Wood evolution: Baileyan trends and Functional traits in the fossil record

in IAWA Journal
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.

Help

 

Have Institutional Access?

Login with your institution. Any other coaching guidance?

Connect

ABSTRACT

We revisited questions about changes in the incidences of functional wood anatomical traits through geologic time and compared the incidences of these traits in the fossil record with modern wood anatomical diversity patterns in order to test classical (“Baileyan”) and more recent ecophyletic hypotheses of xylem evolution. We contrast patterns through time for tropical and higher (paleo)latitudes. Data are from the InsideWood database. There are striking differences between woods from high and mid latitudes versus tropical (paleo)-latitudes. At temperate and subtropical latitudes (Laurasia and high latitude Gondwana), the epoch by epoch time series supports the Baileyan transformation series of vessel-bearing woody angiosperms (basal woody angiosperms and eudicots): “primitive” features such as scalariform perforations, exclusively solitary vessels, apotracheal diffuse parenchyma and heterocellular rays abound in the Cretaceous and become much less frequent in the Cenozoic, especially post-Eocene. In contrast, in the paleotropics hardly any changes occur in the incidences – each epoch has an equally “modern” spectrum of wood anatomical attributes. Although climatic gradients from the poles to the equator were less steep in the Cretaceous than in the late Cenozoic, the wood anatomical differences between mid-high latitude woods and tropical woods were much more pronounced in the Cretaceous than in later epochs. This seeming paradox is discussed but we cannot resolve it.

We suggest that tropical conditions have accelerated xylem evolution towards greater hydraulic efficiency (simple perforations), biological defense and hydraulic repair (elaborate paratracheal parenchyma patterns) as evidenced by late Cretaceous tropical latitude woods having near modern incidences of almost all traits. At higher paleolatitudes of both the Northern and Southern Hemisphere “ancestral” features such as scalariform perforations were retained in cooler and frost-prone regions where they were not selected against in mesic habitats because of lower demands on conductive efficiency, and could even be advantageous in trapping freeze-thaw embolisms. The fossil wood record remains too incomplete for testing hypotheses on the wood anatomy of the earliest angiosperms. The low incidence of so-called “xerophobic” woods sensu Feild with scalariform perforations with numerous (over 40) closely spaced bars in the Cretaceous tropical fossil record is puzzling. At higher paleolatitudes such woods are common in the Cretaceous.

Ring porosity, an indicator of seasonal climates and deciduousness, occurs at low levels in the Cretaceous and Paleogene at higher paleolatitudes only, and reaches modern levels in the Miocene. In Neogene and Recent temperate Northern Hemisphere, wide vessels are virtually restricted to ring-porous woods. In the tropics, there is a low incidence of ring porosity throughout all epochs.

The fossil record indicates that ecophysiological adaptation to tropical or temperate conditions was already evident in the Cretaceous with considerable latitudinal differences.

  • AllenSE. 2017. Reconstructing the local vegetation of the Lower Eocene Blue Rim site of southwestern Wyoming using fossil wood. Int. J. Plant Sci.178: 689714. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AnagnostouEJohnEHEdgarKMFosterGLRidgwellAInglisGNPancostRDLuntDJPearsonPN. 2016. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.Nature533 (7603): 380384M. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BaasP.1976. Some functional and adaptive aspects of vessel element member morphology. In: BaasPBoltonAJCatlingDM (eds.) Wood structure in biological and technological research. Leiden Botanical Series3: 157181. Leiden University Press.

    • Search Google Scholar
    • Export Citation
  • BaasP.1986. Ecological patterns of xylem anatomy. In: GivnishJ (ed.) On the economy of plant form and function: 327352. Cambridge University PressCambridge, New York.

    • Search Google Scholar
    • Export Citation
  • BaasPEwersFWDavisSDWheelerEA. 2004. The evolution of xylem physiology. In: HemsleyARPooleI (eds.) Evolution of plant physiology. From whole plants to ecosystems: 273296. Linnaean Society Symposium Series No. 21.Elsevier Academic Press.

    • Search Google Scholar
    • Export Citation
  • BaasPSchweingruberFH. 1987. Ecological trends in wood anatomy of trees, shrubs and climbers from Europe. IAWA Bull. n. s.8: 245274. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BaasPWheelerEA. 2011. Wood anatomy and climate change. In: HodkinsonTRJonesMBWaldrenSParnellJ (eds.) Climate change and systematics: 141155. The Systematics Association Special: Vol. 78Cambridge University Press.

    • Search Google Scholar
    • Export Citation
  • BaasPWheelerEAJansenS. 2003. Ecological adaptations and deep phylogenetic splits - evidence and questions from the secondary xylem. In: StuessyTFMayerVHorändelE (eds.) Deep morphology - toward a renaissance of morphology in plant systematics: 221239. Regnum VegetabileVol. 141Gartner VerlagLiechtenstein.

    • Search Google Scholar
    • Export Citation
  • BaileyIW. 1924. The problem of identifying the wood of Cretaceous and later dicotyledons: Paraphyllanthoxylon arizonense. Ann. Bot.38: 439451.

    • Search Google Scholar
    • Export Citation
  • BaileyIW. 1953. Evolution of the tracheary tissue of land plants. Amer. J. Bot. 40: 48. DOI: .

  • BaileyIWTupperWW. 1918. Size variation in tracheary cells. I. A comparison between the secondary xylems of vascular cryptograms, gymnosperms and angiosperms. Proc. Amer. Acad. Arts Sci. 54: 149204. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BeeckmanH.2016. Wood anatomy and trait-based ecology. IAWA J.37: 127151. DOI: .

  • BouraA De FranceschiD. 2007. Is porous wood structure exclusive of deciduous trees?C. R. Palevol6: 385391. DOI: .

  • BowenGJ. 2007. When the world turned cool. Nature445: 607608. DOI: .

  • BraunHJ. 1970. Funktionelle Histologie der sekundären Sprossachse. I. Das Holz. Encyclopedia of Plant Anatomy Band IX part 1. Gebrüder BorntraegerBerlin, Stuttgart.

    • Search Google Scholar
    • Export Citation
  • CahoonEJ. 1972. Paraphyllanthoxylon alabamense – a new species of fossil dicotyledonous wood. Amer. J. Bot.59: 511. DOI: .

  • CantrillDJPooleI. 2005. Taxonomic turnover and abundance in Cretaceous to Tertiary wood floras of Antarctica: implications for changes in forest ecology. Palaeogeogr., Palaeoclim. Palaeoecol.215: 205219.

    • Search Google Scholar
    • Export Citation
  • CarlquistS.1975. Ecological strategies of xylem evolution. University of California PressBerkeley.

  • CarlquistS.2001. Wood anatomy: Systematic, ecological, and evolutionary aspects of dicotyledonous wood. Ed. 2. Springer Series in Wood Science.

    • Search Google Scholar
    • Export Citation
  • CarlquistS.2012. How wood evolves: a new synthesis. Botany90: 901940. DOI: .

  • CarlquistS.2015. Living cells in wood. 1. Absence, scarcity and histology of axial parenchyma as keys to function. Bot. J. Linn. Soc.177: 291321. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChristmanMASperryJS. 2010. Single-vessel flow measurements indicate scalariform perforation plates confer higher flow resistance than previously estimated. Plant Cell Environ.33: 431443. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CrawleyM. 2001. Angiosperm woods from British Lower Cretaceous and Palaeogene Deposits. Special Papers in Palaentology 66. The PalaeontologicalAssociation. 100 pp.

    • Search Google Scholar
    • Export Citation
  • CrivellaroASchweingruberFH. 2013. Atlas of wood bark and pith anatomy of eastern Mediterranean trees and shrubs with a special focus on Cyprus. Springer.

    • Search Google Scholar
    • Export Citation
  • DavisSDSperryJSHackeUG. 1999. The relationship between xylem conduit diameter and cavitation caused by freezing. Amer. J. Bot.86: 13671372. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DoyleJA. 2015. Recognising angiosperm clades in the Early Cretaceous fossil record. Historical Biology: Intern. J. Paleobiol.27: 414429. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DoyleJAEndressP. 2010. Integrating Early Cretaceous fossils into the phylogeny of living angiosperms: Magnoliidae and eudicots. J. Syst. Evol.48: 135. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ElliottWSJrFosterJD. 2014. Petrified wood of southwestern Oregon: Implications for Cenozoic climate change. Palaeogeogr., Palaeoclim. Palaeoecol.402: 111. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Estrada-RuizEMartínez-CabreraHICevallos-FerrizSRS. 2007. Fossil woods from the late Campanian-early Maastrichtian Olmos Formation, CoahuilaMexico. Rev. Palaeobot. Palynol.145: 123133. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Estrada-RuizEParrottJMUpchurchGRJrWheelerEAThompsonDLMackGHMurrayMM. 2012. The wood flora from the Upper Cretaceous Crevasse Canyon and McRae Formation, south-central New Mexico, USA: A progress report: 503–518. New Mexico Geological Society Guidebook 63rd Field ConferenceWarm SpringsRegion.

    • Search Google Scholar
    • Export Citation
  • EwersF.1985. Xylem structure and water conduction in conifer trees, dicot trees, and lianas. IAWA Bull. n. s.6: 393407. DOI: .

  • FeildTSChateletDSBrodribbTJ. 2009. Ancestral xerophobia: a hypothesis on the whole plant ecophysiology of early angiosperms. Geobiology7: 237264. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FeildTS & WilsonJP. 2012. Evolutionary voyage of angiosperm vessel structure-function and its significance for early angiosperm success. Int. J. Plant Sci.173: 596609. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FFPRIWood Database. Forestry and Forest Products Research Institute, Ibaraki, Japan. Published online: http://db.ffpri.affrc.go.jp/WoodDB/index-E.html.

    • Search Google Scholar
    • Export Citation
  • FlicheP.1905. Note sur les bois fossils de Madagascar. Bull. Soc. Géol. France 4 sér. 5: 346358.

  • FriisEMCranePRPedersenKR. 2011. Early flowers and angiosperm evolution. Cambridge University Press. 585 pp.

  • GilbertSG. 1940. Evolutionary significance of ring porosity in woody angiosperms. Bot. Gaz.102: 105120.

  • GleasonSMWestobyMJansenSChoatBHackeUGPrattRBBhaskarRBrodribbTJBucciSJCaoK-FCochardHDelzonSDomecJ-CFanZ-XFeildTSJacobsenALJohnsonDMLensFMaheraliHMartínez-VilaltaJMayrSMcCullohKAMencucciniMMitchellPJMorrisHNardiniAPittermannJPlavcováLSchreiberSGSperryJSWrightIJZanneA.2016. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytologist209: 123136. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GrahamA.1999. Late Cretaceous and Cenozoic history of North American vegetation. Oxford University PressNew York.

  • HackeUGSpicerRSchreiberSGPlavcováL. 2017. An ecophysiological and developmental perspective on variation in vessel diameter. Plant Cell Environ. 40: 831845. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HarrarES. 1946. Notes on starch grains in septate fiber-tracheids. Trop. Woods85: 19.

  • HerendeenPS. 1991. Charcoalified angiosperm wood from the Cretaceous of eastern North America and Europe. Rev. Palaeobot. Palynol.69: 225239. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HerendeenPSFriisEMPedersenKRCranePR. 2017. Palaeobotanical redux: revisiting the age of the angiosperms. Nature Plants 3, Article number 17015. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HerendeenPSWheelerEABaasP. 1999. Angiosperm wood evolution and the potential contribution of paleontological data. Bot. Rev.65: 278300. DOI: .

  • HrenMTSheldonNDGrimesSTCollinsonMEHookerJJBuglerMLohmannKC. 2013. Terrestrial cooling in Northern Europe during the Eocene-Oligocene transition. Proc. Nat. Acad. Sci.110: 75627567. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CommitteeIAWA. 1989. IAWA List of microscopic features for hardwood identification. IAWA Bull. n. s.10: 219332.

  • InsideWood. 2004 -onwards. Published on the Internet: http://insidewood.lib.ncsu.edu/search.

  • JansenSBaasPGassonPLensFSmetsE. 2004. Variation in xylem structure from tropics to tundra: Evidence from vestured pits. Proc. Nat. Acad. Sci.101: 88338837. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JansenSNardiniA. 2014. From systematic to ecological wood anatomy and finally plant hydraulics: are we making progress in understanding xylem evolution?New Phytologist203: 1215. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JudNA. 2015. Fossil evidence for a herbaceous diversification of early eudicot angiosperms during the Early Cretaceous. Proc. Roy. Soc. B Biol. Sci.282(1814). DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JudNAWheelerEARothwellGWStockeyRA. 2017. Angiosperm wood from the Upper Cretaceous (Coniacian) of British ColumbiaCanada. IAWA J.38: 141161. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KottekMGrieserJBeckCRudolfBRubelF. 2006. World map of the Köppen-Geiger climate classification updated. Meteorol. Zeitschr.15: 259263. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KribsDA. 1935. Salient lines of structural specialization in the wood rays of dicotyledons. Bot. Gaz.96: 547557. DOI: .

  • KribsDA. 1937. Salient lines of structural specialization in the wood parenchyma of dicotyledons. Bull. Torrey Bot. Club64: 177187. DOI: .

  • LachenbruchBMcCullohKA. 2014. Traits, properties, and performance: how woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant. New Phytologist204: 747764. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LehmanTMWheelerEA. 2001. A fossil dicotyledonous woodland/forest from the Upper Cretaceous of Big Bend National Park, Texas. Palaios16: 102108. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LensFDavinNSmetsE & del ArcoM. 2013. Insular woodiness on the Canary Islands: a remarkable case of convergent evolution. Int. J. Plant Sci.174: 9921013. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LensFVoxRACharrierGvan der NietTMerckxVBaasPGuterrezJAJacobsBDórisLCSmetsEDelzonSJanssensSB. 2016. Scalariform-to-simple transition in vessel perforation plates triggered by differences in climate during the evolution of Adoxaceae. Ann. Bot.118: 10431056. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LinnertCRobinsonSALeesJABownPRPérez-RodríguezIPetrizzoMRFalzoniFLittlerKArzJARussellEE. 2014. Evidence for global cooling in the Late Cretaceous. Nature Communications5: 4194. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LiuZPaganiMZinnikerDDeContoRHuberMBrinkhuisHShahSRLeckieRMPearsonA. 2009. Global cooling during the Eocene-Oligocene climate transition. Science323 (5918): 11871190. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martínez-CabreraHIEstrada-RuizE. 2014. Wood anatomy reveals high theoretical hydraulic conductivity and low resistance to vessel implosion in a Cretaceous fossil forest from northern Mexico. PLoS ONE9 (10): . DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martínez-CabreraHIZhengJEstrada-RuizE. 2017. Wood functional disparity lags behind taxonomic diversity in angiosperms. Rev. Palaeobot. Palynol.246: 251257. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MetcalfeCRChalkL. 1950. Anatomy of the dicotyledons. Vol. 1 & 2. Clarendon PressOxford, U.K.

  • MorrisHGillinghamMAFPlavcováLGleasonSMOlsonME. CoomesDAFichtlerEKlepschMMMartínez-CabreraHIMcGlinnDJWheelerEAZhengJZieminskaKJansenS. 2018. Vessel diameter is related to amount and spatial arrangement of axial parenchyma in woody angiosperms. Plant Cell Environ.41: 245260. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MorrisHPlavcováLCveckoPFichtlerEGillinghamMAFMartinez-CabreraHIMcGlinnDJWheelerEZhengJZieminskaKJansenS. 2016. A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytologist209: 15531565. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NishidaMNishidaHNasaT. 1988. Anatomy and affinities of the petrified plants from the Tertiary of Chile. V. J. Plant Res.10: 293309. DOI: .

  • NunesCIPujanaRREscapaIHGandolfoMACúneoNR. 2018. A new species of Carlquistoxylon from the Early Cretaceous of Patagonia (Chubut province, Argentina): the oldest record of angiosperm wood from South America. IAWA J.39: 406426. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OlsonDMDinersteinEWikramanayakeEDBurgessNDPowellGVNUnderwoodEC D’AmicoJAItouaIStrandHEMorrisonJCLoucksCJAllnuttTFRickettsTHKuraYLamoreuxJFWettengelWWHedaoPKassemKR. 2001. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience51: 933938. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OlsonME. 2012. Linear trends in botanical systematics and the major trends of xylem evolution. Bot. Rev.78: 154183. DOI: .

  • OlsonMEAnfodilloTRosellJAPetitGCrivellaroAIsnardSLeón-GómezCAlvarado-CárdenasLOCastorenaM. 2014. Universal hydraulics of the flowering plants: vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecology Letters17: 988997. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PageVM. 1980. Dicotyledonous wood from the Upper Cretaceous of central California. II. J. Arnold Arbor.61: 723748. https://www.jstor.org/stable/43782080.

    • Search Google Scholar
    • Export Citation
  • PageVM. 1981. Dicotyledonous wood from the Upper Cretaceous of central California. III. Conclusions. J. Arnold Arbor.62: 437455. https://www.jstor.org/stable/43782095.

    • Search Google Scholar
    • Export Citation
  • PhilippeMGomezBGirardVCoiffardCDaviero-GomezVThévenardFBillon-BruyatJ-PGuiomarMLatilJ-LLe LoeuffJNéraudeauDOliveroDSchloglJ. 2008. Woody or not woody? Evidence for early angiosperm habit from the Early Cretaceous fossil wood record of Europe. Palaeoworld17: 142152. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PrattRBJacobsenAL. 2017. Conflicting demands on angiosperm xylem: Tradeoffs among storage, transport and biomechanics. Plant Cell Environ.40: 897913. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ProtheroDR. 1994. The Eocene–Oligocene transition: Paradise lost. Columbia University PressNew York. .

  • RaupDM. 1991. The future of analytical paleobiology. In: GilinskyNLSignorRW (eds.) Analytical paleobiology. Short courses in paleontology No. 4: 207214 (1996). Paleontological SocietyUniversity of TennesseeKnoxville.

    • Search Google Scholar
    • Export Citation
  • RossellJAOlsonMEAnfodilloT. 2017. Scaling of xylem vessel diameter with plant size: causes, predictions, and outstanding questions. Curr. For. Reports3: 4659. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SauquetHMagallónS. 2018. Key questions and challenges in angiosperm macroevolution. New Phytologist219: 11701187. DOI: .

  • SchweingruberFH. 1990. Anatomy of European woods. Verlag Paul Haupt, Publishers, Bern, Stuttgart.

    • Export Citation
  • ScoteseCR. 2003. Paleomap Project. http://www.scotese.com.

    • Export Citation
  • SerlinBS. 1982. An early Cretaceous fossil flora from northwest Texas: its composition and implications. Palaeontographica182B: 5286.

    • Search Google Scholar
    • Export Citation
  • SmithSYManchesterSRSamantBMohabeyDMWheelerEABaasPKapgateDSrivastavaRSheldonN. 2015. Integrating paleobotanical, paleosol, and stratigraphic data to study critical transitions: A case study from the Late Cretaceous-Paleocene of India. In: PollyPDHeadJJFoxDL (eds.) Earth-Life transitions: Paleobiology in the context of earth system evolution. Paleontological Society Papers21: 137166. Yale PressNew Haven, CT.

    • Search Google Scholar
    • Export Citation
  • SperryJSHackeUGFeildTSSanoYSikkemaEH. 2007. Hydraulic consequences of vessel evolution. Int. J. Plant Sci.168: 11271139. DOI: .

  • SperryJSMeinzerFCMcCullohKA. 2008. Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant Cell Environ.31: 632645. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SpicerR.2016. Variation in angiosperm wood structure and its physiological and evolutionary significance. In: GrooverATCronkQCB (eds.) Comparative and evolutionary genomics of angiosperm trees. Plant Genetics and Genomics: Crops and Models Vol. 21: 1960. Springer. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SteelRGDTorrieJH. 1980. Principles and procedures of statistics. A biometrical approachEd. 2. McGraw-HillNew York.

  • TakahashiKSuzukiM. 2003. Dicotyledonous fossil wood flora and early evolution of wood characters in the Cretaceous of HokkaidoJapan. IAWA J.24: 269309. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TecklinDDellaSalaDALuebertFPliscoffP. 2011. Valdivian temperate rainforests of Chile and Argentina. In: DellaSalaDA (ed.) Temperate and boreal rainforests of the world: ecology and conservation. Chapter5: 121153. Island Press.

    • Search Google Scholar
    • Export Citation
  • ThaynGFTidwellWDStokesWL. 1983. Flora of the Lower Cretaceous Cedar Mountain Formation of Utah and Colorado. Part I. Paraphyllanthoxylon utahense. Great Basin Naturalist43: 394402. https://scholarsarchive.byu.edu/gbn/vol43/iss3/3.

    • Search Google Scholar
    • Export Citation
  • ThaynGFTidwellWD & StokesWL. 1985. Flora of the Lower Cretaceous Cedar Mountain Formation of Utah and Colorado. Part III. Icacinoxylon pittiense n. sp. Amer. J. Bot.72: 175180. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TyreeMTZimmermannMH. 2002. Xylem structure and the ascent of sap. Springer Series in Wood Science. SpringerBerlin, Heidelberg. DOI: .

  • UpchurchGRKiehlJTShieldsCASchererJScoteseC. 2015. Latitudinal temperature gradients and high-latitude temperatures during the latest Cretaceous: Congruence of geologic data and climate models. Geology43: 683686. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UpchurchGRLomaxBHBeerlingDJ. 2007. Paleobotanical evidence of climatic change across the Cretaceous-Tertiary boundaryNorth America: Twenty years after Wolfe and Upchurch. Cour. Forsch.-Inst. Senckenberg258: 5774.

    • Search Google Scholar
    • Export Citation
  • UpchurchGRWolfeJA. 1987. Mid-Cretaceous to Early Tertiary vegetation and climate: Evidence from fossil leaves and woods. In: FriisEMChalonerWGCranePR (eds.) The origins of angiosperms and their evolutionary consequences: 75105. Cambridge University PressCambridge.

    • Search Google Scholar
    • Export Citation
  • Van der GraaffNABaasP. 1974. Wood anatomical variation in relation to latitude and altitude. Blumea22: 101121.

  • WheelerEA. 2011. InsideWood - A web resource for hardwood anatomy. IAWA J.32: 199211. DOI: .

  • WheelerEABaasP. 1991. A survey of the fossil record for dicotyledonous wood and its significance for evolutionary and ecological wood anatomy. IAWA Bull. n.s. 12: 272332. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WheelerEABaasP. 1993. The potentials and limitations of dicotyledonous wood anatomy for climatic reconstructions. Paleobiology19: 487498. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WheelerEABaasPRodgersS. 2007. Variations in dicot wood anatomy: A global analysis based on the InsideWood database. IAWA J.28: 229258. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WheelerEALehmanTM. 2009. New Late Cretaceous and Paleocene dicot woods of Big Bend National ParkTexas and review of Cretaceous wood characteristics. IAWA J.30: 293318. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WheelerEASrivastavaRManchesterSRBaasP. 2017. Surprisingly modern. Latest Cretaceous–earliest Paleocene woods of India. IAWA J. 38: 456542. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WiemannMCDilcherDLManchesterSR. 2001. Estimation of mean annual temperature from leaf and wood physiognomy. Forest Science47: 141149. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WilfPEscapaIH. 2015. Green Web or megabiased clock? Plant fossils from Gondwanan Patagonia speak on evolutionary radiations. New Phytologist207: 283290. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WilfPEscapaIH. 2016. Molecular dates require geologic testing. New Phytologist209: 13591362. DOI: .

  • ZachosJPaganiMSloanLThomasEBillupsK. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science292 (5517): 686693. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ZanazziAKohnMJMacFaddenBJTerryDO. 2007. Large temperature drop across the Eocene-Oligocene transition in central North America. Nature445: 639642. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ZanneAEPearseWDCornwellWKMcGlinnDJWrightIJUyedaJC. 2018. Functional biogeography of angiosperms: life at the extremes. New Phytologist218: 16971709. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ZanneAEWestobyMFalsterDSAckerlyDDLoarieSRArnoldSECoomesDA. 2010. Angiosperm wood structure: global patterns in vessel anatomy and their relationship to wood density and potential conductivity. Amer. J. Bot.97: 207215. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ZimmermannMH. 1983. Xylem structure and the ascent of sap. Springer-VerlagBerlin, Heidelberg, New York, Tokyo.

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 61 61 20
Full Text Views 20 20 6
PDF Downloads 14 14 7
EPUB Downloads 0 0 0