The timing of food consumption is considered to be an important modulator of circadian rhythms, regulating a wide range of physiological processes which are vital to human health. The exact mechanisms underlying this relationship are not fully understood, but likely involve alterations in the structure and functioning of the gut microbiome. Therefore, this narrative review aims to clarify these mechanisms by focusing on intermittent fasting as a dietary strategy of food timing. A literature search identified 4 clinical and 18 preclinical studies that examined either (1) the impact of intermittent fasting on the gut microbiome, or (2) whether circadian rhythms of the host are subject to changes in the bacterial populations in the gut. Results reveal that intermittent fasting directly influences the gut microbiome by amplifying diurnal fluctuations in bacterial abundance and metabolic activity. This in turn leads to fluctuations in the levels of microbial components (lipopolysaccharide) and metabolites (short-chain fatty acids, bile acids, and tryptophan derivates) that act as signalling molecules to the peripheral and central clocks of the host. Binding of these substrates to pattern-recognition receptors on the surface of intestinal epithelial cells in an oscillating manner leads to fluctuations in the expression of circadian genes and their transcription factors involved in various metabolic processes. Intermittent fasting thus contributes to circadian rhythmicity in the host and could hold promising implications for the treatment and prevention of diseases associated with disordered circadian rhythms, such as obesity and metabolic syndrome. Future intervention studies are needed to find more evidence on this relationship in humans, as well as to clarify the optimal fasting regimen for balanced circadian rhythms.
Beli, E., Yan, Y., Moldovan, L., Vieira, C. P., Gao, R., Duan, Y., Prasad, R., Bhatwadekar, A., White, F.A., Townsend, S.D., Chan, L., Ryan, C.N., Morton, D., Moldovan, E.G. Chu, F., Oudit, G.Y., Derendorf, H., Adorini, L., Wang, X.X., Evans-Molina, C., Mirmira, R.G., Boulton, M.E., Yoder, M.C., Li, Q., Levi, M., Busik, J.V. and Grant, M.B., 2018. Restructuring of the gut microbiome by intermittent fasting prevents retinopathy and prolongs survival in db/db mice. Diabetes 67: 1867-1879. https://doi.org/10.2337/db18-0158
Bell, D.S., 2015. Changes seen in gut bacteria content and distribution with obesity: causation or association? Postgraduate Medicine 127: 863-868. https://doi.org/10.1080/00325481.2015.1098519
Brown, J.E., Mosley, M. and Aldred, S., 2013. Intermittent fasting: a dietary intervention for prevention of diabetes and cardiovascular disease? British Journal of Diabetes and Vascular Disease 13: 68-72. https://doi.org/10.1177/1474651413486496
Ciarleglio, C.M., Resuehr, H.E.S. and McMahon, D.G., 2011. Interactions of the serotonin and circadian systems: nature and nurture in rhythms and blues. Neuroscience 197: 8-16. https://doi.org/10.1016/j.neuroscience.2011.09.036
Cignarella, F., Cantoni, C., Ghezzi, L., Salter, A., Dorsett, Y., Chen, L., Phillips, D., Weinstock, G.M., Fontana, L., Cross, A.H., Zhou, Y. and Piccio, L., 2018. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metabolism 27: 1222-1235. https://doi.org/10.1016/j.cmet.2018.05.006
Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R.D., Shanahan, F., Dinan, T.G. and Cryan, J.F., 2013. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Molecular Psychiatry 18: 666-673. https://doi.org/10.1038/mp.2012.77
Cowen, P.J. and Browning, M., 2015. What has serotonin to do with depression? World Psychiatry 14: 158. https://doi.org/10.1002/wps.20229
Den Besten, G., van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D. J. and Bakker, B. M., 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research 54: 2325-2340. https://doi.org/10.1194/jlr.R036012
Fitzgerald, K. C., Vizthum, D., Henry-Barron, B., Schweitzer, A., Cassard, S. D., Kossoff, E., Hartman, A.L., Kapogiannis, D., Sullivan, P., Baer, D.J., Mattson, M.P., Lawrence, Appel, L.J. and Mowry, E.M., 2018. Effect of intermittent vs. daily calorie restriction on changes in weight and patient-reported outcomes in people with multiple sclerosis. Multiple Sclerosis and Related Disorders 23: 33-39. https://doi.org/10.1016/j.msard.2018.05.002
Frazier, K. and Chang, E.B., 2020. Intersection of the gut microbiome and circadian rhythms in metabolism. Trends in Endocrinology and Metabolism 31: 25-36. https://doi.org/10.1016/j.tem.2019.08.013
Gabel, K., Marcell, J., Cares, K., Kalam, F., Cienfuegos, S., Ezpeleta, M. and Varady, K.A., 2020. Effect of time restricted feeding on the gut microbiome in adults with obesity: a pilot study. Nutrition and Health 26: 79-85. https://doi.org/10.1177/0260106020910907
Gao, K., Mu, C.L., Farzi, A. and Zhu, W.Y., 2019. Tryptophan metabolism: a link between the gut microbiota and brain. Advances in Nutrition 11: 709-723. https://doi.org/10.1093/advances/nmz127
Govindarajan, K., MacSharry, J., Casey, P.G., Shanahan, F., Joyce, S.A. and Gahan, C.G., 2016. Unconjugated bile acids influence expression of circadian genes: a potential mechanism for microbe-host crosstalk. PLoS ONE 11: e0167319. https://doi.org/10.1371/journal.pone.0167319
Harris, L., Hamilton, S., Azevedo, L.B., Olajide, J., De Brún, C., Waller, G., Whittaker, V., Sharp, T., Lean, M., Hankey, C. and Ells, L., 2018. Intermittent fasting interventions for treatment of overweight and obesity in adults: a systematic review and meta-analysis. JBI Database of Systematic Reviews and Implementation Reports 16: 507-547. https://doi.org/10.11124/JBISRIR-2016-003248
Heilbronn, L.K., Smith, S.R., Martin, C.K., Anton, S.D. and Ravussin, E., 2005. Alternate-day fasting in nonobese subjects: effects on body weight, body composition, and energy metabolism. American Journal of Clinical Nutrition 81: 69-73. https://doi.org/10.1093/ajcn/81.1.69
Heipertz, E. L., Harper, J., Lopez, C. A., Fikrig, E., Hughes, M. E. and Walker, W. E., 2018. Circadian rhythms influence the severity of sepsis in mice via a TLR2-dependent, leukocyte-intrinsic mechanism. Journal of Immunology 201: 193-201. https://doi.org/10.4049/jimmunol.1701677
Hoddy, K. K., Kroeger, C. M., Trepanowski, J. F., Barnosky, A. R., Bhutani, S. and Varady, K. A., 2015. Safety of alternate day fasting and effect on disordered eating behaviors. Nutrition Journal 14: 44. https://doi.org/10.1186/s12937-015-0029-9
Jiang, H., Ling, Z., Zhang, Y., Mao, H., Ma, Z., Yin, Y., Wang, W., Tang, W., Tan, Z., Shi, J., Li, L. and Ruan, B., 2015. Altered fecal microbiota composition in patients with major depressive disorder. Brain, Behavior, and Immunity 48: 186-194. https://doi.org/10.1016/j.bbi.2015.03.016
Kaczmarek, J.L., Musaad, S.M. and Holscher, H.D., 2017b. Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota. American Journal of Clinical Nutrition, 106: 1220-1231. https://doi.org/10.3945/ajcn.117.156380
Kaczmarek, J.L., Thompson, S.V. and Holscher, H.D., 2017a. Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal microbiota and their potential impact on health. Nutrition Reviews 75: 673-682. https://doi.org/10.1093/nutrit/nux036
Kuang, Z., Wang, Y., Li, Y., Ye, C., Ruhn, K.A., Behrendt, C.L., Olson, E.N. and Hooper, L.V., 2019. The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3. Science 365: 1428-1434. https://doi.org/10.1126/science.aaw3134
Le Chatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., Almeida, M., Arumugam, M., Batto, J., Kennedy, S., Leonard, P., Li, J., Burgdorf, K., Grarup, N., Jørgensen, T., Brandslund, I., Bjørn Nielsen, H., Juncker, A.S., Bertalan, M., Levenez, F., Pons, N., Rasmussen, S., Sunagawa, S., Tap, J., Tims, S., Zoetendal, E.G. Brunak, S., Clément, K., Doré, J., Kleerebezem, M., Kristiansen, K., Renault, P., Sicheritz-Ponten, T., de Vos, W.M., Zucker, J., Raes, J., Hansen, T., MetaHIT consortium, Bork, P., Wang, J., Ehrlich, S.D. and Pedersen, O., 2013. Richness of human gut microbiome correlates with metabolic markers. Nature 500: 541-546. https://doi.org/10.1038/nature12506
Leone, V., Gibbons, S.M., Martinez, K., Hutchison, A.L., Huang, E.Y., Cham, C.M., Pierre, J.F., Heneghan, A.F., Nadimpalli, A., Hubert, N., Zale, E., Wang, Y., Huang, Y., Theriault, B., Dinner, A.R., Musch, W.M., Kudsk, K.A., Prendergast, B.J., Gilbert, A.J. and Chang, E.B., 2015. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host and Microbe 17: 681-689. https://doi.org/10.1016/j.chom.2015.03.006
Li, G., Xie, C., Lu, S., Nichols, R.G., Tian, Y., Li, L., Patel, D., Ma, Y., Brocker, C.N., Yan, T., Krausz, K.W., Xiang, R., Gavrilova, O., Patterson, A.D. and Gonzalez, F.J., 2017. Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metabolism 26: 672-685. https://doi.org/10.1016/j.cmet.2017.08.019
Li, L., Su, Y., Li, F., Wang, Y., Ma, Z., Li, Z. and Su, J., 2020. The effects of daily fasting -s on shaping gut microbiota in mice. BMC Microbiology 20: 65. https://doi.org/10.1186/s12866-020-01754-2
Liang, X. and FitzGerald, G.A., 2017. Timing the microbes: the circadian rhythm of the gut microbiome. Journal of Biological Rhythms 32: 505-515. https://doi.org/10.1177/0748730417729066
Liang, X., Bushman, F.D. and FitzGerald, G.A., 2015. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proceedings of the National Academy of Sciences of the USA 112: 10479-10484. https://doi.org/10.1073/pnas.1501305112
Liu, Z., Dai, X., Zhang, H., Shi, R., Hui, Y., Jin, X., Zhang, W., Wang, L., Wang, Q., Wang, D., Wang, J., Tan, X., Ren, B., Liu, X., Zhao, T., Wang, J., Pan, J., Yuan, T., Chu, C., Lan, L., Yin, F., Cadenas, E., Shi, L., Zhao, S. and Liu, X., 2020a. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nature Communications 11: 1-14. https://doi.org/10.1038/s41467-020-14676-4
Liu, Z., Wei, Z.Y., Chen, J., Chen, K., Mao, X., Liu, Q., Sun, Y., Zhang, Z., Zhang, Y., Dan, Z., Tang, J., Qin, L., Chen, J. and Liu, X., 2020b. Acute sleep-wake cycle shift results in community alteration of human gut microbiome. Msphere 5: e00914-19. https://doi.org/10.1128%2FmSphere.00914-19
Montagner, A., Korecka, A., Polizzi, A., Lippi, Y., Blum, Y., Canlet, C., Tremblay-Franco, M., Gautier-Stein, A., Burcelin, R., Yen, Y., Je, H.S., Al-Asmakh, M., Mithieux, G., Arulampalam, V., Lagarrigue, S., Guillou, H., Pettersson, S. and Wahli, W., 2016. Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals. Scientific Reports 6: 20127. https://doi.org/10.1038/srep20127
Mukherji, A., Kobiita, A., Ye, T. and Chambon, P., 2013. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell 153: 812-827. https://doi.org/10.1016/j.cell.2013.04.020
Murakami, M., Tognini, P., Liu, Y., Eckel-Mahan, K.L., Baldi, P. and Sassone-Corsi, P., 2016. Gut microbiota directs PPAR γ-driven reprogramming of the liver circadian clock by nutritional challenge. EMBO Reports 17: 1292-1303. https://doi.org/10.15252/embr.201642463
Nakahata, Y., Kaluzova, M., Grimaldi, B., Sahar, S., Hirayama, J., Chen, D., Guarente, L.P. and Sassone-Corsi, P., 2008. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134: 329-340. https://doi.org/10.1016/j.cell.2008.07.002
O’Mahony, S.M., Clarke, G., Borre, Y.E., Dinan, T.G. and Cryan, J.F., 2015. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behavioural Brain Research 277: 32-48. https://doi.org/10.1016/j.bbr.2014.07.027
Oh, H.Y.P., Visvalingam, V. and Wahli, W., 2019. The PPAR-microbiota-metabolic organ trilogy to fine-tune physiology. FASEB Journal 33: 9706-9730. https://doi.org/10.1096/fj.201802681RR
Ozkul, C., Yalinay, M. and Karakan, T., 2020. Structural changes in gut microbiome after Ramadan fasting: a pilot study. Beneficial Microbes 11: 227-233. https://doi.org/10.3920/bm2019.0039
Page, A.J., Christie, S., Symonds, E. and Li, H., 2020. Circadian regulation of appetite and time restricted feeding. Physiology and Behavior 220: 112873. https://doi.org/10.1016/j.physbeh.2020.112873
Pant, K., Yadav, A.K., Gupta, P., Islam, R., Saraya, A. and Venugopal, S.K., 2017. Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells. Redox Biology 12: 340-349. https://doi.org/10.1016/j.redox.2017.03.006
Parkar, S.G., Kalsbeek, A. and Cheeseman, J.F., 2019. Potential role for the gut microbiota in modulating host circadian rhythms and metabolic health. Microorganisms 7: 41. https://doi.org/10.3390/microorganisms7020041
Patke, A., Murphy, P.J., Onat, O.E., Krieger, A.C., Özçelik, T., Campbell, S.S. and Young, M.W., 2017. Mutation of the human circadian clock gene CRY1 in familial delayed sleep phase disorder. Cell 169: 203-215. https://doi.org/10.1016/j.cell.2017.03.027
Patterson, R.E. and Sears, D.D., 2017. Metabolic effects of intermittent fasting. Annual Review of Nutrition 37: 371-393. https://doi.org/10.1146/annurev-nutr-071816-064634
Santacruz, A., Marcos, A., Wärnberg, J., Martí, A., Martin-Matillas, M., Campoy, C., Moreno, L.A., Veiga, O., Redondo-Figuero, C., Garagorri, J.M., Azcona, C., Delgado, M., García-Fuentes, M., Collado, M.C. and Sanz, Y., 2009. Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity 17: 1906-1915. https://doi.org/10.1038/oby.2009.112
Tahara, Y., Yamazaki, M., Sukigara, H., Motohashi, H., Sasaki, H., Miyakawa, H., Haraguchi, A., Ikeda, Y., Fukuda, S. and Shibata, S., 2018. Gut microbiota-derived short chain fatty acids induce circadian clock entrainment in mouse peripheral tissue. Scientific Reports 8: 1395. https://doi.org/10.1038/s41598-018-19836-7
Teichman, E.M., O’Riordan, K.J., Gahan, C.G., Dinan, T.G. and Cryan, J.F., 2020. When rhythms meet the blues: circadian interactions with the microbiota-gut-brain axis. Cell Metabolism 31: 448-471. https://doi.org/10.1016/j.cmet.2020.02.008
Thaiss, C.A., Levy, M., Korem, T., Dohnalová, L., Shapiro, H., Jaitin, D.A., David, E., Winter, D.R., Gury-BenAri, M., Tatirovsky, E., Tuganbaev, T., Federici, S., Zmora, N., Zeevi, D., Dori-Bachash, M., Pevsner-Fischer, M., Kartvelishvily, E., Brandis, A., Harmelin, A., Shibolet, O., Halpern, Z., Honda, K., Amit, I., Segal, E. and Elinav, E., 2016. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167: 1495-1510. https://doi.org/10.1016/j.cell.2016.11.003
Thaiss, C.A., Zeevi, D., Levy, M., Zilberman-Schapira, G., Suez, J., Tengeler, A.C., Abramson, L., Katz, M.N., Korem, T., Zmora, N., Kuperman, Y., Biton, I., Gilad, S., Harmelin, A., Shapiro, H., Halpern, Z., Segal, E. and Elinav, E., 2014. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159: 514-529. https://doi.org/10.1016/j.cell.2014.09.048
Tinsley, G.M. and La Bounty, P.M., 2015. Effects of intermittent fasting on body composition and clinical health markers in humans. Nutrition Reviews 73: 661-674. https://doi.org/10.1093/nutrit/nuv041
Turek, F.W., Joshu, C., Kohsaka, A., Lin, E., Ivanova, G., McDearmon, E., Laposky, A., Losee-Olson, S., Easton, A., Jensen, D.R., Eckel, R.H., Takahashi, J.S. and Bass, J., 2005. Obesity and metabolic syndrome in circadian clock mutant mice. Science 308: 1043-1045. https://doi.org/10.1126/science.1108750
Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R. and Gordon, J.I., 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444: 1027-1031. https://doi.org/10.1038/nature05414
Van der Merwe, M., Sharma, S., Caldwell, J.L., Smith, N.J., Gomes, C.K., Bloomer, R.J., Buddington, R.K. and Pierre, J.F., 2020. Time of feeding alters obesity-associated parameters and gut bacterial communities, but not fungal populations, in C57BL/6 male mice. Current Developments in Nutrition 4: nzz145. https://doi.org/10.1093/cdn/nzz145
Vogelauer, M., Krall, A.S., McBrian, M.A., Li, J.Y. and Kurdistani, S.K., 2012. Stimulation of histone deacetylase activity by metabolites of intermediary metabolism. Journal of Biological Chemistry 287: 32006-32016. https://doi.org/10.1074/jbc.M112.362467
Voigt, R.M., Forsyth, C.B., Green, S.J., Engen, P.A. and Keshavarzian, A., 2016. Circadian rhythm and the gut microbiome. International Review of Neurobiology 131: 193-205. https://doi.org/10.1016/bs.irn.2016.07.002
Voigt, R.M., Forsyth, C.B., Green, S.J., Mutlu, E., Engen, P., Vitaterna, M.H., Turek, F.W. and Keshavarzian, A., 2014. Circadian disorganization alters intestinal microbiota. PLoS ONE 9: e97500. https://doi.org/10.1371/journal.pone.0097500
Wang, Y., Kuang, Z., Yu, X., Ruhn, K.A., Kubo, M. and Hooper, L.V., 2017. The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science 357: 912-916. https://doi.org/10.1126/science.aan0677
Weger, B.D., Gobet, C., Yeung, J., Martin, E., Jimenez, S., Betrisey, B., Foata, F., Berger, B., Balvay, A., Foussier, A., Charpagne, A., Boizet-Bonhoure, B., Jason Chou, C., Naef, F. and Gachon, F., 2019. The mouse microbiome is required for sex-specific diurnal rhythms of gene expression and metabolism. Cell Metabolism 29: 362-382. https://doi.org/10.1016/j.cmet.2018.09.023
Whitney, M.S., Shemery, A.M., Yaw, A.M., Donovan, L.J., Glass, J.D. and Deneris, E.S., 2016. Adult brain serotonin deficiency causes hyperactivity, circadian disruption, and elimination of siestas. Journal of Neuroscience 36: 9828-9842. https://doi.org/10.1523/JNEUROSCI.1469-16.2016
Zarrinpar, A., Chaix, A. and Panda, S., 2016. Daily eating patterns and their impact on health and disease. Trends in Endocrinology and Metabolism 27: 69-83. https://doi.org/10.1016/j.tem.2015.11.007
Zarrinpar, A., Chaix, A., Xu, Z. Z., Chang, M. W., Marotz, C. A., Saghatelian, A., Knight, R. and Panda, S., 2018. Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nature Communications 9: 1-13. https://doi.org/10.1038/s41467-018-05336-9
Zarrinpar, A., Chaix, A., Yooseph, S. and Panda, S., 2014. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metabolism 20: 1006-1017. https://doi.org/10.1016/j.cmet.2014.11.008
Zeb, F., Wu, X., Chen, L., Fatima, S., Haq, I.U., Chen, A., Majeed, F., Feng, Q. and Li, M., 2020. Effect of time restricted feeding on metabolic risk and circadian rhythm associated with gut microbiome in healthy males. British Journal of Nutrition 123: 1216-1226. https://doi.org/10.1017/S0007114519003428
Zhang, Y.K.J., Guo, G.L. and Klaassen, C.D., 2011. Diurnal variations of mouse plasma and hepatic bile acid concentrations as well as expression of biosynthetic enzymes and transporters. PLoS ONE 6: e16683. https://doi.org/10.1371/journal.pone.0016683
The timing of food consumption is considered to be an important modulator of circadian rhythms, regulating a wide range of physiological processes which are vital to human health. The exact mechanisms underlying this relationship are not fully understood, but likely involve alterations in the structure and functioning of the gut microbiome. Therefore, this narrative review aims to clarify these mechanisms by focusing on intermittent fasting as a dietary strategy of food timing. A literature search identified 4 clinical and 18 preclinical studies that examined either (1) the impact of intermittent fasting on the gut microbiome, or (2) whether circadian rhythms of the host are subject to changes in the bacterial populations in the gut. Results reveal that intermittent fasting directly influences the gut microbiome by amplifying diurnal fluctuations in bacterial abundance and metabolic activity. This in turn leads to fluctuations in the levels of microbial components (lipopolysaccharide) and metabolites (short-chain fatty acids, bile acids, and tryptophan derivates) that act as signalling molecules to the peripheral and central clocks of the host. Binding of these substrates to pattern-recognition receptors on the surface of intestinal epithelial cells in an oscillating manner leads to fluctuations in the expression of circadian genes and their transcription factors involved in various metabolic processes. Intermittent fasting thus contributes to circadian rhythmicity in the host and could hold promising implications for the treatment and prevention of diseases associated with disordered circadian rhythms, such as obesity and metabolic syndrome. Future intervention studies are needed to find more evidence on this relationship in humans, as well as to clarify the optimal fasting regimen for balanced circadian rhythms.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 988 | 893 | 129 |
PDF Views & Downloads | 1114 | 1000 | 152 |