The intestinal microbiota plays a major role in infant health and development. However, the role of the breastmilk microbiota in infant gut colonisation remains unclear. A systematic review was performed to evaluate the composition of the breastmilk microbiota and evidence for transfer to/colonisation of the infant gut. Searches were performed using PUBMED, OVID, LILACS and PROQUEST from inception until 18th March 2020 with a PUBMED update to December 2021. 88 full texts were evaluated before final critique based on study power, sample contamination avoidance, storage, purification process, DNA extraction/analysis, and consideration of maternal health and other potential confounders. Risk of skin contamination was reduced mainly by breast cleaning and rejecting the first milk drops. Sample storage, DNA extraction and bioinformatics varied. Several studies stored samples under conditions that may selectively impact bacterial DNA preservation, others used preculture reducing reliability. Only 15 studies, with acceptable sample size, handling, extraction, and bacterial analysis, considered transfer of bacteria to the infant. Three reported bacterial transfer from infant to breastmilk. Despite consistent evidence for the breastmilk microbiota, and recent studies using improved methods to investigate factors affecting its composition, few studies adequately considered transfer to the infant gut providing very little evidence for effective impact on gut colonisation.
Angebault, C., Ghozlane, A., Volant, S., Botterel, F., d’Enfert, C. and Bougnoux, M.E., 2018. Combined bacterial and fungal intestinal microbiota analyses: Impact of storage conditions and DNA extraction protocols. PloS One 13: e0201174. https://doi.org/10.1371/journal.pone.0201174
Backhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., Li, Y., Xia, Y., Xie, H., Zhong, H., Khan, M.T., Zhang, J., Li, J., Xiao, L., Al-Aama, J., Zhang, D., Lee, Y.S., Kotowska, D., Colding, C., Tremaroli, V., Yin, Y., Bergman, S., Xu, X., Madsen, L., Kristiansen, K., Dahlgren, J. and Wang, J., 2015. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host and Microbe 17: 690-703. https://doi.org/10.1016/j.chom.2015.04.004
Benito, D., Lozano, C., Jimenez, E., Albujar, M., Gomez, A., Rodriguez, J.M. and Torres, C., 2015. Characterization of Staphylococcus aureus strains isolated from faeces of healthy neonates and potential mother-to-infant microbial transmission through breastfeeding. FEMS Microbiology Ecology 91. https://doi.org/10.1093/femsec/fiv007
Berg, G., Rybakova, D., Fischer, D., Cernava, T., Verges, M.C., Charles, T., Chen, X., Cocolin, L., Eversole, K., Corral, G.H., Kazou, M., Kinkel, L., Lange, L., Lima, N., Loy, A., Macklin, J.A., Maguin, E., Mauchline, T., McClure, R., Mitter, B., Ryan, M., Sarand, I., Smidt, H., Schelkle, B., Roume, H., Kiran, G.S., Selvin, J., de Souza, R.S.C., van Overbeek, L., Singh, B.K., Wagner, M., Walsh, A., Sessitsch, A. and Schloter, M., 2020. Correction to: Microbiome definition re-visited: old concepts and new challenges. Microbiome 8: 119. https://doi.org/10.1186/s40168-020-00905-x
Boix-Amoros, A., Collado, M.C. and Mira, A., 2016. Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Frontiers in Microbiology 7: 492. https://doi.org/10.3389/fmicb.2016.00492
Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., A, D.L., Wu, F., Perez-Perez, G.I., Chen, Y., Schweizer, W., Zheng, X., Contreras, M., Dominguez-Bello, M.G. and Blaser, M.J., 2016. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8: 343ra382. https://doi.org/10.1126/scitranslmed.aad7121
Browne, P.D., Aparicio, M., Alba, C., Hechler, C., Beijers, R., Rodriguez, J.M., Fernandez, L. and de Weerth, C., 2019. Human milk microbiome and maternal postnatal psychosocial distress. Frontiers in Microbiology 10: 2333. https://doi.org/10.3389/fmicb.2019.02333
Cabrera-Rubio, R., Collado, M.C., Laitinen, K., Salminen, S., Isolauri, E. and Mira, A., 2012. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. American Journal of Clinical Nutrition 96: 544-551. https://doi.org/10.3945/ajcn.112.037382
Cabrera-Rubio, R., Mira-Pascual, L., Mira, A. and Collado, M.C., 2016. Impact of mode of delivery on the milk microbiota composition of healthy women. Journal of Developmental Origins of Health and Disease 7: 54-60. https://doi.org/10.1017/S2040174415001397
Carruthers, L.V., Moses, A., Adriko, M., Faust, C.L., Tukahebwa, E. M., Hall, L.J., Ranford-Cartwright, L.C. and Lamberton, P.H.L., 2019. The impact of storage conditions on human stool 16S rRNA microbiome composition and diversity. PeerJ 7: e8133. https://doi.org/10.7717/peerj.8133
Chatterton, D.E., Nguyen, D.N., Bering, S.B. and Sangild, P.T., 2013. Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns. International Journal of Biochemistry & Cell Biology 45: 1730-1747. https://doi.org/10.1016/j.biocel.2013.04.028
Cheema, A.S., Stinson, L.F., Lai, C.T., Geddes, D.T. and Payne, M.S., 2021. DNA extraction method influences human milk bacterial profiles. Journal of Applied Microbiology 130: 142-156. https://doi.org/10.1111/jam.14780
Chong, C.Y.L., Bloomfield, F.H. and O’Sullivan, J.M., 2018. Factors affecting gastrointestinal microbiome development in neonates. Nutrients 10: 274. https://doi.org/10.3390/nu10030274
Cortes-Macias, E., Selma-Royo, M., Garcia-Mantrana, I., Calatayud, M., Gonzalez, S., Martinez-Costa, C. and Collado, M.C., 2021a. Maternal diet shapes the breast milk microbiota composition and diversity: impact of mode of delivery and antibiotic exposure. Journal of Nutrition 151: 330-340. https://doi.org/10.1093/jn/nxaa310
Cortes-Macias, E., Selma-Royo, M., Martinez-Costa, C. and Collado, M.C., 2021b. Breastfeeding practices influence the breast milk microbiota depending on pre-gestational maternal BMI and weight gain over pregnancy. Nutrients 13: 1518. https://doi.org/10.3390/nu13051518
Damaceno, Q.S., Gallotti, B., Reis, I.M.M., Totte, Y.C.P., Assis, G.B., Figueiredo, H.C., Silva, T.F., Azevedo, V., Nicoli, J.R. and Martins, F.S., in press. Isolation and identification of potential probiotic bacteria from human milk. Probiotics and Antimicrobial Proteins. https://doi.org/10.1007/s12602-021-09866-5
Dave, V., Street, K., Francis, S., Bradman, A., Riley, L., Eskenazi, B. and Holland, N., 2016. Bacterial microbiome of breast milk and child saliva from low-income Mexican-American women and children. Pediatric Research 79: 846-854. https://doi.org/10.1038/pr.2016.9
De Goffau, M.C., Lager, S., Sovio, U., Gaccioli, F., Cook, E., Peacock, S.J., Parkhill, J., Charnock-Jones, D.S. and Smith, G.C.S., 2019. Human placenta has no microbiome but can contain potential pathogens. Nature 572: 329-334. https://doi.org/10.1038/s41586-019-1451-5
Ding, M., Qi, C., Yang, Z., Jiang, S., Bi, Y., Lai, J. and Sun, J., 2019. Geographical location specific composition of cultured microbiota and Lactobacillus occurrence in human breast milk in China. Food & Function 10: 554-564. https://doi.org/10.1039/c8fo02182a
Dotterud, C.K., Avershina, E., Sekelja, M., Simpson, M.R., Rudi, K., Storro, O., Johnsen, R. and Oien, T., 2015. Does maternal perinatal probiotic supplementation alter the intestinal microbiota of mother and child? Journal of Pediatric Gastroenterology and Nutrition 61: 200-207. https://doi.org/10.1097/MPG.0000000000000781
Douglas, C.A., Ivey, K.L., Papanicolas, L.E., Best, K.P., Muhlhausler, B.S. and Rogers, G.B., 2020. DNA extraction approaches substantially influence the assessment of the human breast milk microbiome. Scientific Reports 10: 123. https://doi.org/10.1038/s41598-019-55568-y
Fallani, M., Amarri, S., Uusijarvi, A., Adam, R., Khanna, S., Aguilera, M., Gil, A., Vieites, J.M., Norin, E., Young, D., Scott, J.A., Dore, J., Edwards, C.A. and The Infabio, T., 2011. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology 157: 1385-1392. https://doi.org/10.1099/mic.0.042143-0
Fehr, K., Moossavi, S., Sbihi, H., Boutin, R.C.T., Bode, L., Robertson, B., Yonemitsu, C., Field, C.J., Becker, A.B., Mandhane, P.J., Sears, M.R., Khafipour, E., Moraes, T.J., Subbarao, P., Finlay, B.B., Turvey, S.E. and Azad, M.B., 2020. Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the CHILD Cohort Study. Cell Host and Microbe 28: 285-297. e284. https://doi.org/10.1016/j.chom.2020.06.009
Fitzstevens, J.L., Smith, K.C., Hagadorn, J.I., Caimano, M.J., Matson, A.P. and Brownell, E.A., 2017. Systematic review of the human milk microbiota. Nutrition in Clinical Practice 32: 354-364. https://doi.org/10.1177/0884533616670150
Foster, J.A., Rinaman, L. and Cryan, J.F., 2017. Stress & the gut-brain axis: regulation by the microbiome. Neurobiology of Stress 7: 124-136. https://doi.org/10.1016/j.ynstr.2017.03.001
Gorzelak, M.A., Gill, S.K., Tasnim, N., Ahmadi-Vand, Z., Jay, M. and Gibson, D.L., 2015. Methods for improving human gut microbiome data by reducing variability through sample processing and storage of stool. PLoS ONE 10: e0134802. https://doi.org/10.1371/journal.pone.0134802
Hill, C.J., Lynch, D.B., Murphy, K., Ulaszewska, M., Jeffery, I.B., O’Shea, C.A., Watkins, C., Dempsey, E., Mattivi, F., Tuohy, K., Ross, R.P., Ryan, C.A., O’Toole, P.W. and Stanton, C., 2017. Erratum to: Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome 5: 21. https://doi.org/10.1186/s40168-017-0240-3
Hooper, L.V., Littman, D.R. and Macpherson, A.J., 2012. Interactions between the microbiota and the immune system. Science 336: 1268-1273. https://doi.org/10.1126/science.1223490
Houghteling, P.D. and Walker, W.A., 2015. Why is initial bacterial colonization of the intestine important to infants’ and children’s health? Journal of Pediatric Gastroenterology and Nutrition 60: 294-307. https://doi.org/10.1097/MPG.0000000000000597
Hunt, K.M., Foster, J.A., Forney, L.J., Schutte, U.M., Beck, D.L., Abdo, Z., Fox, L.K., Williams, J.E., McGuire, M.K. and McGuire, M.A., 2011. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE 6: e21313. https://doi.org/10.1371/journal.pone.0021313
Jenkins, S.V., Vang, K.B., Gies, A., Griffin, R.J., Jun, S.R., Nookaew, I. and Dings, R.P.M., 2018. Sample storage conditions induce postcollection biases in microbiome profiles. BMC Microbiology 18: 227. https://doi.org/10.1186/s12866-018-1359-5
Jost, T., Lacroix, C., Braegger, C. and Chassard, C., 2013. Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. British Journal of Nutrition 110: 1253-1262. https://doi.org/10.1017/S0007114513000597
Jost, T., Lacroix, C., Braegger, C.P., Rochat, F. and Chassard, C., 2014. Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environmental Microbiology 16: 2891-2904. https://doi.org/10.1111/1462-2920.12238
Khan, M.J., Gerasimidis, K., Edwards, C.A. and Shaikh, M.G., 2016. Role of gut microbiota in the aetiology of obesity: proposed mechanisms and review of the literature. Journal of Obesity 2016: 7353642. https://doi.org/10.1155/2016/7353642
Kordy, K., Gaufin, T., Mwangi, M., Li, F., Cerini, C., Lee, D.J., Adisetiyo, H., Woodward, C., Pannaraj, P.S., Tobin, N.H. and Aldrovandi, G.M., 2020. Contributions to human breast milk microbiome and enteromammary transfer of Bifidobacterium breve. PLoS ONE 15: e0219633. https://doi.org/10.1371/journal.pone.0219633
Kumar, H., du Toit, E., Kulkarni, A., Aakko, J., Linderborg, K.M., Zhang, Y., Nicol, M.P., Isolauri, E., Yang, B., Collado, M.C. and Salminen, S., 2016. Distinct patterns in human milk microbiota and fatty acid profiles across specific geographic locations. Frontiers in Microbiology 7: 1619. https://doi.org/10.3389/fmicb.2016.01619
Lackey, K.A., Williams, J.E., Meehan, C.L., Zachek, J.A., Benda, E.D., Price, W.J., Foster, J.A., Sellen, D.W., Kamau-Mbuthia, E.W., Kamundia, E.W., Mbugua, S., Moore, S.E., Prentice, A.M., K, D.G., Kvist, L.J., Otoo, G.E., Garcia-Carral, C., Jimenez, E., Ruiz, L., Rodriguez, J.M., Pareja, R.G., Bode, L., McGuire, M.A. and McGuire, M.K., 2019. What’s normal? Microbiomes in human milk and infant feces are related to each other but vary geographically: the INSPIRE Study. Frontiers in Nutrition 6: 45. https://doi.org/10.3389/fnut.2019.00045
Langille, M.G., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., Clemente, J.C., Burkepile, D.E., Vega Thurber, R.L., Knight, R., Beiko, R.G. and Huttenhower, C., 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology 31: 814-821. https://doi.org/10.1038/nbt.2676
LeMay-Nedjelski, L., Asbury, M.R., Butcher, J., Ley, S.H., Hanley, A.J., Kiss, A., Unger, S., Copeland, J.K., Wang, P.W., Stintzi, A. and O’Connor, D.L., 2021. Maternal diet and infant feeding practices are associated with variation in the human milk microbiota at 3 months postpartum in a cohort of women with high rates of gestational glucose intolerance. Journal of Nutrition 151: 320-329. https://doi.org/10.1093/jn/nxaa248
Lyons, K.E., Fouhy, F., O’ Shea, C.-A., Ryan, C.A., Dempsey, E.M., Ross, R.P. and Stanton, C., 2021. Effect of storage, temperature, and extraction kit on the phylogenetic composition detected in the human milk microbiota. Microbiology Open 10: e1127. https://doi.org/10.1002/mbo3.1127
Lyons, K.E., Shea, C.-A.O., Grimaud, G., Ryan, C.A., Dempsey, E., Kelly, A.L., Ross, R.P. and Stanton, C., 2022. The human milk microbiome aligns with lactation stage and not birth mode. Scientific Reports 12: 5598. https://doi.org/10.1038/s41598-022-09009-y
Lugli, G.A., Duranti, S., Milani, C., Mancabelli, L., Turroni, F., Alessandri, G., Longhi, G., Anzalone, R., Viappinai, A., Tarracchini, C., Bernasconi, S., Yonemitsu, C., Bode, L., Goran, M.I., Ossiprandi, M.C., van Sinderen, D. and Ventura, M., 2020. Investigating bifidobacteria and human milk oligosaccharide composition of lactating mothers. FEMS Microbiology and Ecology 96. https://doi.org/10.1093/femsec/fiaa049
Lynch, S.V. and Boushey, H.A., 2016. The microbiome and development of allergic disease. Current Opinion in Allergy and Clinical Immunology 16: 165-171. https://doi.org/10.1097/ACI.0000000000000255
Makino, H., Kushiro, A., Ishikawa, E., Muylaert, D., Kubota, H., Sakai, T., Oishi, K., Martin, R., Ben Amor, K., Oozeer, R., Knol, J. and Tanaka, R., 2011. Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism. Applied and Environmental Microbiology 77: 6788-6793. https://doi.org/10.1128/AEM.05346-11
Makino, H., Martin, R., Ishikawa, E., Gawad, A., Kubota, H., Sakai, T., Oishi, K., Tanaka, R., Ben-Amor, K., Knol, J. and Kushiro, A., 2015. Multilocus sequence typing of bifidobacterial strains from infant’s faeces and human milk: are bifidobacteria being sustainably shared during breastfeeding? Beneficial Microbes 6: 563-572. https://doi.org/10.3920/BM2014.0082
Maldonado-Lobon, J.A., Diaz-Lopez, M.A., Carputo, R., Duarte, P., Diaz-Ropero, M.P., Valero, A.D., Sanudo, A., Sempere, L., Ruiz-Lopez, M.D., Banuelos, O., Fonolla, J. and Olivares Martin, M., 2015. Lactobacillus fermentum CECT 5716 reduces Staphylococcus load in the breastmilk of lactating mothers suffering breast pain: a randomized controlled trial. Breastfeeding Medicine 10: 425-432. https://doi.org/10.1089/bfm.2015.0070
Marchesi, J.R., Adams, D.H., Fava, F., Hermes, G.D., Hirschfield, G.M., Hold, G., Quraishi, M.N., Kinross, J., Smidt, H., Tuohy, K.M., Thomas, L.V., Zoetendal, E.G. and Hart, A., 2016. The gut microbiota and host health: a new clinical frontier. Gut 65: 330-339. https://doi.org/10.1136/gutjnl-2015-309990
Martin, C.R. and Mayer, E.A., 2017. Gut-brain axis and behavior. Nestle Nutrition Institute Workshop Series 88: 45-53. https://doi.org/10.1159/000461732
Martin, V., Maldonado-Barragan, A., Moles, L., Rodriguez-Banos, M., Campo, R.D., Fernandez, L., Rodriguez, J.M. and Jimenez, E., 2012. Sharing of bacterial strains between breast milk and infant feces. Journal of Human Lactation 28: 36-44. https://doi.org/10.1177/0890334411424729
Mastromarino, P., Capobianco, D., Campagna, G., Laforgia, N., Drimaco, P., Dileone, A. and Baldassarre, M.E., 2014. Correlation between lactoferrin and beneficial microbiota in breast milk and infant’s feces. BioMetals 27: 1077-1086. https://doi.org/10.1007/s10534-014-9762-3
Mastromarino, P., Capobianco, D., Miccheli, A., Pratico, G., Campagna, G., Laforgia, N., Capursi, T. and Baldassarre, M.E., 2015. Administration of a multistrain probiotic product (VSL#3) to women in the perinatal period differentially affects breast milk beneficial microbiota in relation to mode of delivery. Pharmacological Research 95-96: 63-70. https://doi.org/10.1016/j.phrs.2015.03.013
Moya-Perez, A., Luczynski, P., Renes, I.B., Wang, S., Borre, Y., Anthony Ryan, C., Knol, J., Stanton, C., Dinan, T.G. and Cryan, J.F., 2017. Intervention strategies for cesarean section-induced alterations in the microbiota-gut-brain axis. Nutrition Reviews 75: 225-240. https://doi.org/10.1093/nutrit/nuw069
Murphy, K., Curley, D., O’Callaghan, T.F., O’Shea, C.A., Dempsey, E.M., O’Toole, P.W., Ross, R.P., Ryan, C.A. and Stanton, C., 2017. The composition of human milk and infant faecal microbiota over the first three months of life: a pilot study. Scientific Reports 7: 40597. https://doi.org/10.1038/srep40597
Nogacka, A., Salazar, N., Suarez, M., Milani, C., Arboleya, S., Solis, G., Fernandez, N., Alaez, L., Hernandez-Barranco, A.M., de Los Reyes-Gavilan, C.G., Ventura, M. and Gueimonde, M., 2017. Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates. Microbiome 5: 93. https://doi.org/10.1186/s40168-017-0313-3
Obermajer, T., Lipoglavsek, L., Tompa, G., Treven, P., Lorbeg, P.M., Matijasic, B.B. and Rogelj, I., 2014. Colostrum of healthy Slovenian mothers: microbiota composition and bacteriocin gene prevalence. PLoS ONE 10: e0123324. https://doi.org/10.1371/journal.pone.0123324
Ojo-Okunola, A., Claassen-Weitz, S., Mwaikono, K.S., Gardner-Lubbe, S., Stein, D.J., Zar, H.J., Nicol, M.P. and du Toit, E., 2019. Influence of socio-economic and psychosocial profiles on the human breast milk bacteriome of South African Women. Nutrients 11: 1390. https://doi.org/10.3390/nu11061390
Olomu, I.N., Pena-Cortes, L.C., Long, R.A., Vyas, A., Krichevskiy, O., Luellwitz, R., Singh, P. and Mulks, M.H., 2020. Elimination of “kitome” and “splashome” contamination results in lack of detection of a unique placental microbiome. BMC Microbiology 20: 157. https://doi.org/10.1186/s12866-020-01839-y
Pace, R.M., Williams, J.E., Robertson, B., Lackey, K.A., Meehan, C.L., Price, W.J., Foster, J.A., Sellen, D.W., Kamau-Mbuthia, E.W., Kamundia, E.W., Mbugua, S., Moore, S.E., Prentice, A.M., Kita, D.G., Kvist, L.J., Otoo, G.E., Ruiz, L., Rodriguez, J.M., Pareja, R.G., McGuire, M.A., Bode, L. and McGuire, M.K., 2021. Variation in human milk composition is related to differences in milk and infant fecal microbial communities. Microorganisms 9: 1153. https://doi.org/10.3390/microorganisms9061153
Padilha, M., Brejnrod, A., Danneskiold-Samsoe, N.B., Hoffmann, C., de Melo Iaucci, J., Cabral, V.P., Xavier-Santos, D., Taddei, C.R., Kristiansen, K. and Saad, S.M.I., 2020. Response of the human milk microbiota to a maternal prebiotic intervention is individual and influenced by maternal age. Nutrients 12: 1081. https://doi.org/10.3390/nu12041081
Pannaraj, P.S., Li, F., Cerini, C., Bender, J.M., Yang, S., Rollie, A., Adisetiyo, H., Zabih, S., Lincez, P.J., Bittinger, K., Bailey, A., Bushman, F.D., Sleasman, J.W. and Aldrovandi, G.M., 2017. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatrics 171: 647-654. https://doi.org/10.1001/jamapediatrics.2017.0378
Parnanen, K., Karkman, A., Hultman, J., Lyra, C., Bengtsson-Palme, J., Larsson, D.G.J., Rautava, S., Isolauri, E., Salminen, S., Kumar, H., Satokari, R. and Virta, M., 2018. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nature Communications 9: 3891. https://doi.org/10.1038/s41467-018-06393-w
Penders, J., Vink, C., Driessen, C., London, N., Thijs, C. and Stobberingh, E.E., 2005. Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breastfed and formula-fed infants by real-time PCR. FEMS Microbiology Letters 243: 141-147. https://doi.org/10.1016/j.femsle.2004.11.052
Perez, P.F., Dore, J., Leclerc, M., Levenez, F., Benyacoub, J., Serrant, P., Segura-Roggero, I., Schiffrin, E.J. and Donnet-Hughes, A., 2007. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 119: e724-732. https://doi.org/10.1542/peds.2006-1649
Quince, C., Ijaz, U.Z., Loman, N., Eren, A.M., Saulnier, D., Russell, J., Haig, S.J., Calus, S.T., Quick, J., Barclay, A., Bertz, M., Blaut, M., Hansen, R., McGrogan, P., Russell, R.K., Edwards, C.A. and Gerasimidis, K., 2015. Extensive modulation of the fecal metagenome in children with Crohn’s disease during exclusive enteral nutrition. American Journal of Gastroenterology 110: 1718-1729; quiz 1730. https://doi.org/10.1038/ajg.2015.357
Reyes, S.M., Allen, D.L., Williams, J.E., McGuire, M.A., McGuire, M.K., Hay, A.G. and Rasmussen, K.M., 2021. Pumping supplies alter the microbiome of pumped human milk: an in-home, randomized, crossover trial. American Journal of Clinical Nutrition 114: 1960-1970. https://doi.org/10.1093/ajcn/nqab273
Riaz Rajoka, M.S., Mehwish, H.M., Siddiq, M., Haobin, Z., Zhu, J., Yan, L., Shao, D., Xu, X. and Shi, J., 2017. Identification, characterization, and probiotic potential of Lactobacillus rhamnosus isolated from human milk. LWT 84: 271-280. https://doi.org/10.1016/j.lwt.2017.05.055
Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G.A.D., Gasbarrini, A. and Mele, M.C., 2019. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7. https://doi.org/10.3390/microorganisms7010014
Robertson, R.C., Seira Oriach, C., Murphy, K., Moloney, G.M., Cryan, J.F., Dinan, T.G., Paul Ross, R. and Stanton, C., 2017. Omega-3 polyunsaturated fatty acids critically regulate behaviour and gut microbiota development in adolescence and adulthood. Brain, Behavior, and Immunity 59: 21-37. https://doi.org/10.1016/j.bbi.2016.07.145
Ruiz, L., Bacigalupe, R., Garcia-Carral, C., Boix-Amoros, A., Arguello, H., Silva, C.B., de Los Angeles Checa, M., Mira, A. and Rodriguez, J.M., 2019. Microbiota of human precolostrum and its potential role as a source of bacteria to the infant mouth. Scientific Reports 9: 8435. https://doi.org/10.1038/s41598-019-42514-1
Sakwinska, O., Moine, D., Delley, M., Combremont, S., Rezzonico, E., Descombes, P., Vinyes-Pares, G., Zhang, Y., Wang, P. and Thakkar, S.K., 2016. Microbiota in breast milk of Chinese lactating mothers. PLoS ONE 11: e0160856. https://doi.org/10.1371/journal.pone.0160856
Salter, S.J., Cox, M.J., Turek, E.M., Calus, S.T., Cookson, W.O., Moffatt, M.F., Turner, P., Parkhill, J., Loman, N.J. and Walker, A.W., 2014. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biology 12: 87. https://doi.org/10.1186/s12915-014-0087-z
Sanjulian, L., Lamas, A., Barreiro, R., Cepeda, A., Fente, C.A. and Regal, P., 2021. Bacterial diversity of breast milk in healthy spanish women: evolution from birth to five years postpartum. Nutrients 13: 2414. https://doi.org/10.3390/nu13072414
Shreiner, A.B., Kao, J.Y. and Young, V.B., 2015. The gut microbiome in health and in disease. Current Opinion in Gastroenterology 31: 69-75. https://doi.org/10.1097/MOG.0000000000000139
Simpson, M.R., Avershina, E., Storro, O., Johnsen, R., Rudi, K. and Oien, T., 2018. Breastfeeding-associated microbiota in human milk following supplementation with Lactobacillus rhamnosus GG, Lactobacillus acidophilus La-5, and Bifidobacterium animalis ssp. lactis Bb-12. Journal of Dairy Science 101: 889-899.https://doi.org/10.3168/jds.2017-13411
Sinkiewicz, G. and Ljunggren, L., 2009. Occurrence of Lactobacillus reuteri in human breast milk. Microbial Ecology in Health and Disease 20: 122-126. https://doi.org/10.1080/08910600802341007
Stinson, L.F., Ma, J., Rea, A., Dymock, M. and Geddes, D.T., 2021. Centrifugation does not remove bacteria from the fat fraction of human milk. Scientific Reports 11: 572. https://doi.org/10.1038/s41598-020-79793-y
Sun, L., Dicksved, J., Priyashantha, H., Lundh, A. and Johansson, M., 2019. Distribution of bacteria between different milk fractions, investigated using culture-dependent methods and molecular-based and fluorescent microscopy approaches. Journal of Applied Microbiology 127: 1028-1037. https://doi.org/10.1111/jam.14377
Togo, A.H., Grine, G., Khelaifia, S., des Robert, C., Brevaut, V., Caputo, A., Baptiste, E., Bonnet, M., Levasseur, A., Drancourt, M., Million, M. and Raoult, D., 2019. Culture of methanogenic archaea from human colostrum and milk. Scientific Reports 9: 18653. https://doi.org/10.1038/s41598-019-54759-x
Treven, P., Mahnic, A., Rupnik, M., Golob, M., Pirs, T., Matijasic, B.B. and Lorbeg, P.M., 2019. Evaluation of Human Milk Microbiota by 16S rRNA Gene next-generation sequencing (NGS) and cultivation/MALDI-TOF mass spectrometry identification. Frontiers in Microbiology 10: 2612. https://doi.org/10.3389/fmicb.2019.02612
Turnbaugh, P.J., Ley, R.E., Hamady, M., Fraser-Liggett, C.M., Knight, R. and Gordon, J.I., 2007. The human microbiome project. Nature 449: 804-810. https://doi.org/10.1038/nature06244
Tuzun, F., Kumral, A., Duman, N. and Ozkan, H., 2013. Breast milk jaundice: effect of bacteria present in breast milk and infant feces. Journal of Pediatric Gastroenterology and Nutrition 56: 328-332. https://doi.org/10.1097/MPG.0b013e31827a964b
Ursell, L.K., Metcalf, J.L., Parfrey, L.W. and Knight, R., 2012. Defining the human microbiome. Nutrition Reviews 70 Suppl. 1: S38-44. https://doi.org/10.1111/j.1753-4887.2012.00493.x
Vuong, H.E., Yano, J.M., Fung, T.C. and Hsiao, E.Y., 2017. The microbiome and host behavior. Annual Review of Neuroscience 40: 21-49. https://doi.org/10.1146/annurev-neuro-072116-031347
Wang, Y. and Kasper, L.H., 2014. The role of microbiome in central nervous system disorders. Brain, Behavior, and Immunity 38: 1-12. https://doi.org/10.1016/j.bbi.2013.12.015
Wu, W.-K., Chen, C.-C., Panyod, S., Chen, R.-A., Wu, M.-S., Sheen, L.-Y. and Chang, S.-C., 2019. Optimization of fecal sample processing for microbiome study – The journey from bathroom to bench. Journal of the Formosan Medical Association 118: 545-555. https://doi.org/10.1016/j.jfma.2018.02.005
Yan, W., Luo, B., Zhang, X., Ni, Y. and Tian, F., 2021. Association and occurrence of bifidobacterial phylotypes between breast milk and fecal microbiomes in mother-infant dyads during the first 2 years of life. Frontiers in Microbiology 12: 669442. https://doi.org/10.3389/fmicb.2021.669442
Zhang, X., Mushajiang, S., Luo, B., Tian, F., Ni, Y. and Yan, W., 2020. The composition and concordance of Lactobacillus populations of infant gut and the corresponding breast-milk and maternal gut. Frontiers in Microbiology 11: 597911. https://doi.org/10.3389/fmicb.2020.597911
Zijlmans, M.A., Korpela, K., Riksen-Walraven, J.M., de Vos, W.M. and de Weerth, C., 2015. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology 53: 233-245. https://doi.org/10.1016/j.psyneuen.2015.01.006
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 475 | 464 | 54 |
PDF Views & Downloads | 707 | 680 | 98 |
The intestinal microbiota plays a major role in infant health and development. However, the role of the breastmilk microbiota in infant gut colonisation remains unclear. A systematic review was performed to evaluate the composition of the breastmilk microbiota and evidence for transfer to/colonisation of the infant gut. Searches were performed using PUBMED, OVID, LILACS and PROQUEST from inception until 18th March 2020 with a PUBMED update to December 2021. 88 full texts were evaluated before final critique based on study power, sample contamination avoidance, storage, purification process, DNA extraction/analysis, and consideration of maternal health and other potential confounders. Risk of skin contamination was reduced mainly by breast cleaning and rejecting the first milk drops. Sample storage, DNA extraction and bioinformatics varied. Several studies stored samples under conditions that may selectively impact bacterial DNA preservation, others used preculture reducing reliability. Only 15 studies, with acceptable sample size, handling, extraction, and bacterial analysis, considered transfer of bacteria to the infant. Three reported bacterial transfer from infant to breastmilk. Despite consistent evidence for the breastmilk microbiota, and recent studies using improved methods to investigate factors affecting its composition, few studies adequately considered transfer to the infant gut providing very little evidence for effective impact on gut colonisation.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 475 | 464 | 54 |
PDF Views & Downloads | 707 | 680 | 98 |