The full-length cDNA cloning and expression profiles of 14-3-3 genes from the mud crab Scylla paramamosain Estampador, 1949

In: Crustaceana

Two full-length cDNA sequences of 14-3-3 genes were isolated from the mud crab, Scylla paramamosain Estampador, 1949, using RT-PCR and RACE (rapid-amplification of cDNA ends). Sequence analysis indicates that both 14-3-3 genes contain an open reading frame of 744 bp with a deduced 247-amino-acid protein. The gene and protein sequences of Sp14-3-3 genes show 96 and 97% identity, respectively, and both Sp14-3-3 cluster together with other animal 14-3-3 proteins in phylogenetic tree analysis. Tissue specific expression analysis reveals that both Sp14-3-3 genes are ubiquitously expressed, however, their expression patterns are different from each other. Expressions of both Sp14-3-3 genes are sensitive to salinity decrease, even a 5 ppt drop from 30 ppt to 25 ppt, indicating that Sp14-3-3 genes are involved in osmoregulation. Our observations may contribute to a better understanding of the molecular and functional evolution of the 14-3-3 family in both crustaceans and (in)vertebrates as a whole.

  • AitkenA., 2006. 14-3-3 proteins: a historic overview. Semin. Cancer Biol., 16: 162-172.

  • AitkenA.CollingeD. B.van HeusdenB. P.IsobeT.RoseboomP. H.RosenfeldG.SollJ., 1992. 14-3-3 proteins: a highly conserved, widespread family of eukaryotic proteins. Trends Biochem. Sci., 17: 498-501.

    • Search Google Scholar
    • Export Citation
  • AllouisM.Le BouffantF.WildersR.PerozD.SchottJ. J.NoireaudJ.Le MarecH.MerotJ.EscandeD.BaroI., 2006. 14-3-3 is a regulator of the cardiac voltage-gated sodium channel Nav1.5. Circ. Res., 98: 1538-1546.

    • Search Google Scholar
    • Export Citation
  • BuranajitpiromD.AsuvapongpatanaS.WeerachatyanukulW.WongprasertK.NamwongW.PoltanaP.WithyachumnarnkulB., 2010. Adaptation of the black tiger shrimp, Penaeus monodon, to different salinities through an excretory function of the antennal gland. Cell Tissue Res., 340: 481-489.

    • Search Google Scholar
    • Export Citation
  • ChenF.LiQ.SunL.HeZ., 2006. The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress. DNA Res., 13: 53-63.

    • Search Google Scholar
    • Export Citation
  • CzirjakG.VuityD.EnyediP., 2008. Phosphorylation-dependent binding of 14-3-3 proteins controls TRESK regulation. J. Biol. Chem., 283: 15672-15680.

    • Search Google Scholar
    • Export Citation
  • DarlingD. L.YinglingJ.Wynshaw-BorisA., 2005. Role of 14-3-3 proteins in eukaryotic signaling and development. Curr. Top. Dev. Biol., 68: 281-315.

    • Search Google Scholar
    • Export Citation
  • DoughertyM. K.MorrisonD. K., 2004. Unlocking the code of 14-3-3. J. Cell Sci., 117: 1875-1884.

  • EvansD. H.PiermariniP. M.ChoeK. P., 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev., 85: 97-177.

    • Search Google Scholar
    • Export Citation
  • FerrarisR. P.Parado-EstepaF. D.De JesusE. G.LadjaJ. M., 1987. Osmotic and chloride regulation in the hemolymph of the tiger prawn, Penaeus monodon, during molting in various salinities. Mar. Biol., 95: 377-385.

    • Search Google Scholar
    • Export Citation
  • FiolD. F.KultzD., 2007. Osmotic stress sensing and signaling in fishes. FEBS J., 274: 5790-5798.

  • FuH.SubramanianR. R.MastersS. C., 2000. 14-3-3 proteins: structure, function, and regulation. Annu. Rev. Pharmacol. Toxicol., 40: 617-647.

    • Search Google Scholar
    • Export Citation
  • GardinoA. K.SmerdonS. J.YaffeM. B., 2006. Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: a comparison of the X-ray crystal structures of all human 14-3-3 isoforms. Semin. Cancer Biol., 16: 173-182.

    • Search Google Scholar
    • Export Citation
  • HamasakiK.MatsuiN.NogamiM., 2011. Size at sexual maturity and body size composition of mud crabs Scylla spp. caught in Don Sak, Bandon Bay, Gulf of Thailand. Fish. Sci., 77: 49-57.

    • Search Google Scholar
    • Export Citation
  • JosephA.PhilipR., 2007. Acute salinity stress alters the haemolymph metabolic profile of Penaeus monodon and reduces immunocompetence to white spot syndrome virus infection. Aquaculture, 272: 87-97.

    • Search Google Scholar
    • Export Citation
  • KaeodeeM.PongsomboonS.TassanakajonA., 2011. Expression analysis and response of Penaeus monodon 14-3-3 genes to salinity stress. Comp. Biochem. Physiol., 159: 244-251.

    • Search Google Scholar
    • Export Citation
  • KitauraJ.WadaK.NishidaM., 2002. Molecular phylogeny of grapsoid and ocypodoid crabs with special reference to the genera Metaplax and Macrophthalmus. J. Crust. Biol., 22: 682-693.

    • Search Google Scholar
    • Export Citation
  • KültzD.ChakravartyD.AdilakshmiT., 2001. A novel 14-3-3 gene is osmoregulated in gill epithelium of the euryhaline teleost Fundulus heteroclitus. J. Exp. Biol., 204: 2975-2985.

    • Search Google Scholar
    • Export Citation
  • MackintoshC., 2004. Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem. J., 381: 329-342.

    • Search Google Scholar
    • Export Citation
  • MhawechP., 2005. 14-3-3 proteins-an update. Cell Res., 15: 228-236.

  • MooreB. W.PerezV. J., 1967. Specific acid proteins of the nervous system. In: CarlsonF. D. (ed.), Physiological and biochemical aspects of nervous integration: 343-359. (Prentice-Hall, Englewood Cliffs, NJ).

    • Search Google Scholar
    • Export Citation
  • RobertsM. R., 2003. 14-3-3 proteins find new partners in plant cell signaling. Trends Plant Sci., 8: 218-223.

  • RomanoN.ZengC. S., 2012. Osmoregulation in decapod crustaceans: implications to aquaculture productivity, methods for potential improvement and interactions with elevated ammonia exposure. Aquaculture, 334: 12-23.

    • Search Google Scholar
    • Export Citation
  • TamuraK.DudleyJ.NeiM.KumarS., 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24: 1596-1599.

    • Search Google Scholar
    • Export Citation
  • van HemertM. J.NiemantsverdrietM.SchmidtT.BackendorfC.SpainkH. P., 2004. Isoform-specific differences in rapid nucleocytoplasmic shuttling cause distinct subcellular distributions of 14-3-3 sigma and 14-3-3 xi. J. Cell Sci., 117: 1411-1420.

    • Search Google Scholar
    • Export Citation
  • WangX.YangP.GaoQ.LiuX.KuangT.ShenS.HeY., 2008. Proteomic analysis of the response to high-salinity stress in Physcomitrella patens. Planta, 228: 167-177.

    • Search Google Scholar
    • Export Citation
  • XuW. F.ShiW. M., 2006. Expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots: analysis by real-time RT-PCR. Ann. Bot., 98: 965-974.

    • Search Google Scholar
    • Export Citation
  • XuW. F.ShiW. M., 2007. Mechanisms of salt tolerance in transgenic Arabidopsis thaliana constitutively overexpressing the tomato 14-3-3 protein TFT7. Plant Soil, 301: 17-28.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 74 52 6
Full Text Views 83 20 0
PDF Downloads 4 1 0