Beneficial bacteria represent an emerging tool against topical diseases, including infection caused by Staphylococcus aureus. Here, we investigated several anti-pathogenic mechanisms of the model probiotic Lacticaseibacillus rhamnosus GG against a clinical S. aureus isolate by implementing various mutants lacking important cell surface molecules. We analysed adhesion of L. rhamnosus and competitive adhesion with S. aureus to primary human keratinocytes, L. rhamnosus and S. aureus auto- and co-aggregation, S. aureus growth inhibition, keratinocyte viability increase, and monocyte Toll-like receptor (TLR) activation by L. rhamnosus as such, or with S. aureus. L. rhamnosus mutated in SpaCBA pili exhibited reduced adhesion to keratinocytes, reduced ability to prevent S. aureus adhesion to keratinocytes and reduced co-aggregation with S. aureus. Mutants in cell wall exopolysaccharides showed enhanced adhesion to keratinocytes and TLR activation in monocytes, suggesting involvement of additional cell surface molecules masked by exopolysaccharides. All L. rhamnosus strains inhibited S. aureus growth, likely due to acidification of the medium. Live (but not UV-inactivated) L. rhamnosus significantly reduced inflammatory TLR activation in monocytes by S. aureus. These data suggest the key role of SpaCBA pili and additional contribution of other cell surface molecules as well as secreted components of L. rhamnosus GG in the multifactorial inhibition of S. aureus adhesion and toxicity in the skin niche.
Allonsius, C.N., Van den Broek, M.F.L., De Boeck, I., Kiekens, S., Oerlemans, E.F.M., Kiekens, F., Foubert, K., Vandenheuvel, D., Cos, P., Delputte, P. and Lebeer, S., 2017. Interplay between Lactobacillus rhamnosus GG and Candida and the involvement of exopolysaccharides. Microbial Biotechnology 10: 1753-1763. https://doi.org/10.1111/1751-7915.12799
Allonsius, C.N., Vandenheuvel, D., Oerlemans, E.F.M., Petrova, M.I., Donders, G.G.G., Cos, P., Delputte, P. and Lebeer, S., 2019. Inhibition of Candida albicans morphogenesis by chitinase from Lactobacillus rhamnosus GG. Scientific Reports 9: 2900. https://doi.org/10.1038/s41598-019-39625-0
Burgain, J., Scher, J., Francius, G., Borges, F., Corgneau, M., Revol-Junelles, A.M., Cailliez-Grimal, C. and Gaiani, C., 2014. Lactic acid bacteria in dairy food: Surface characterization and interactions with food matrix components. Advances in Colloid and Interface Science 213: 21-35. https://doi.org/10.1016/j.cis.2014.09.005
Burkholder, K.M. and Bhunia, A.K., 2009. Salmonella enterica serovar Typhimurium adhesion and cytotoxicity during epithelial cell stress is reduced by Lactobacillus rhamnosus GG. Gut Pathogens 1: 14. https://doi.org/10.1186/1757-4749-1-14
Claes, I.J.J., Schoofs, G., Regulski, K., Courtin, P., Chapot-Chartier, M.-P., Rolain, T., Hols, P., Von Ossowski, I., Reunanen, J., De Vos, W.M., Palva, A., Vanderleyden, J., De Keersmaecker, S.C.J. and Lebeer, S., 2012. Genetic and biochemical characterization of the cell wall hydrolase activity of the major secreted protein of Lactobacillus rhamnosus GG. PLoS ONE 7: e31588-e31588. https://doi.org/10.1371/journal.pone.0031588
Collado, M.C., Meriluoto, J. and Salminen, S., 2008. Adhesion and aggregation properties of probiotic and pathogen strains. European Food Research and Technology 226: 1065-1073. https://doi.org/10.1007/s00217-007-0632-x
De Keersmaecker, S.C., Verhoeven, T.L., Desair, J., Marchal, K., Vanderleyden, J. and Nagy, I., 2006. Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid. FEMS Microbiology Letters 259: 89-96. https://doi.org/10.1111/j.1574-6968.2006.00250.x
Gorbach, S.L., 1996. The discovery of Lactobacillus GG. Nutrition Today 31: 5S.
'The discovery of Lactobacillus GG ' () 31 Nutrition Today : 5S.
Kankainen, M., Paulin, L., Tynkkynen, S., Von Ossowski, I., Reunanen, J., Partanen, P., Satokari, R., Vesterlund, S., Hendrickx, A.P.A., Lebeer, S., De Keersmaecker, S.C.J., Vanderleyden, J., Hämäläinen, T., Laukkanen, S., Salovuori, N., Ritari, J., Alatalo, E., Korpela, R., Mattila-Sandholm, T., Lassig, A., Hatakka, K., Kinnunen, K.T., Karjalainen, H., Saxelin, M., Laakso, K., Surakka, A., Palva, A., Salusjärvi, T., Auvinen, P. and De Vos, W.M., 2009. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proceedings of the National Academy of Sciences of the USA 106: 17193-17198. https://doi.org/10.1073/pnas.0908876106
Kiekens, S., Vandenheuvel, D., Broeckx, G., Claes, I., Allonsius, C., De Boeck, I., Thys, S., Timmermans, J.-P., Kiekens, F. and Lebeer, S., 2019. Impact of spray-drying on the pili of Lactobacillus rhamnosus GG. Microbial Biotechnology 12: 849-855. https://doi.org/10.1111/1751-7915
Kim, H.G., Gim, M.G., Kim, J.Y., Hwang, H.J., Ham, M.S., Lee, J.M., Hartung, T., Park, J.W., Han, S.H. and Chung, D.K., 2007. Lipoteichoic acid from Lactobacillus plantarum elicits both the production of interleukin-23p19 and suppression of pathogen-mediated interleukin-10 in THP-1 cells. FEMS Immunology and Medical Microbiology 49: 205-214. https://doi.org/10.1111/j.1574-695X.2006.00175.x
Lambers, H., Piessens, S., Bloem, A., Pronk, H. and Finkel, P., 2006. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. International Journal of Cosmetic Science 28: 359-370. https://doi.org/10.1111/j.1467-2494.2006.00344.x
Lebeer, S., Bron, P.A., Marco, M.L., Van Pijkeren, J.P., O’Connell Motherway, M., Hill, C., Pot, B., Roos, S. and Klaenhammer, T., 2018a. Identification of probiotic effector molecules: present state and future perspectives. Current Opinion in Biotechnology 49: 217-223. https://doi.org/10.1016/j.copbio.2017.10.007
Lebeer, S., Claes, I., Tytgat, H.L.P., Verhoeven, T.L.A., Marien, E., Von Ossowski, I., Reunanen, J., Palva, A., De Vos, W.M., De Keersmaecker, S.C.J. and Vanderleyden, J., 2012. Functional analysis of Lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. Applied and Environmental Microbiology 78: 185-193. https://doi.org/10.1128/AEM.06192-11
Lebeer, S., Claes, I.J., Verhoeven, T.L., Vanderleyden, J. and De Keersmaecker, S.C., 2011. Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microbial Biotechnology 4: 368-374. https://doi.org/10.1111/j.1751-7915.2010.00199.x
Lebeer, S., Oerlemans, E., Claes, I., Wuyts, S., Henkens, T., Spacova, I., Van den Broek, M., Tuyaerts, I., Wittouck, S., De Boeck, I., Allonsius, C.N., Kiekens, F. and Lambert, J., 2018b. Topical cream with live lactobacilli modulates the skin microbiome and reduce acne symptoms. bioRxiv 463307. https://doi.org/10.1101/463307
Lebeer, S., Verhoeven, T.L.A., Francius, G., Schoofs, G., Lambrichts, I., Dufrêne, Y., Vanderleyden, J. and De Keersmaecker, S.C.J., 2009. Identification of a gene cluster for the biosynthesis of a long, galactose-rich exopolysaccharide in Lactobacillus rhamnosus GG and functional analysis of the priming glycosyltransferase. Applied and Environmental Microbiology 75: 3554-3563. https://doi.org/10.1128/AEM.02919-08
Ledder, R.G., Timperley, A.S., Friswell, M.K., Macfarlane, S. and McBain, A.J., 2008. Coaggregation between and among human intestinal and oral bacteria. FEMS Microbiology Ecology 66: 630-636. https://doi.org/10.1111/j.1574-6941.2008.00525.x
Malone, C.L., Boles, B.R., Lauderdale, K.J., Thoendel, M., Kavanaugh, J.S. and Horswill, A.R., 2009. Fluorescent reporters for Staphylococcus aureus. Journal of Microbiological Methods 77: 251-260. https://doi.org/10.1016/j.mimet.2009.02.011
Mandlik, A., Swierczynski, A., Das, A. and Ton-That, H., 2007. Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells. Molecular Microbiology 64: 111-124. https://doi.org/10.1111/j.1365-2958.2007.05630.x
Mohammedsaeed, W., McBain, A.J., Cruickshank, S.M. and O’Neill, C.A., 2014. Lactobacillus rhamnosus GG inhibits the toxic effects of Staphylococcus aureus on epidermal keratinocytes. Applied and Environmental Microbiology 80: 5773-5781. https://doi.org/10.1128/AEM.00861-14
Peral, M.C., Huaman Martinez, M.A. and Valdez, J.C., 2009. Bacteriotherapy with Lactobacillus plantarum in burns. International Wound Journal 6: 73-81. https://doi.org/10.1111/j.1742-481X.2008.00577.x
Perea Vélez, M., Petrova, M.I., Lebeer, S., Verhoeven, T.L., Claes, I., Lambrichts, I., Tynkkynen, S., Vanderleyden, J. and De Keersmaecker, S.C., 2010. Characterization of MabA, a modulator of Lactobacillus rhamnosus GG adhesion and biofilm formation. FEMS Immunology and Medical Microbiology 59: 386-98. https://doi.org/10.1111/j.1574-695X.2010.00680.x
Petrova, M.I., Imholz, N.C.E., Verhoeven, T.L.A., Balzarini, J., Van Damme, E.J.M., Schols, D., Vanderleyden, J. and Lebeer, S., 2016. Lectin-like molecules of Lactobacillus rhamnosus GG inhibit pathogenic Escherichia coli and Salmonella biofilm formation. PLoS ONE 11: e0161337-e0161337. https://doi.org/10.1371/journal.pone.0161337
Prince, T., McBain, A.J. and O’Neill, C.A., 2012. Lactobacillus reuteri protects epidermal keratinocytes from Staphylococcus aureus-induced cell death by competitive exclusion. Applied and Environmental Microbiology 78: 5119-5126. https://doi.org/10.1128/AEM.00595-12
Ramos, A.N., Sesto Cabral, M.E., Arena, M.E., Arrighi, C.F., Arroyo Aguilar, A.A. and Valdéz, J.C., 2015. Compounds from Lactobacillus plantarum culture supernatants with potential pro-healing and anti-pathogenic properties in skin chronic wounds. Pharmaceutical Biology 53: 350-358. https://doi.org/10.3109/13880209.2014.920037
Reid, G., Charbonneau, D., Erb, J., Kochanowski, B., Beuerman, D., Poehner, R. and Bruce, A.W., 2003. Oral use of Lactobacillus rhamnosus GR-1 and L. fermentum RC-14 significantly alters vaginal flora: randomized, placebo-controlled trial in 64 healthy women. FEMS Immunology and Medical Microbiology 35: 131-134. https://doi.org/10.1016/S0928-8244(02)00465-0
Reid, G., Tieszer, C. and Lam, D., 1995. Influence of lactobacilli on the adhesion of Staphylococcus aureus and Candida albicans to fibers and epithelial cells. Journal of Industrial Microbiology 15: 248-253. https://doi.org/10.1007/BF01569832
Segers, M.E. and Lebeer, S., 2014. Towards a better understanding of Lactobacillus rhamnosus GG – host interactions. Microbial Cell Factories 13, Suppl. 1: S7. https://doi.org/10.1186/1475-2859-13-S1-S7
Spacova, I., Lievens, E., Verhoeven, T., Steenackers, H., Vanderleyden, J., Lebeer, S. and Petrova, M.I., 2018. Expression of fluorescent proteins in Lactobacillus rhamnosus to study host-microbe and microbe-microbe interactions. Microbial Biotechnology 11: 317-331. https://doi.org/10.1111/1751-7915.12872
Strober, W., 1997. Trypan blue exclusion test of cell viability. Current Protocols in Immunology 21: A.3B.1-A.3B.2. https://doi.org/10.1002/0471142735.ima03bs21
Tang, S.C. and Yang, J.H., 2018. Dual effects of alpha-hydroxy acids on the skin. Molecules 23: 863. https://doi.org/10.3390/molecules23040863
Tytgat, H., 2015. Glycoproteins in probiotic bacteria – exploring the glycosylation potential of Lactobacillus rhamnosus GG by genomics and glycoproteomics. Doctoral dissertation, KU Leuven, Leuven, Belgium.
Glycoproteins in probiotic bacteria – exploring the glycosylation potential of Lactobacillus rhamnosus GG by genomics and glycoproteomics
Van den Broek, M.F.L., De Boeck, I., Claes, I.J.J., Nizet, V. and Lebeer, S., 2018. Multifactorial inhibition of lactobacilli against the respiratory tract pathogen Moraxella catarrhalis. Beneficial Microbes 9: 429-439. https://doi.org/10.3920/BM2017.0101
Vargas García, C.E., Petrova, M., Claes, I.J., De Boeck, I., Verhoeven, T.L., Dilissen, E., Von Ossowski, I., Palva, A., Bullens, D.M., Vanderleyden, J. and Lebeer, S., 2015. Piliation of Lactobacillus rhamnosus GG promotes adhesion, phagocytosis, and cytokine modulation in macrophages. Applied and Environmental Microbiology 81: 2050-2062. https://doi.org/10.1128/AEM.03949-14
Vesterlund, S., Karp, M., Salminen, S. and Ouwehand, A.C., 2006. Staphylococcus aureus adheres to human intestinal mucus but can be displaced by certain lactic acid bacteria. Microbiology 152: 1819-1826. https://doi.org/10.1099/mic.0.28522-0
Von Ossowski, I., Reunanen, J., Satokari, R., Vesterlund, S., Kankainen, M., Huhtinen, H., Tynkkynen, S., Salminen, S., De Vos, W.M. and Palva, A., 2010. Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Applied and Environmental Microbiology 76: 2049-2057. https://doi.org/10.1128/AEM.01958-09
Zárate, G. and Nader-Macias, M.E., 2006. Viability and biological properties of probiotic vaginal lactobacilli after lyophilization and refrigerated storage into gelatin capsules. Process Biochemistry 41: 1779-1785. https://doi.org/10.1016/j.procbio.2006.03.024
Zhang, Z., Zhou, Z., Li, Y., Zhou, L., Ding, Q. and Xu, L., 2016. Isolated exopolysaccharides from Lactobacillus rhamnosus GG alleviated adipogenesis mediated by TLR2 in mice. Scientific Reports 6: 36083. https://doi.org/10.1038/srep36083
| All Time | Past 365 days | Past 30 Days | |
|---|---|---|---|
| Abstract Views | 0 | 0 | 0 |
| Full Text Views | 570 | 456 | 49 |
| PDF Views & Downloads | 555 | 420 | 37 |
Beneficial bacteria represent an emerging tool against topical diseases, including infection caused by Staphylococcus aureus. Here, we investigated several anti-pathogenic mechanisms of the model probiotic Lacticaseibacillus rhamnosus GG against a clinical S. aureus isolate by implementing various mutants lacking important cell surface molecules. We analysed adhesion of L. rhamnosus and competitive adhesion with S. aureus to primary human keratinocytes, L. rhamnosus and S. aureus auto- and co-aggregation, S. aureus growth inhibition, keratinocyte viability increase, and monocyte Toll-like receptor (TLR) activation by L. rhamnosus as such, or with S. aureus. L. rhamnosus mutated in SpaCBA pili exhibited reduced adhesion to keratinocytes, reduced ability to prevent S. aureus adhesion to keratinocytes and reduced co-aggregation with S. aureus. Mutants in cell wall exopolysaccharides showed enhanced adhesion to keratinocytes and TLR activation in monocytes, suggesting involvement of additional cell surface molecules masked by exopolysaccharides. All L. rhamnosus strains inhibited S. aureus growth, likely due to acidification of the medium. Live (but not UV-inactivated) L. rhamnosus significantly reduced inflammatory TLR activation in monocytes by S. aureus. These data suggest the key role of SpaCBA pili and additional contribution of other cell surface molecules as well as secreted components of L. rhamnosus GG in the multifactorial inhibition of S. aureus adhesion and toxicity in the skin niche.
| All Time | Past 365 days | Past 30 Days | |
|---|---|---|---|
| Abstract Views | 0 | 0 | 0 |
| Full Text Views | 570 | 456 | 49 |
| PDF Views & Downloads | 555 | 420 | 37 |