Active promoters are urgently needed for shrimp cells which are hard to be immortalized. Translationally controlled tumor protein (TCTP) is a widely and abundantly expressed, growth-related protein. In this study we successfully isolated the promoter (Ptctp) and ORF (= open reading frame) of the TCTP gene from Litopenaeus vannamei and analysed the promoter activity of Ptctp and the growth-promoting effects of over-expressed TCTP protein in the primary Oka organ (lymphoid tissue) cells. It was found, that cytomegavirus (CMV) promoter, highly active in mammalian and fish cells, had a driving activity too low to be detected in shrimp cells. However, shrimp Ptctp had a higher driving activity than Pcmv in the shrimp cells and an obvious fluorescent signal was observed in the shrimp cells transfected by a Pcmv-Ptctp-driven plasmid. However, no obvious growth-promoting effects were observed in the eGFP/TCTP [eGFP = enhanced green fluorescent protein] or TCTP-transfected shrimp cells possibly due to the relatively low expression efficiency.
Des promoteurs actifs sont nécessaires pour les cellules de crevettes qui sont difficiles à immortaliser. La protéine TCTP (Translationally controlled tumor protein) est une protéine largement et abondamment représentée, relié à la croissance. Dans cette étude nous avons avec succès isolé le promoteur (Ptctp) et ORF (= cadre de lecture ouverte) du gène TCTP de Litopenaeus vannamei et analysé l’activité du promoteur de Ptctp et les effets promoteurs sur la croissance de la protéine TCTP sur-exprimée dans les cellules du tissu lymphoïde. Il a été trouvé que le promoteur du cytomégalovirus (CMV), fortement actif chez les cellules de mammifères et de poissons, a un niveau d’activité trop faible pour être détecté dans les cellules de crevette. Cependant le Ptctp crevette a présenté un plus fort niveau d’activité que Pcmv dans les cellules de crevettes et un signal fluorescent évident a été observé dans les cellules de crevette transfectées par un plasmide Pcmv-Ptctp. Cependant, aucun effet de promotion de croissance n’a été observé sur eGFP/TCTP ou dans les cellules de crevette TCTP-transfectées, sans doute à cause d’une efficacité de l’expression relativement faible.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Bangrak, P., P. Graidist, W. Chotigeat & A. Phongdara, 2004. Molecular cloning and expression of a mammalian homologue of a translationally controlled tumor protein (TCTP) gene from Penaeus monodon shrimp. Journal of Biotechnology, 108: 219-226.
Bohm, H., R. Benndorf, M. Gaestel, B. Gross, P. Nürnberg, R. Kraft, A. Otto & H. Bielka, 1989. The growth-related protein P23 of the Ehrlich ascites tumor: translational controlled tumor protein, cloning and primary structure. Biochemistry International, 19(2): 277-286.
Bommer, U. A. & B. J. Thiele, 2004. The translationally controlled tumor protein (TCTP). International Journal of Biochemistry & Cell Biology, 36(3): 379-385.
Braasch, D. A., R. D. Ellender & B. L. Middlebrooks, 1999. Cell cycle components and their potential impact on the development of continuous in vitro penaeid cell replication. Methods in Cell Science, 21: 255. DOI:10.1023/A:1009869722917.
Chen, D., N. He & K. Lei, 2009. Genomic organization of the translationally controlled tumor protein (TCTP) gene from shrimp Marsupenaeus japonicas [sic]. Molecular Biology Reports, 36: 1135-1140.
Chen, S. N., S. C. Chi, G. H. Kou & I. C. Liao, 1986. Cell culture from tissues of grass prawn, Penaeus monodon. Fish Pathology, 21(3): 161-166.
Chen, S. N. & C. S. Wang, 1999. Establishment of cell culture systems from penaeid shrimp and their susceptibility to white spot disease and yellow head viruses. Methods in Cell Science, 21: 199-206.
Chuang, K. H., S. H. Ho & Y. L. Song, 2007. Cloning and expression analysis of heat shock cognate 70 gene promoter in tiger shrimp (Penaeus monodon). Gene, 405: 10-18.
Claydon, K. & L. Owens, 2008. Attempts at immortalization of crustacean primary cell cultures using human cancer genes. In Vitro Cellular & Developmental Biology — Animal, 44(10): 451-457.
Crane, M. S. J., 1999. Mutagensis and cell transformation in cell culture. Methods in Cell Science, 21: 245-253.
Dean, D. A., 1997. Import of plasmid DNA into the nucleus is sequence specific. Experimental Cell Research, 230: 293-302.
Dean, D. A., D. D. Strong & W. E. Zimmer, 2005. Nuclear entry of nonviral vectors. Gene Therapy, 12: 881-890.
Graidist, P., K. Fujise, W. Wanna, K. Sritunyalucksana & A. Phongdara, 2006. Establishing a role for shrimp fortilin in preventing cell death. Aquaculture, 255: 157-164.
Gross, B., M. Gaestel, H. Bohm & H. Bielka, 1989. cDNA sequence coding for a translationally controlled human tumor protein. Nucleic Acids Research, 17(20): 8367.
Han, Q., D. Dong, X. Zhang, C. Liang, Q. Lu & H. Guo, 2015. Problems with the use of liposome- and retrovirus-mediated gene transfer methods in the primary lymphoid cells of the Oka organs of the greasyback shrimp, Metapenaeus ensis (De Haan, 1844). Crustaceana, 88(12-14): 1351-1365.
Han, Q., P. Li, X. Lu, Z. Guo & H. Guo, 2013. Improved primary cell culture and subculture of lymphoid organs of the greasyback shrimp Metapenaeus ensis. Aquaculture, 410-411: 101-113.
He, N., Q. Qin & X. Xu, 2005. Differential profile of genes expressed in hemocytes of White Spot Syndrome Virus-resistant shrimp (Penaeus japonicus). Antiviral Research, 66: 39-45.
Heinemeyer, T., E. Wingender, I. Reuter, H. Hermjakob, A. E. Kel, O. V. Kel, E. V. Ignatieva, E. A. Ananko, O. A. Podkolodnaya, F. A. Kolpakov, N. L. Podkolodny & N. A. Kolchanov, 1998. Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Research, 26(1): 362-367.
Hsu, Y. C., J. J. Chern, Y. Cai, M. Y. Liu & K. W. Choi, 2007. Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature, 445(7129): 785-788.
Hu, G. B., D. Wang & J. X. Chen, 2010. Retroviral delivery of Simian Virus 40 Large T Antigen Gene into primary cultured ovary cells of the penaeid shrimp, Penaeus chinensis: indirect evidence of retroviral integration. Journal of World Aquaculture Society, 41(1): 137-143.
Hu, G. B., D. Wang, C. H. Wang & K. F. Yang, 2008. A novel immortalization vector for the establishment of penaeid shrimp cell lines. In Vitro Cellular & Developmental Biology — Animal, 44: 51-56.
Jayesh, P., J. Seena & I. S. B. Singh, 2012. Establishment of shrimp cell lines: perception and orientation. Indian Journal of Virology, 23(2): 244-251.
Jiang, Y. S., W. B. Zhan, S. B. Wang & J. Xing, 2006. Development of primary shrimp hemocyte cultures of Penaeus chinensis to study white spot syndrome virus (WSSV) infection. Aquaculture, 53: 114-119.
Kasornchandra, J., R. Khongpradit, U. Ekpanithanpong & S. Boonyaratpalin, 1999. Progress in the development of shrimp cell cultures in Thailand. Methods in Cell Science, 21: 231-235.
Kel, A. E., E. Gössling, I. Reuter, E. Cheremushkin, O. V. Kel-Margoulis & E. Wingender, 2003. MATCH™: a tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Research, 31: 3576-3579.
Lee, J. M., M. Takahashi, H. Mon, H. Mitsunobu, K. Koga, Y. Kawaguchi, Y. Nakajima & T. Kusakabe, 2008. Construction of gene expression systems in insect cell lines using promoters from the silkworm, Bombyx mori. Journal of Biotechnology, 133: 9-17.
Li, F., D. Zhang & K. Fujise, 2001. Characterization of fortilin, a novel anti-apoptotic protein. Journal of Biological Chemistry, 276(50): 47542-47549.
Li, J. D., L. J. Ding & S. H. He, 2009. Regulation of yellow fluorescent protein expression by CMV promoter and genetic flanking sequences of Eimeria. Acta Agriculturae Universitatis Jiangxiensis, 31(6): 1113-1116.
Luedeman, R. A. & D. V. Lightner, 1992. Development of an in vitro primary cell culture system from the penaeid shrimp, Penaeus stylirostris and Penaeus vannamei. Aquaculture, 101: 205-211.
Ma, Q., Y. Geng, W. Xu, Y. Wu, F. He, W. Shu, M. Huang, H. Du & M. Li, 2009. The role of translationally controlled tumor protein in tumor growth and metastasis of colon adenocarcinoma cells. Journal of Proteome Research, 9(1): 40-49.
MacDonald, S. M., T. Rafnar, J. Langdon & L. M. Lichtenstein, 1995. Molecular identification of an IgE-dependent histamine-releasing factor. Science, 269(5224): 688-690.
Maeda, M., E. Mizuki, T. Itami & M. Ohba, 2003. Ovarian primary tissue culture of the kuruma shrimp Marsupenaeus japonicus. In Vitro Cellular & Developmental Biology — Animal, 31: 208-212.
May, T., H. Hauser & D. Wirth, 2004. Transcriptional control of SV40 T-antigen expression allows a complete reversion of immortalization. Nucleic Acids Research, 32(18): 5529-5538.
Mulford, A. L. & B. Austin, 1998. Development of primary cell cultures from Nephrops norvegicus. Methods in Cell Science, 19: 269-275.
Nadala, E. C., Y. Lu & P. C. Loh, 1993. Primary culture of lymphoid, nerve and ovary cells from Penaeus stylirostris and Penaeus vannamei. In Vitro Cellular & Developmental Biology — Animal, 29(8): 620-622.
Nielsen, H. V., A. H. Johnsen, J. C. Sanchez, D. F. Hochstrasser & P. O. Schiøtz, 1998. Identification of a basophil leukocyte interleukin-3-regulated protein that is identical to IgE-dependent histamine-releasing factor. Allergy, 53(7): 642-652.
Rid, R., K. Onder, A. Trost, J. Bauer, H. Hintner, M. Ritter, M. Jakab, I. Costa, W. Reischl, K. Richter, S. MacDonald, M. Jendrach, J. Bereiter-Hahn & M. Breitenbach, 2010. H2O2-dependent translocation of TCTP into the nucleus enables its interaction with VDR in human keratinocytes: TCTP as a further module in calcitriol signalling. Journal of Steroid Biochemistry and Molecular Biology, 118(1-2): 29-40.
Shi, Y., M. Soderlund, J. Xiang & Y. Lu, 2015. Function and regulation domains of a newly isolated putative β-actin promoter from Pacific white shrimp. PLoS ONE, 10(4): e0122262. DOI:10.1371/journal.pone.0122262.
Shike, H., C. Shimizu, K. S. Klimpel & J. C. Burns, 2000. Expression of foreign genes in primary cultured cells of the blue shrimp Penaeus stylirostris. Marine Biology, 137: 605-611.
Spann, K. M. & R. J. G. Lester, 1997. Viral diseases of penaeid shrimp with particular reference to four viruses recently found in shrimp from Queensland. World Journal of Microbiology & Biotechnology, 13(4): 419-426.
Stürzenbaum, S. R., P. Kille & A. J. Morgan, 1998. Identification of heavy metal induced changes in the expression patterns of the translationally controlled tumour protein (TCTP) in the earthworm Lumbricus rubellus. Biochimica et Biophysica Acta, 1398: 294-304.
Takahashi, K. & S. Yamanaka, 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4): 663-676.
Tani, T., H. Shimada, Y. Kato & Y. Tsunoda, 2007. Bovine oocytes with the potential to reprogram somatic cell nuclei have a unique 23-kDa protein, phosphorylated transcriptionally controlled tumor protein (TCTP). Cloning and Stem Cells, 9(2): 267-280.
Tapay, L. M., Y. A. Lu, J. A. Brock, E. C. B. Nadala & P. C. Loh, 1995. Transformation of primary cultures of shrimp (Penaeus stylirostris) lymphoid (Oka) organ with Simian virus-40(T) antigen. Experimental Biology and Medicine (Maywood), 209: 73-78.
Thiele, H., M. Berger, C. Lenzner, H. Kuhn & B. J. Thiele, 1998. Structure of the promoter and complete sequence of the gene coding for the rabbit translationally controlled tumor protein (TCTP) P23. European Journal of Biochemistry, 257: 62-68.
Tong, S. L., H. Li & H. Z. Miao, 1997. The establishment and partial characterization of a continuous fish cell line FG-9307 from the gill of flounder Paralichthys olivaceus. Aquaculture, 156: 327-333.
Toullec, J. Y., Y. Crozat, J. Patrois & P. Porcheron, 1996. Development of primary cell cultures from the penaeid shrimps Penaeus vannamei and P. indicus. Journal of Crustacean Biology, 16(4): 643-649.
Tuynder, M., L. Susini, S. Prieur, S. Besse, G. Fiucci, R. Amson & A. Telerman, 2002. Biological models and genes of tumor reversion: cellular reprogramming through tpt1/TCTP and SIAH-1. Proceedings of the National Academy of Sciences of the United States of America, 99(23): 14976-14981.
Venugopal, T., 2005. Evolution and expression of translationally controlled tumour protein (TCTP) of fish. Comparative Biochemistry and Physiology (B, Biochemistry and Molecular Biology) 142(1): 8-17.
Wang, S., X. F. Zhao & J. X. Wang, 2008. Molecular cloning and characterization of the translationally controlled tumor protein from Fenneropenaeus chinensis. Molecular Biology Reports, 36: 1638. DOI:10.1007/s11033-008-9369-2.
Xu, A., A. R. Bellamy & J. A. Taylor, 1999. Expression of translationally controlled tumor protein is regulated by calcium at both the transcriptional and post-transcriptional level. Biochemistry Journal, 342(3): 683-689.
Zhan, W. B., Y. H. Wang, J. L. Fryer, K. K. Yu, H. Fukuda & Q. X. Meng, 1998. White spot syndrome virus infection of cultured shrimp in China. Journal of Aquatic Animal Health, 10(4): 405-410.
Zhang, X., L. Yu, F. Li & J. Xiang, 2006. Transfection and expression of the EGFP gene in the primarily cultured cells from Chinese shrimp Fenneropenaeus chinensis. China Biotechnology, 26(2): 38-43.
| All Time | Past 365 days | Past 30 Days | |
|---|---|---|---|
| Abstract Views | 709 | 247 | 22 |
| Full Text Views | 26 | 0 | 0 |
| PDF Views & Downloads | 32 | 1 | 0 |
Active promoters are urgently needed for shrimp cells which are hard to be immortalized. Translationally controlled tumor protein (TCTP) is a widely and abundantly expressed, growth-related protein. In this study we successfully isolated the promoter (Ptctp) and ORF (= open reading frame) of the TCTP gene from Litopenaeus vannamei and analysed the promoter activity of Ptctp and the growth-promoting effects of over-expressed TCTP protein in the primary Oka organ (lymphoid tissue) cells. It was found, that cytomegavirus (CMV) promoter, highly active in mammalian and fish cells, had a driving activity too low to be detected in shrimp cells. However, shrimp Ptctp had a higher driving activity than Pcmv in the shrimp cells and an obvious fluorescent signal was observed in the shrimp cells transfected by a Pcmv-Ptctp-driven plasmid. However, no obvious growth-promoting effects were observed in the eGFP/TCTP [eGFP = enhanced green fluorescent protein] or TCTP-transfected shrimp cells possibly due to the relatively low expression efficiency.
Des promoteurs actifs sont nécessaires pour les cellules de crevettes qui sont difficiles à immortaliser. La protéine TCTP (Translationally controlled tumor protein) est une protéine largement et abondamment représentée, relié à la croissance. Dans cette étude nous avons avec succès isolé le promoteur (Ptctp) et ORF (= cadre de lecture ouverte) du gène TCTP de Litopenaeus vannamei et analysé l’activité du promoteur de Ptctp et les effets promoteurs sur la croissance de la protéine TCTP sur-exprimée dans les cellules du tissu lymphoïde. Il a été trouvé que le promoteur du cytomégalovirus (CMV), fortement actif chez les cellules de mammifères et de poissons, a un niveau d’activité trop faible pour être détecté dans les cellules de crevette. Cependant le Ptctp crevette a présenté un plus fort niveau d’activité que Pcmv dans les cellules de crevettes et un signal fluorescent évident a été observé dans les cellules de crevette transfectées par un plasmide Pcmv-Ptctp. Cependant, aucun effet de promotion de croissance n’a été observé sur eGFP/TCTP ou dans les cellules de crevette TCTP-transfectées, sans doute à cause d’une efficacité de l’expression relativement faible.
| All Time | Past 365 days | Past 30 Days | |
|---|---|---|---|
| Abstract Views | 709 | 247 | 22 |
| Full Text Views | 26 | 0 | 0 |
| PDF Views & Downloads | 32 | 1 | 0 |