The gut microbiota has been indicated to play a crucial role in health and disease. Apart from changes in composition between healthy individuals and those with a disease or disorder, it has become clear that also microbial activity is important for health. For instance, butyrate has been proven to be beneficial for health, because, amongst others, it is a substrate for the colonocytes, and modulates the host’s immune system and metabolism. Here, we studied the effect of a blend of three mushrooms (Ganoderma lucidum GL AM P-38, Grifola frondosa GF AM P36 and Pleurotus ostreatus PO AM-GP37)) on gut microbiota composition and activity in a validated, dynamic, computer-controlled in vitro model of the colon (TIM-2). Predigested mushroom blend at three doses (0.5, 1.0 and 1.5 g/day of ingested mushroom blend) was fed to a pooled microbiota of healthy adults for 72 h, and samples were taken every day for microbiota composition (sequencing of amplicons of the V3-V4 region of the 16S rRNA gene) and activity (short-chain fatty acid (SCFA) production). The butyrate producing genera Lachnospiraceae UCG-004, Lachnoclostridium, Ruminococcaceae UCG-002 and Ruminococcaceae NK4A214-group are all dose-dependently increased when the mushroom blend was fed. Entirely in line with the increase of these butyrate-producers, the cumulative amount of butyrate also dose-dependently increased, to roughly twice the amount compared to the control (medium without mushroom blend) on the high-dose mushroom blend. Butyrate proportionally made up 53.1% of the total SCFA upon feeding the high-dose mushroom blend, compared to 27% on the control medium. In conclusion, the (polysaccharides in the) mushroom blend led to substantial increase in butyrate by the gut microbiota. These results warrant future mechanistic research on the mushroom blend, as butyrate is considered to be one of the microbial metabolites that contributes to health, by increasing barrier function and modulating inflammation.
Adamberg, K., Adamberg, S., Ernits, K., Larionova, A., Voor, T., Jaagura, M., Visnapuu, T. and Alamae, T., 2018. Composition and metabolism of fecal microbiota from normal and overweight children are differentially affected by melibiose, raffinose and raffinose-derived fructans. Anaerobe 52: 100-110. https://doi.org/10.1016/j.anaerobe.2018.06.009
Adams, S., Che, D., Hailong, J., Zhao, B., Rui, H., Danquah, K. and Qin, G., 2019. Effects of pulverized oyster mushroom (Pleurotus ostreatus) on diarrhea incidence, growth performance, immunity, and microbial composition in piglets. Journal of the Science of Food and Agriculture 99: 3616-3627. https://doi.org/10.1002/jsfa.9582
Aguirre, M., Ramiro-Garcia, J., Koenen, M.E. and Venema, K., 2014. To pool or not to pool? Impact of the use of individual and pooled fecal samples for in vitro fermentation studies. Journal of Microbiological Methods 107: 1-7. https://doi.org/10.1016/j.mimet.2014.08.022
Almeida, C., Oliveira, R., Soares, R. and Barata, P., 2020. Influence of gut microbiota dysbiosis on brain function: a systematic review. Porto Biomedical Journal 5: 1. https://doi.org/10.1097/j.pbj.0000000000000059
Backhed, F., Ding, H., Wang, T., Hooper, L.V., Koh, G.Y., Nagy, A., Semenkovich, C.F. and Gordon, J.I., 2004. The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the USA 101: 15718-15723. https://doi.org/10.1073/pnas.0407076101
Barcik, W., Boutin, R.C.T., Sokolowska, M. and Finlay, B.B., 2020. The role of lung and gut microbiota in the pathology of asthma. Immunity 52: 241-255. https://doi.org/10.1016/j.immuni.2020.01.007
Binsl, T.W., De Graaf, A.A., Venema, K., Heringa, J., Maathuis, A., De Waard, P. and Van Beek, J.H., 2010. Measuring non-steady-state metabolic fluxes in starch-converting faecal microbiota in vitro. Beneficial Microbes 1: 391-405. https://doi.org/10.3920/BM2010.0038
Blaak, E.E., Canfora, E.E., Theis, S., Frost, G., Groen, A.K., Mithieux, G., Nauta, A., Scott, K., Stahl, B., van Harsselaar, J., van Tol, R., Vaughan, E.E. and Verbeke, K., 2020. Short chain fatty acids in human gut and metabolic health. Beneficial Microbes 11: 411-455. https://doi.org/10.3920/BM2020.0057
Boulaka, A., Christodoulou, P., Vlassopoulou, M., Koutrotsios, G., Bekiaris, G., Zervakis, G.I., Mitsou, E.K., Saxami, G., Kyriacou, A., Zervou, M., Georgiadis, P. and Pletsa, V., 2020. Genoprotective properties and metabolites of beta-glucan-rich edible mushrooms following their in vitro fermentation by human faecal microbiota. Molecules 25: 3554. https://doi.org/10.3390/molecules25153554
Brodkorb, A., Egger, L., Alminger, M., Alvito, P., Assuncao, R., Ballance, S., Bohn, T., Bourlieu-Lacanal, C., Boutrou, R., Carriere, F., Clemente, A., Corredig, M., Dupont, D., Dufour, C., Edwards, C., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., Macierzanka, A., Mackie, A.R., Martins, C., Marze, S., McClements, D.J., Menard, O., Minekus, M., Portmann, R., Santos, C.N., Souchon, I., Singh, R.P., Vegarud, G.E., Wickham, M.S.J., Weitschies, W. and Recio, I., 2019. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols 14: 991-1014. https://doi.org/10.1038/s41596-018-0119-1
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J. and Knight, R., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7: 335-336. https://doi.org/10.1038/nmeth.f.303
Ceppa, F.A., Izzo, L., Sardelli, L., Raimondi, I., Tunesi, M., Albani, D. and Giordano, C., 2020. Human gut-microbiota interaction in neurodegenerative disorders and current engineered tools for its modeling. Frontiers in Cellular and Infection Microbiology 10: 297. https://doi.org/10.3389/fcimb.2020.00297
Chen, M., Fan, B., Liu, S., Imam, K., Xie, Y., Wen, B. and Xin, F., 2020a. The in vitro effect of fibers with different degrees of polymerization on human gut bacteria. Frontiers in Microbiology 11: 819. https://doi.org/10.3389/fmicb.2020.00819
Chen, M., Xiao, D., Liu, W., Song, Y., Zou, B., Li, L., Li, P., Cai, Y., Liu, D., Liao, Q. and Xie, Z., 2020b. Intake of Ganoderma lucidum polysaccharides reverses the disturbed gut microbiota and metabolism in type 2 diabetic rats. International Journal of Biological Macromolecules 155: 890-902. https://doi.org/10.1016/j.ijbiomac.2019.11.047
Chen, Y., Liu, D., Wang, D., Lai, S., Zhong, R., Liu, Y., Yang, C., Liu, B., Sarker, M.R. and Zhao, C., 2019. Hypoglycemic activity and gut microbiota regulation of a novel polysaccharide from Grifola frondosa in type 2 diabetic mice. Food and Chemical Toxicology 126: 295-302. https://doi.org/10.1016/j.fct.2019.02.034
Cheung, P.C.K., 2013. Mini-review on edible mushrooms as source of dietary fiber: preparation and health benefits. Food Science and Human Wellness 2: 162-166. https://doi.org/10.1016/j.fshw.2013.08.001
Collins, S.M., 2014. A role for the gut microbiota in IBS. Nature Reviews Gastroenterology and Hepatology 11: 497-505. https://doi.org/10.1038/nrgastro.2014.40
Cuevas-Tena, M., Alegria, A., Jesús Lagarda, M. and Venema, K., 2019. Impact of plant sterols enrichment dose on gut microbiota from lean and obese subjects using TIM-2 in vitro fermentation model. Journal of Functional Foods 54: 164-174.
'Impact of plant sterols enrichment dose on gut microbiota from lean and obese subjects using TIM-2 in vitro fermentation model ' () 54 Journal of Functional Foods : 164 -174.
Cummings, J.H., Pomare, E.W., Branch, W.J., Naylor, C.P. and Macfarlane, G.T., 1987. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28: 1221-1227. https://doi.org/10.1136/gut.28.10.1221
De Angelis, M., Montemurno, E., Vannini, L., Cosola, C., Cavallo, N., Gozzi, G., Maranzano, V., Di Cagno, R., Gobbetti, M. and Gesualdo, L., 2015. Effect of whole-grain barley on the human fecal microbiota and metabolome. Applied and Environmental Microbiology 81: 7945-7956. https://doi.org/10.1128/AEM.02507-15
De Graaf, A.A., Maathuis, A., De Waard, P., Deutz, N.E., Dijkema, C., De Vos, W.M. and Venema, K., 2010. Profiling human gut bacterial metabolism and its kinetics using [U-13C]glucose and NMR. NMR Biomed 23: 2-12. https://doi.org/10.1002/nbm.1418
Estaki, M., Jiang, L., Bokulich, N.A., McDonald, D., Gonzalez, A., Kosciolek, T., Martino, C., Zhu, Q., Birmingham, A., Vazquez-Baeza, Y., Dillon, M.R., Bolyen, E., Caporaso, J.G. and Knight, R., 2020. QIIME 2 enables comprehensive end-to-end analysis of diverse microbiome data and comparative studies with publicly available data. Current Protocols in Bioinformatics 70: e100. https://doi.org/10.1002/cpbi.100
Fan, X., Jin, Y., Chen, G., Ma, X. and Zhang, L., 2021. Gut microbiota dysbiosis drives the development of colorectal cancer. Digestion 102: 508-515. https://doi.org/10.1159/000508328
Firrman, J., Liu, L., Zhang, L., Arango Argoty, G., Wang, M., Tomasula, P., Kobori, M., Pontious, S. and Xiao, W., 2016. The effect of quercetin on genetic expression of the commensal gut microbes Bifidobacterium catenulatum, Enterococcus caccae and Ruminococcus gauvreauii. Anaerobe 42: 130-141. https://doi.org/10.1016/j.anaerobe.2016.10.004
Friedman, M., 2016. Mushroom polysaccharides: chemistry and antiobesity, antidiabetes, anticancer, and antibiotic properties in cells, rodents, and humans. Foods 5: 80. https://doi.org/10.3390/foods5040080
Geurts, L., Neyrinck, A.M., Delzenne, N.M., Knauf, C. and Cani, P.D., 2014. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics. Beneficial Microbes 5: 3-17. https://doi.org/10.3920/BM2012.0065
Gibson, G.R. and Roberfroid, M.B., 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. Journal of Nutrition 125: 1401-1412. https://doi.org/10.1093/jn/125.6.1401
Gibson, G.R., Cummings, J.H. and Macfarlane, G.T., 1988. Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Applied and Environmental Microbiology 54: 2750-2755. https://doi.org/10.1128/aem.54.11.2750-2755.1988
Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., Scott, K., Stanton, C., Swanson, K.S., Cani, P.D., Verbeke, K. and Reid, G., 2017. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology 14: 491-502. https://doi.org/10.1038/nrgastro.2017.75
Guo, W.L., Deng, J.C., Pan, Y.Y., Xu, J.X., Hong, J.L., Shi, F.F., Liu, G.L., Qian, M., Bai, W.D., Zhang, W., Liu, B., Zhang, Y.Y., Luo, P.J., Ni, L., Rao, P.F. and Lv, X.C., 2020a. Hypoglycemic and hypolipidemic activities of Grifola frondosa polysaccharides and their relationships with the modulation of intestinal microflora in diabetic mice induced by high-fat diet and streptozotocin. International Journal of Biological Macromolecules 153: 1231-1240. https://doi.org/10.1016/j.ijbiomac.2019.10.253
Guo, W.L., Guo, J.B., Liu, B.Y., Lu, J.Q., Chen, M., Liu, B., Bai, W.D., Rao, P.F., Ni, L. and Lv, X.C., 2020b. Ganoderic acid A from Ganoderma lucidum ameliorates lipid metabolism and alters gut microbiota composition in hyperlipidemic mice fed a high-fat diet. Food and Function 11: 6818-6833. https://doi.org/10.1039/d0fo00436g
Hamer, H.M., Jonkers, D., Venema, K., Vanhoutvin, S., Troost, F.J. and Brummer, R.J., 2008. Review article: the role of butyrate on colonic function. Alimentary Pharmacology and Therapeutics 27: 104-119. https://doi.org/10.1111/j.1365-2036.2007.03562.x
Han, B., Baruah, K., Cox, E., Vanrompay, D. and Bossier, P., 2020. Structure-functional activity relationship of beta-glucans from the perspective of immunomodulation: a mini-review. Frontiers in Immunology 11: 658. https://doi.org/10.3389/fimmu.2020.00658
Jayachandran, M., Chen, J., Chung, S.S.M. and Xu, B., 2018. A critical review on the impacts of beta-glucans on gut microbiota and human health. Journal of Nutritional Biochemistry 61: 101-110. https://doi.org/10.1016/j.jnutbio.2018.06.010
Jayachandran, M., Xiao, J. and Xu, B., 2017. A critical review on health promoting benefits of edible mushrooms through gut microbiota. International Journal of Molecular Sciences 18: 1934. https://doi.org/10.3390/ijms18091934
Jin, M., Zhang, H., Wang, J., Shao, D., Yang, H., Huang, Q., Shi, J., Xu, C. and Zhao, K., 2019. Response of intestinal metabolome to polysaccharides from mycelia of Ganoderma lucidum. International Journal of Biological Macromolecules 122: 723-731. https://doi.org/10.1016/j.ijbiomac.2018.10.224
Khan, I., Huang, G., Li, X.A., Liao, W., Leong, W.K., Xia, W., Bian, X., Wu, J. and Hsiao, W.L.W., 2019. Mushroom polysaccharides and jiaogulan saponins exert cancer preventive effects by shaping the gut microbiota and microenvironment in Apc(Min/+) mice. Pharmacological Research 148: 104448. https://doi.org/10.1016/j.phrs.2019.104448
Kilua, A., Han, K.H. and Fukushima, M., 2020. Effect of polyphenols isolated from purple sweet potato (Ipomoea batatas cv. Ayamurasaki) on the microbiota and the biomarker of colonic fermentation in rats fed with cellulose or inulin. Food and Function 11: 10182-10192. https://doi.org/10.1039/d0fo02111c
Lamichhane, S., Yde, C.C., Jensen, H.M., Morovic, W., Hibberd, A.A., Ouwehand, A.C., Saarinen, M.T., Forssten, S.D., Wiebe, L., Marcussen, J., Bertelsen, K., Meier, S., Young, J.F. and Bertram, H.C., 2018. Metabolic fate of (13)c-labeled polydextrose and impact on the gut microbiome: a triple-phase study in a colon simulator. Journal of Proteome Research 17: 1041-1053. https://doi.org/10.1021/acs.jproteome.7b00683
Larsen, N., Bussolo de Souza, C., Krych, L., Barbosa Cahu, T., Wiese, M., Kot, W., Hansen, K.M., Blennow, A., Venema, K. and Jespersen, L., 2019. Potential of pectins to beneficially modulate the gut microbiota depends on their structural properties. Frontiers in Microbiology 10: 223. https://doi.org/10.3389/fmicb.2019.00223
Lavelle, A. and Sokol, H., 2020. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nature Reviews Gastroenterology and Hepatology 17: 223-237. https://doi.org/10.1038/s41575-019-0258-z
Li, L., Guo, W.L., Zhang, W., Xu, J.X., Qian, M., Bai, W.D., Zhang, Y.Y., Rao, P.F., Ni, L. and Lv, X.C., 2019a. Grifola frondosa polysaccharides ameliorate lipid metabolic disorders and gut microbiota dysbiosis in high-fat diet fed rats. Food and Function 10: 2560-2572. https://doi.org/10.1039/c9fo00075e
Li, X., Zeng, F., Huang, Y. and Liu, B., 2019b. The positive effects of Grifola frondosa heteropolysaccharide on NAFLD and regulation of the gut microbiota. International Journal of Molecular Sciences 20: 5302. https://doi.org/10.3390/ijms20215302
Liu, Y., Tang, Q., Yang, Y., Zhou, S., Wu, D., Tang, C., Zhang, Z., Yan, M., Feng, J. and Zhang, J.S., 2017. Characterization of polysaccharides from the fruiting bodies of two species of genus Ganoderma (Agaricomycetes) and determination of water-soluble beta-d-glucan using high-performance liquid chromatography. International Journal of Medical Mushrooms 19: 75-85. https://doi.org/10.1615/IntJMedMushrooms.v19.i1.80
Long, C., Rosch, C., de Vries, S., Schols, H. and Venema, K., 2020. Cellulase and alkaline treatment improve intestinal microbial degradation of recalcitrant fibers of rapeseed meal in pigs. Journal of Agricultural and Food Chemistry 68: 11011-11025. https://doi.org/10.1021/acs.jafc.0c03618
MacFabe, D.F., 2015. Enteric short-chain fatty acids: microbial messengers of metabolism, mitochondria, and mind: implications in autism spectrum disorders. Microbial Ecology in Health and Disease 26: 28177. https://doi.org/10.3402/mehd.v26.28177
Macfarlane, G.T. and Macfarlane, S., 2012. Bacteria, colonic fermentation, and gastrointestinal health. Journal of AOAC International 95: 50-60. https://doi.org/10.5740/jaoacint.sge_macfarlane
Martel, J., Ojcius, D.M., Chang, C.J., Lin, C.S., Lu, C.C., Ko, Y.F., Tseng, S.F., Lai, H.C. and Young, J.D., 2017. Anti-obesogenic and antidiabetic effects of plants and mushrooms. Nature Reviews Endocrinology 13: 149-160. https://doi.org/10.1038/nrendo.2016.142
Martina, A., Felis, G.E., Corradi, M., Maffeis, C., Torriani, S. and Venema, K., 2019. Effects of functional pasta ingredients on different gut microbiota as revealed by TIM-2 in vitro model of the proximal colon. Beneficial Microbes 10: 301-313. https://doi.org/10.3920/BM2018.0088
Marzullo, P., Di Renzo, L., Pugliese, G., De Siena, M., Barrea, L., Muscogiuri, G., Colao, A., Savastano, S., Obesity Programs of nutrition, E.R. and Assessment, G., 2020. From obesity through gut microbiota to cardiovascular diseases: a dangerous journey. International Journal of Obesity Supplements 10: 35-49. https://doi.org/10.1038/s41367-020-0017-1
Matijasic, M., Mestrovic, T., Paljetak, H.C., Peric, M., Baresic, A. and Verbanac, D., 2020. Gut microbiota beyond bacteria-mycobiome, virome, archaeome, and eukaryotic parasites in IBD. International Journal of Molecular Sciences 21: 2668. https://doi.org/10.3390/ijms21082668
Miguez, B., Vila, C., Venema, K., Parajo, J.C. and Alonso, J.L., 2020a. Potential of high- and low-acetylated galactoglucomannooligosaccharides as modulators of the microbiota composition and their activity: a comparison using the in vitro model of the human colon TIM-2. Journal of Agricultural and Food Chemistry 68: 7617-7629. https://doi.org/10.1021/acs.jafc.0c02225
Miguez, B., Vila, C., Venema, K., Parajo, J.C. and Alonso, J.L., 2020b. Prebiotic effects of pectooligosaccharides obtained from lemon peel on the microbiota from elderly donors using an in vitro continuous colon model (TIM-2). Food and Function 11: 9984-9999. https://doi.org/10.1039/d0fo01848a
Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carriere, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., Macierzanka, A., Mackie, A., Marze, S., McClements, D.J., Menard, O., Recio, I., Santos, C.N., Singh, R.P., Vegarud, G.E., Wickham, M.S., Weitschies, W. and Brodkorb, A., 2014. A standardised static in vitro digestion method suitable for food – an international consensus. Food and Function 5: 1113-1124. https://doi.org/10.1039/c3fo60702j
Minekus, M., Marteau, P., Havenaar, R. and Huis in’t Veld, J.H.J., 1995. A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. Alternatives to Laboratory Animals 23: 197-209.
'A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine ' () 23 Alternatives to Laboratory Animals : 197 -209.
Minekus, M., Smeets-Peeters, M., Bernalier, A., Marol-Bonnin, S., Havenaar, R., Marteau, P., Alric, M., Fonty, G. and Huis in’t Veld, J.H., 1999. A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Applied Microbiology and Biotechnology 53: 108-114. https://doi.org/10.1007/s002530051622
Mitsou, E.K., Saxami, G., Stamoulou, E., Kerezoudi, E., Terzi, E., Koutrotsios, G., Bekiaris, G., Zervakis, G.I., Mountzouris, K.C., Pletsa, V. and Kyriacou, A., 2020. Effects of rich in beta-glucans edible mushrooms on aging gut microbiota characteristics: an in vitro study. Molecules 25: 2806. https://doi.org/10.3390/molecules25122806
Moya, A. and Ferrer, M., 2016. Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends in Microbiology 24: 402-413. https://doi.org/10.1016/j.tim.2016.02.002
Pan, D., Wang, L., Chen, C., Teng, B., Wang, C., Xu, Z., Hu, B. and Zhou, P., 2012. Structure characterization of a novel neutral polysaccharide isolated from Ganoderma lucidum fruiting bodies. Food Chemistry 135: 1097-1103. https://doi.org/10.1016/j.foodchem.2012.05.071
Pan, Y., Wan, X., Zeng, F., Zhong, R., Guo, W., Lv, X.C., Zhao, C. and Liu, B., 2020. Regulatory effect of Grifola frondosa extract rich in polysaccharides and organic acids on glycolipid metabolism and gut microbiota in rats. International Journal of Biological Macromolecules 155: 1030-1039. https://doi.org/10.1016/j.ijbiomac.2019.11.067
Pan, Y.Y., Zeng, F., Guo, W.L., Li, T.T., Jia, R.B., Huang, Z.R., Lv, X.C., Zhang, J. and Liu, B., 2018. Effect of Grifola frondosa 95% ethanol extract on lipid metabolism and gut microbiota composition in high-fat diet-fed rats. Food and Function 9: 6268-6278. https://doi.org/10.1039/c8fo01116h
Petersen, E.B.M., Skov, L., Thyssen, J.P. and Jensen, P., 2019. Role of the gut microbiota in atopic dermatitis: a systematic review. Acta Dermato-Venereologica 99: 5-11. https://doi.org/10.2340/00015555-3008
Reider, S.J., Moosmang, S., Tragust, J., Trgovec-Greif, L., Tragust, S., Perschy, L., Przysiecki, N., Sturm, S., Tilg, H., Stuppner, H., Rattei, T. and Moschen, A.R., 2020. Prebiotic effects of partially hydrolyzed guar gum on the composition and function of the human microbiota-results from the PAGODA trial. Nutrients 12: 1257. https://doi.org/10.3390/nu12051257
Reyes-Castillo, Z., Valdes-Miramontes, E., Llamas-Covarrubias, M. and Munoz-Valle, J.F., 2021. Troublesome friends within us: the role of gut microbiota on rheumatoid arthritis etiopathogenesis and its clinical and therapeutic relevance. Clinical and Experimental Medicine 21: 1-13. https://doi.org/10.1007/s10238-020-00647-y
Robinson, J., Anike, F.N., Willis, W. and Isikhuemhen, O.S., 2018. Medicinal mushrooms supplements alter chicken intestinal microbiome. International Journal of Medicinal Mushrooms 20: 685-693. https://doi.org/10.1615/IntJMedMushrooms.2018026969
Ruthes, A.C., Smiderle, F.R. and Iacomini, M., 2016. Mushroom heteropolysaccharides: a review on their sources, structure and biological effects. Carbohydrate Polymers 136: 358-375. https://doi.org/10.1016/j.carbpol.2015.08.061
Sameer Kumar, S., Pravamayee, A., Jigni, M., Bighneswar, B., Kumanand, T. and Hrudaynath, T., 2016. Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: a review. Bioactive Carbohydrates and Dietary Fibre 7: 1-14. https://doi.org/10.1016/j.bcdf.2015.11.001
Sayago-Ayerdi, S.G., Zamora-Gasga, V.M. and Venema, K., 2019. Prebiotic effect of predigested mango peel on gut microbiota assessed in a dynamic in vitro model of the human colon (TIM-2). Food Research International 118: 89-95. https://doi.org/10.1016/j.foodres.2017.12.024
Shang, Q., Liu, H., Wu, D., Mahfuz, S. and Piao, X., 2021. Source of fiber influences growth, immune responses, gut barrier function and microbiota in weaned piglets fed antibiotic-free diets. Animal Nutrition 7: 315-325.
'Source of fiber influences growth, immune responses, gut barrier function and microbiota in weaned piglets fed antibiotic-free diets ' () 7 Animal Nutrition : 315 -325.
Shang, Q.H., Liu, S.J., He, T.F., Liu, H.S., Mahfuz, S., Ma, X.K. and Piao, X.S., 2020. Effects of wheat bran in comparison to antibiotics on growth performance, intestinal immunity, barrier function, and microbial composition in broiler chickens. Poultry Science 99: 4929-4938. https://doi.org/10.1016/j.psj.2020.06.031
Su, J., Li, D., Chen, Q., Li, M., Su, L., Luo, T., Liang, D., Lai, G., Shuai, O., Jiao, C., Wu, Q., Xie, Y. and Zhou, X., 2018. Anti-breast cancer enhancement of a polysaccharide from spore of Ganoderma lucidum with paclitaxel: suppression on tumor metabolism with gut microbiota reshaping. Frontiers in Microbiology 9: 3099. https://doi.org/10.3389/fmicb.2018.03099
Thursby, E. and Juge, N., 2017. Introduction to the human gut microbiota. Biochemical Journal 474: 1823-1836. https://doi.org/10.1042/BCJ20160510
Tong, A.J., Hu, R.K., Wu, L.X., Lv, X.C., Li, X., Zhao, L.N. and Liu, B., 2020. Ganoderma polysaccharide and chitosan synergistically ameliorate lipid metabolic disorders and modulate gut microbiota composition in high fat diet-fed golden hamsters. Journal of Food Biochemistry 44: e13109. https://doi.org/10.1111/jfbc.13109
Topping, D.L. and Clifton, P.M., 2001. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiological Reviews 81: 1031-1064. https://doi.org/10.1152/physrev.2001.81.3.1031
Vemuri, R., Shankar, E.M., Chieppa, M., Eri, R. and Kavanagh, K., 2020. Beyond just bacteria: functional biomes in the gut ecosystem including virome, mycobiome, archaeome and helminths. Microorganisms 8: 483. https://doi.org/10.3390/microorganisms8040483
Venema, K., 2015. The TNO In Vitro Model of the Colon (TIM-2). In: Verhoeckx, K., Cotter, P., Lopez-Exposito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D. and Wichers, H. (eds.) The impact of food bioactives on health: in vitro and ex vivo models. Springer, Cham, Switzerland, pp. 293-304. https://doi.org/10.1007/978-3-319-16104-4_26
Venema, K., Verhoeven, J., Verbruggen, S. and Keller, D., 2020. Xylo-oligosaccharides from sugarcane show prebiotic potential in a dynamic computer-controlled in vitro model of the adult human large intestine. Beneficial Microbes 11: 191-200. https://doi.org/10.3920/BM2019.0159
Verduci, E., Mameli, C., Amatruda, M., Petitti, A., Vizzuso, S., El Assadi, F., Zuccotti, G., Alabduljabbar, S. and Terranegra, A., 2020. Early nutrition and risk of type 1 diabetes: the role of gut microbiota. Frontiers in Nutrition 7: 612377. https://doi.org/10.3389/fnut.2020.612377
Wachtel-Galor, S., Yuen, J., Buswell, J.A. and Benzie, I.F.F., 2011. Ganoderma lucidum (Lingzhi or Reishi): a medicinal mushroom. In: Benzie, I.F.F. and Wachtel-Galor, S. (eds.), Herbal medicine: biomolecular and clinical aspects. CRC Press, Boca Raton, FL, USA, pp. 175-200.
'Ganoderma lucidum (Lingzhi or Reishi): a medicinal mushroom ', () 175 -200.
Wang, Y., Liu, Y., Yu, H., Zhou, S., Zhang, Z., Wu, D., Yan, M., Tang, Q. and Zhang, J., 2017. Structural characterization and immuno-enhancing activity of a highly branched water-soluble beta-glucan from the spores of Ganoderma lucidum. Carbohydrate Polymers 167: 337-344. https://doi.org/10.1016/j.carbpol.2017.03.016
Wu, X., Cao, J., Li, M., Yao, P., Li, H., Xu, W., Yuan, C., Liu, J., Wang, S., Li, P. and Wang, Y., 2020. An integrated microbiome and metabolomic analysis identifies immunoenhancing features of Ganoderma lucidum spores oil in mice. Pharmacological Research 158: 104937. https://doi.org/10.1016/j.phrs.2020.104937
Xie, J., Liu, Y., Chen, B., Zhang, G., Ou, S., Luo, J. and Peng, X., 2019. Ganoderma lucidum polysaccharide improves rat DSS-induced colitis by altering cecal microbiota and gene expression of colonic epithelial cells. Food and Nutrition Research 63. https://doi.org/10.29219/fnr.v63.1559
Yang, D., Zhou, Z. and Zhang, L., 2019. An overview of fungal glycan-based therapeutics. Progress in Molecular Biology and Translational Science 163: 135-163. https://doi.org/10.1016/bs.pmbts.2019.02.001
Ye, L., Zhang, J., Ye, X., Tang, Q., Liu, Y., Gong, C., Du, X. and Pan, Y., 2008. Structural elucidation of the polysaccharide moiety of a glycopeptide (GLPCW-II) from Ganoderma lucidum fruiting bodies. Carbohydrate Research 343: 746-752. https://doi.org/10.1016/j.carres.2007.12.004
Zhang, Y., Chen, L., Hu, M., Kim, J.J., Lin, R., Xu, J., Fan, L., Qi, Y., Wang, L., Liu, W., Deng, Y., Si, J. and Chen, S., 2020. Dietary type 2 resistant starch improves systemic inflammation and intestinal permeability by modulating microbiota and metabolites in aged mice on high-fat diet. Aging 12: 9173-9187. https://doi.org/10.18632/aging.103187
Zhou, R., Liu, Z.K., Zhang, Y.N., Wong, J.H., Ng, T.B. and Liu, F., 2019. Research progress of bioactive proteins from the edible and medicinal mushrooms. Current Protein and Peptide Science 20: 196-219. https://doi.org/10.2174/1389203719666180613090710
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 206 | 170 | 16 |
PDF Views & Downloads | 285 | 226 | 14 |
The gut microbiota has been indicated to play a crucial role in health and disease. Apart from changes in composition between healthy individuals and those with a disease or disorder, it has become clear that also microbial activity is important for health. For instance, butyrate has been proven to be beneficial for health, because, amongst others, it is a substrate for the colonocytes, and modulates the host’s immune system and metabolism. Here, we studied the effect of a blend of three mushrooms (Ganoderma lucidum GL AM P-38, Grifola frondosa GF AM P36 and Pleurotus ostreatus PO AM-GP37)) on gut microbiota composition and activity in a validated, dynamic, computer-controlled in vitro model of the colon (TIM-2). Predigested mushroom blend at three doses (0.5, 1.0 and 1.5 g/day of ingested mushroom blend) was fed to a pooled microbiota of healthy adults for 72 h, and samples were taken every day for microbiota composition (sequencing of amplicons of the V3-V4 region of the 16S rRNA gene) and activity (short-chain fatty acid (SCFA) production). The butyrate producing genera Lachnospiraceae UCG-004, Lachnoclostridium, Ruminococcaceae UCG-002 and Ruminococcaceae NK4A214-group are all dose-dependently increased when the mushroom blend was fed. Entirely in line with the increase of these butyrate-producers, the cumulative amount of butyrate also dose-dependently increased, to roughly twice the amount compared to the control (medium without mushroom blend) on the high-dose mushroom blend. Butyrate proportionally made up 53.1% of the total SCFA upon feeding the high-dose mushroom blend, compared to 27% on the control medium. In conclusion, the (polysaccharides in the) mushroom blend led to substantial increase in butyrate by the gut microbiota. These results warrant future mechanistic research on the mushroom blend, as butyrate is considered to be one of the microbial metabolites that contributes to health, by increasing barrier function and modulating inflammation.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 206 | 170 | 16 |
PDF Views & Downloads | 285 | 226 | 14 |