Fascination with petrified wood has stimulated interest in understanding the process of natural petrifaction. Early attempts of modeling natural petrifaction in the laboratory have been limited to mimicking incipient permineralization resulting in the creation of silica casts of pore spaces and inner cell walls. Silica lithomorphs produced through artificial silicification provided a possible avenue for studying microstructure of wood. More recently artificial petrifaction is motivated by the goal of creating advanced ceramic materials for engineering applications. The concept of using wood as a biotemplate has led to the creation of porous ceramics by cell wall replacement. To some extent artificial and natural petrifaction processes are comparable; although, some of the materials and procedures used in the laboratory are not found in nature. Research focused on the composition and structure of fossil wood from different-aged deposits is compared with research focused on the development of wood-templated porous ceramics. Differences and similarities in the pathways of natural silicification and creation of biomorphous ceramics are discussed. The comparison between artificial and natural silicification highlights the particular significance of the degree to which (de)lignification is needed for silica permeation.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 161 | 0 | 0 |
Full Text Views | 814 | 198 | 17 |
PDF Views & Downloads | 1073 | 311 | 42 |
Fascination with petrified wood has stimulated interest in understanding the process of natural petrifaction. Early attempts of modeling natural petrifaction in the laboratory have been limited to mimicking incipient permineralization resulting in the creation of silica casts of pore spaces and inner cell walls. Silica lithomorphs produced through artificial silicification provided a possible avenue for studying microstructure of wood. More recently artificial petrifaction is motivated by the goal of creating advanced ceramic materials for engineering applications. The concept of using wood as a biotemplate has led to the creation of porous ceramics by cell wall replacement. To some extent artificial and natural petrifaction processes are comparable; although, some of the materials and procedures used in the laboratory are not found in nature. Research focused on the composition and structure of fossil wood from different-aged deposits is compared with research focused on the development of wood-templated porous ceramics. Differences and similarities in the pathways of natural silicification and creation of biomorphous ceramics are discussed. The comparison between artificial and natural silicification highlights the particular significance of the degree to which (de)lignification is needed for silica permeation.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 161 | 0 | 0 |
Full Text Views | 814 | 198 | 17 |
PDF Views & Downloads | 1073 | 311 | 42 |