02419 -e02414.
Dominguez-Bello, M.G., Costello, E.K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N. and Knight, R., 2010. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences of the USA 107: 11971-11975.
'Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns ' () 107 Proceedings of the National Academy of Sciences of the USA : 11971 -11975.
Forsgren, M., Isolauri, E., Salminen, S. and Rautava, S., 2017. Late preterm birth has direct and indirect effects on infant gut microbiota development during the first six months of life. Acta Paediatrica 106: 1103-1109.
'Late preterm birth has direct and indirect effects on infant gut microbiota development during the first six months of life ' () 106 Acta Paediatrica : 1103 -1109.
Frost, G., Sleeth, M.L., Sahuri-Arisoylu, M., Lizarbe, B., Cerdan, S., Brody, L., Anastasovska, J., Ghourab, S., Hankir, M., Zhang, S., Carling, D., Swann, J.R., Gibson, G., Viardot, A., Morrison, D., Louise Thomas, E. and Bell, J.D., 2013. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nature Communications 5: 3611.
'The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism ' () 5 Nature Communications : 3611.
Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., Tobe, T., Clarke, J.M., Topping, D.L., Suzuki, T., Taylor, T.D., Itoh, K., Kikuchi, J., Morita, H., Hattori, M. and Ohno, H., 2011. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469: 543-547.
'Bifidobacteria can protect from enteropathogenic infection through production of acetate ' () 469 Nature : 543 -547.
Furusawa, Y., Obata, Y., Fukuda, S., Endo, T.A., Nakato, G., Takahashi, D., Nakanishi, Y., Uetake, C., Kato, K., Kato, T., Takahashi, M., Fukuda, N.N., Murakami, S., Miyauchi, E., Hino, S., Atarashi, K., Onawa, S., Fujimura, Y., Lockett, T., Clarke, J.M., Topping, D.L., Tomita, M., Hori, S., Ohara, O., Morita, T., Koseki, H., Kikuchi, J., Honda, K., Hase, K. and Ohno, H., 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504: 446-450.
'Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells ' () 504 Nature : 446 -450.
Gibson, M.K., Wang, B., Ahmadi, S., Burnham, C.A., Tarr, P.I., Warner, B.B. and Dantas, G., 2016. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nature Microbiology 1: 16024.
'Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome ' () 1 Nature Microbiology : 16024.
Grice, E.A. and Segre, J.A., 2011. The skin microbiome. Nature Reviews Microbiology 9: 244-253.
'The skin microbiome ' () 9 Nature Reviews Microbiology : 244 -253.
Groer, M.W., Luciano, A.A., Dishaw, L.J., Ashmeade, T.L., Miller, E. and Gilbert, J.A., 2014. Development of the preterm infant gut microbiome: a research priority. Microbiome 2: 38.
'Development of the preterm infant gut microbiome: a research priority ' () 2 Microbiome : 38.
Hill, C.J., Lynch, D.B., Murphy, K., Ulaszewska, M., Jeffery, I.B., O’Shea, C.A., Watkins, C., Dempsey, E., Mattivi, F., Tuohy, K., Ross, R.P., Ryan, C.A., PW, O.T. and Stanton, C., 2017. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome 5: 4.
'Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort ' () 5 Microbiome : 4.
Huda, M.N., Lewis, Z., Kalanetra, K.M., Rashid, M., Ahmad, S.M., Raqib, R., Qadri, F., Underwood, M.A., Mills, D.A. and Stephensen, C.B., 2014. Stool microbiota and vaccine responses of infants. Pediatrics 134: e362-372.
'Stool microbiota and vaccine responses of infants ' () 134 Pediatrics : e362 -372.
Jost, T., Lacroix, C., Braegger, C.P., Rochat, F. and Chassard, C., 2013. Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environmental Microbiology 16: 2891-2904.
'Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding ' () 16 Environmental Microbiology : 2891 -2904.
Kalliomäki, M., Collado, M.C., Salminen, S. and Isolauri, E., 2008. Early differences in fecal microbiota composition in children may predict overweight. American Journal of Clinical Nutrition 87: 534-538.
'Early differences in fecal microbiota composition in children may predict overweight ' () 87 American Journal of Clinical Nutrition : 534 -538.
Kimura, I., Inoue, D., Maeda, T., Hara, T., Ichimura, A., Miyauchi, S., Kobayashi, M., Hirasawa, A. and Tsujimoto, G., 2011. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proceedings of the National Academy of Sciences of the USA 108: 8030-8035.
'Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41) ' () 108 Proceedings of the National Academy of Sciences of the USA : 8030 -8035.
Koenig, J.E., Spor, A., Scalfone, N., Fricker, A.D., Stombaugh, J., Knight, R., Angenent, L.T. and Ley, R.E., 2011. Succession of microbial consortia in the developing infant gut microbiome. Proceedings of the National Academy of Sciences of the USA 108, Suppl. 1: 4578-4585.
'Succession of microbial consortia in the developing infant gut microbiome ' () 1 Proceedings of the National Academy of Sciences of the USA : 4578 -4585.
La Rosa, P.S., Warner, B.B., Zhou, Y., Weinstock, G.M., Sodergren, E., Hall-Moore, C.M., Stevens, H.J., Bennett Jr., W.E., Shaikh, N., Linneman, L.A., Hoffmann, J.A., Hamvas, A., Deych, E., Shands, B.A., Shannon, W.D. and Tarr, P.I., 2014. Patterned progression of bacterial populations in the premature infant gut. Proceedings of the National Academy of Sciences of the USA 111: 12522-12527.
'Patterned progression of bacterial populations in the premature infant gut ' () 111 Proceedings of the National Academy of Sciences of the USA : 12522 -12527.
Lozupone, C., Hamady, M. and Knight, R., 2006. UniFrac--an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7: 371.
'UniFrac--an online tool for comparing microbial community diversity in a phylogenetic context ' () 7 BMC Bioinformatics : 371.
Mai, V., Young, C.M., Ukhanova, M., Wang, X., Sun, Y., Casella, G., Theriaque, D., Li, N., Sharma, R., Hudak, M. and Neu, J., 2011. Fecal microbiota in premature infants prior to necrotizing enterocolitis. PLoS ONE 6: e20647.
'Fecal microbiota in premature infants prior to necrotizing enterocolitis ' () 6 PLoS ONE : e20647.
Makino, H., Martin, R., Ishikawa, E., Gawad, A., Kubota, H., Sakai, T., Oishi, K., Tanaka, R., Ben-Amor, K., Knol, J. and Kushiro, A., 2015. Multilocus sequence typing of bifidobacterial strains from infant’s faeces and human milk: are bifidobacteria being sustainably shared during breastfeeding? Beneficial Microbes 6: 563-572.
'Multilocus sequence typing of bifidobacterial strains from infant’s faeces and human milk: are bifidobacteria being sustainably shared during breastfeeding? ' () 6 Beneficial Microbes : 563 -572.
Martin, R., Makino, H., Cetinyurek Yavuz, A., Ben-Amor, K., Roelofs, M., Ishikawa, E., Kubota, H., Swinkels, S., Sakai, T., Oishi, K., Kushiro, A. and Knol, J., 2016. Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. PLoS ONE 11: e0158498.
'Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota ' () 11 PLoS ONE : e0158498.
Martin, V., Maldonado-Barragán, A., Moles, L., Rodriguez-Banos, M., Campo, R.D., Fernandez, L., Rodriguez, J.M. and Jiménez, E., 2012. Sharing of bacterial strains between breast milk and infant feces. Journal of Human Lactation 28: 36-44.
'Sharing of bacterial strains between breast milk and infant feces ' () 28 Journal of Human Lactation : 36 -44.
Maslowski, K.M., Vieira, A.T., Ng, A., Kranich, J., Sierro, F., Yu, D., Schilter, H.C., Rolph, M.S., Mackay, F., Artis, D., Xavier, R.J., Teixeira, M.M. and Mackay, C.R., 2009. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461: 1282-1286.
'Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43 ' () 461 Nature : 1282 -1286.
Matsuki, T., Watanabe, K., Fujimoto, J., Kado, Y., Takada, T., Matsumoto, K. and Tanaka, R., 2004. Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Applied and Environmental Microbiology 70: 167-173.
'Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria ' () 70 Applied and Environmental Microbiology : 167 -173.
Matsuki, T., Yahagi, K., Mori, H., Matsumoto, H., Hara, T., Tajima, S., Ogawa, E., Kodama, H., Yamamoto, K., Yamada, T., Matsumoto, S. and Kurokawa, K., 2016. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nature Communications 7: 11939.
'A key genetic factor for fucosyllactose utilization affects infant gut microbiota development ' () 7 Nature Communications : 11939.
O’Callaghan, A. and Van Sinderen, D., 2016. Bifidobacteria and their role as members of the human gut microbiota. Frontiers in Microbiology 7: 925.
'Bifidobacteria and their role as members of the human gut microbiota ' () 7 Frontiers in Microbiology : 925.
Palmer, C., Bik, E.M., DiGiulio, D.B., Relman, D.A. and Brown, P.O., 2007. Development of the human infant intestinal microbiota. PLoS Biology 5: e177.
'Development of the human infant intestinal microbiota ' () 5 PLoS Biology : e177.
Penders, J., Thijs, C., Vink, C., Stelma, F.F., Snijders, B., Kummeling, I., Van den Brandt, P.A. and Stobberingh, E.E., 2006. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118: 511-521.
'Factors influencing the composition of the intestinal microbiota in early infancy ' () 118 Pediatrics : 511 -521.
Rautava, S., Luoto, R., Salminen, S. and Isolauri, E., 2012. Microbial contact during pregnancy, intestinal colonization and human disease. Nature Reviews Gastroenterology & Hepatology 9: 565-576.
'Microbial contact during pregnancy, intestinal colonization and human disease ' () 9 Nature Reviews Gastroenterology & Hepatology : 565 -576.
Rognes, T., Flouri, T., Nichols, B., Quince, C. and Mahe, F., 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4: e2584.
'VSEARCH: a versatile open source tool for metagenomics ' () 4 PeerJ : e2584.
Sakwinska, O., Foata, F., Berger, B., Brussow, H., Combremont, S., Mercenier, A., Dogra, S., Soh, S.E., Yen, J.C.K., Heong, G.Y.S., Lee, Y.S., Yap, F., Meaney, M.J., Chong, Y.S., Godfrey, K.M. and Holbrook, J.D., 2017. Does the maternal vaginal microbiota play a role in seeding the microbiota of neonatal gut and nose? Beneficial Microbes 8: 763-778.
'Does the maternal vaginal microbiota play a role in seeding the microbiota of neonatal gut and nose? ' () 8 Beneficial Microbes : 763 -778.
Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S. and Huttenhower, C., 2011. Metagenomic biomarker discovery and explanation. Genome Biology 12: R60.
'Metagenomic biomarker discovery and explanation ' () 12 Genome Biology : R60.
Tojo, R., Suárez, A., Clemente, M.G., de los Reyes-Gavilán, C.G., Margolles, A., Gueimonde, M. and Ruas-Madiedo, P., 2014. Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis. World Journal of Gastroenterology 20: 15163-15176.
'Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis ' () 20 World Journal of Gastroenterology : 15163 -15176.
Wandro, S., Osborne, S., Enriquez, C., Bixby, C., Arrieta, A. and Whiteson, K., 2018. The microbiome and metabolome of preterm infant stool are personalized and not driven by health outcomes, including necrotizing enterocolitis and late-onset sepsis. mSphere 3: e00104-00118.
'The microbiome and metabolome of preterm infant stool are personalized and not driven by health outcomes, including necrotizing enterocolitis and late-onset sepsis ' () 3 mSphere : e00104 -00118.
Wang, Y., Hoenig, J.D., Malin, K.J., Qamar, S., Petrof, E.O., Sun, J., Antonopoulos, D.A., Chang, E.B. and Claud, E.C., 2009. 16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis. Isme Journal 3: 944-954.
'16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis ' () 3 Isme Journal : 944 -954.
Willyard, C., 2018. Could baby’s first bacteria take root before birth? Nature 553: 264-266.
'Could baby’s first bacteria take root before birth? ' () 553 Nature : 264 -266.
Yilmaz, P., Parfrey, L.W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., Schweer, T., Peplies, J., Ludwig, W. and Glöckner, F.O., 2014. The SILVA and ‘All-species Living Tree Project (LTP)’ taxonomic frameworks. Nucleic Acids Research 42: D643-648.
'The SILVA and ‘All-species Living Tree Project (LTP)’ taxonomic frameworks ' () 42 Nucleic Acids Research : D643 -648.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 236 | 184 | 24 |
PDF Views & Downloads | 271 | 207 | 11 |
Gut microbiome development affects infant health and postnatal physiology. The gut microbe assemblages of preterm infants have been reported to be different from that of healthy term infants. However, the patterns of ecosystem development and inter-individual differences remain poorly understood. We investigated hospitalised preterm infant gut microbiota development using 16S rRNA gene amplicons and the metabolic profiles of 268 stool samples obtained from 17 intensive care and 42 term infants to elucidate the dynamics and equilibria of the developing microbiota. Infant gut microbiota were predominated by Gram-positive cocci, Enterobacteriaceae or Bifidobacteriaceae, which showed sequential transitions to Bifidobacteriaceae-dominated microbiota. In neonatal intensive care unit preterm infants (NICU preterm infants), Staphylococcaceae abundance was higher immediately after birth than in healthy term infants, and Bifidobacteriaceae colonisation tended to be delayed. No specific NICU-cared infant enterotype-like cluster was observed, suggesting that the constrained environment only affected the pace of transition, but not infant gut microbiota equilibrium. Moreover, infants with Bifidobacteriaceae-dominated microbiota showed higher acetate concentrations and lower pH, which have been associated with host health. Our data provides an in-depth understanding of gut microbiota development in NICU preterm infants and complements earlier studies. Understanding the patterns and inter-individual differences of the preterm infant gut ecosystem is the first step towards controlling the risk of diseases in premature infants by targeting intestinal microbiota.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 236 | 184 | 24 |
PDF Views & Downloads | 271 | 207 | 11 |