Eight Pinus radiata D. Don (Radiata pine) increment core samples representative of a total of thirty-two increment cores were selected for the development of an EL(SS) (longitudinal modulus of elasticity calculated from SilviScan-2 data) calibration based on NIR spectra obtained from the radial–longitudinal face of each sample in 10-mm increments. The primary aim of the work was to investigate if an EL(SS) calibration developed using a subsample of cores representative of a larger set provided better predictions of EL(SS) than those reported in Schimleck et al. (2002a). The EL(SS) calibration was developed using eight factors giving an excellent relationship between SilviScan-2 determined EL(SS) and NIR fitted EL(SS) (coefficient of determination (R2) = 0.97) and a low standard error of calibration (SEC) (0.91 GPa).
To test the EL(SS) calibration, NIR spectra were obtained in 10-mm sections from the radial–longitudinal face of two intact P. radiata increment cores and EL(SS) of each section predicted. NIR estimates of EL(SS) were in excellent agreement with EL(SS) determined using SilviScan-2 data, with R2 of 0.99 (core A) and 0.98 (core B). Standard error of predictions (SEP) of 1.6 GPa (core A) and 1.2 GPa (core B) were obtained. Both sets of predictions closely followed the patterns of EL(SS) radial variation determined experimentally. EL(SS) calibration based on NIR spectra obtained from a set of representative cores can provide excellent predictions of EL(SS). The predictions were superior to those reported in Schimleck et al. (2002a).
| All Time | Past 365 days | Past 30 Days | |
|---|---|---|---|
| Abstract Views | 33 | 0 | 0 |
| Full Text Views | 383 | 66 | 3 |
| PDF Views & Downloads | 227 | 80 | 12 |
Eight Pinus radiata D. Don (Radiata pine) increment core samples representative of a total of thirty-two increment cores were selected for the development of an EL(SS) (longitudinal modulus of elasticity calculated from SilviScan-2 data) calibration based on NIR spectra obtained from the radial–longitudinal face of each sample in 10-mm increments. The primary aim of the work was to investigate if an EL(SS) calibration developed using a subsample of cores representative of a larger set provided better predictions of EL(SS) than those reported in Schimleck et al. (2002a). The EL(SS) calibration was developed using eight factors giving an excellent relationship between SilviScan-2 determined EL(SS) and NIR fitted EL(SS) (coefficient of determination (R2) = 0.97) and a low standard error of calibration (SEC) (0.91 GPa).
To test the EL(SS) calibration, NIR spectra were obtained in 10-mm sections from the radial–longitudinal face of two intact P. radiata increment cores and EL(SS) of each section predicted. NIR estimates of EL(SS) were in excellent agreement with EL(SS) determined using SilviScan-2 data, with R2 of 0.99 (core A) and 0.98 (core B). Standard error of predictions (SEP) of 1.6 GPa (core A) and 1.2 GPa (core B) were obtained. Both sets of predictions closely followed the patterns of EL(SS) radial variation determined experimentally. EL(SS) calibration based on NIR spectra obtained from a set of representative cores can provide excellent predictions of EL(SS). The predictions were superior to those reported in Schimleck et al. (2002a).
| All Time | Past 365 days | Past 30 Days | |
|---|---|---|---|
| Abstract Views | 33 | 0 | 0 |
| Full Text Views | 383 | 66 | 3 |
| PDF Views & Downloads | 227 | 80 | 12 |