Function and three-dimensional structure of intervessel pit membranes in angiosperms: a review

In: IAWA Journal

ABSTRACT

Pit membranes in bordered pits of tracheary elements of angiosperm xylem represent primary cell walls that undergo structural and chemical modifications, not only during cell death but also during and after their role as safety valves for water transport between conduits. Cellulose microfibrils, which are typically grouped in aggregates with a diameter between 20 to 30 nm, make up their main component. While it is clear that pectins and hemicellulose are removed from immature pit membranes during hydrolysis, recent observations of amphiphilic lipids and proteins associated with pit membranes raise important questions about drought-induced embolism formation and spread via air-seeding from gas-filled conduits. Indeed, mechanisms behind air-seeding remain poorly understood, which is due in part to little attention paid to the three-dimensional structure of pit membranes in earlier studies. Based on perfusion experiments and modelling, pore constrictions in fibrous pit membranes are estimated to be well below 50 nm, and typically smaller than 20 nm. Together with the low dynamic surface tensions of amphiphilic lipids at air-water interfaces in pit membranes, 5 to 20 nm pore constrictions are in line with the observed xylem water potentials values that generally induce spread of embolism. Moreover, pit membranes appear to show ideal porous medium properties for sap flow to promote hydraulic efficiency and safety due to their very high porosity (pore volume fraction), with highly interconnected, non-tortuous pore pathways, and the occurrence of multiple pore constrictions within a single pore. This three-dimensional view of pit membranes as mesoporous media may explain the relationship between pit membrane thickness and embolism resistance, but is largely incompatible with earlier, two-dimensional views on air-seeding. It is hypothesised that pit membranes enable water transport under negative pressure by producing stable, surfactant coated nanobubbles while preventing the entry of large bubbles that would cause embolism.

  • Altaner CM Thomas LH Fernandes AN Jarvis MC . 2014. How cellulose stretches: Synergism between covalent and hydrogen bonding. Biomacromolecules 15: 791798. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Askenasy E. 1895. Über das Saftsteigen. In: Sitzungsber. Heidelberg. Akad. Wiss. Heidelberg: Carl Winter; p. 23.

  • Bamber RK . 1961. Staining reaction of the pit membrane of wood cells. Nature 191: 409410. DOI: .

  • Barnett JR . 1981. Xylem cell development. In: Secondary xylem cell development. Castle House Publications LtdTunbridge Wells.

  • Barnett JR . 1982. Plasmodesmata and pit development in secondary xylem elements. Planta 155: 251260. DOI: .

  • Barnett JR Harris JM . 1975. Early stages of bordered pit formation in radiata pine. Wood Sci. Technol. 9: 233241. DOI: .

  • Bartlett MK Klein T Jansen S Choat B Sack L . 2016. The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. PNAS 113: 1309813103.

    • Search Google Scholar
    • Export Citation
  • Benayoun J Catesson AM Czaninski Y . 1981. A cytochemical study of differentiation and breakdown of vessel end walls. Ann. Bot. 47: 687698.

    • Search Google Scholar
    • Export Citation
  • Bliss MC . 1921. The vessel in seed plants. Bot. Gaz. 71: 314326. DOI: .

  • Boatwright A Hughes S Barry J . 2015. The height limit of a siphon. Sci. Rep. 5: 16790. DOI: .

  • Bouche PS Larter M Domec J-C Burlett R Gasson P Jansen S Delzon S . 2014. A broad survey of hydraulic and mechanical safety in the xylem of conifers. J. Exp. Bot. 65: 44194431. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourdon M Kalmbach L Helariutta Y . 2017. Plant vasculature: selective membrane-to-microtubule tethering patterns the xylem cell wall. Curr. Biol. 27: R842R844. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brodersen CR McElrone AJ Choat B Lee EF Shackel KA Matthews MA . 2013. In vivo visualizations of drought-induced embolism spread in Vitis vinifera . Plant Physiol. 161: 18201829. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brodribb TJ Bienaimé D Marmottant P . 2016. Revealing catastrophic failure of leaf networks under stress. PNAS 113: 48654869. DOI: .

  • Buesch C Smith SW Eschbach P Conley JF Simonsen J . 2016. The microstructure of cellulose nanocrystal aerogels as revealed by transmission electron microscope tomography. Biomacromolecules 17: 29562962. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buono RA Hudecek R Nowack MK . 2019. Plant proteases during developmental programmed cell death. J. Exp. Bot. 70: 20972112. DOI: .

  • Butterfield BG . 1995. Vessel element differentiation. In: The Cambial Derivatives. Gebrüder BorntraegerBerlin, Stuttgart.

  • Capron M Tordjeman Ph Charru F Badel E Cochard H . 2014. Gas flow in plant microfluidic networks controlled by capillary valves. Phys. Rev. E. 89: 033019. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlquist S Schneider EL . 2001. Vessels in ferns: structural, ecological, and evolutionary significance. Am. J. Bot. 88: 113. DOI: .

  • Chaffey N Barlow P Barnett J . 2000. A cytoskeletal basis for wood formation in angiosperm trees: the involvement of microfilaments. Planta 210: 890896. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaffey N Barnett JR Barlow PW . 1997. Cortical microtubule involvement in bordered pit formation in secondary xylem vessel elements of Aesculus hippocastanum L. (Hippocastanaceae): A correlative study using electron microscopy and indirect immunofluorescence microscopy. Protoplasma 197: 6475. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaffey N Barnett JR Barlow PW . 1999. A cytoskeletal basis for wood formation in angiosperm trees: the involvement of cortical microtubules. Planta 208: 1930. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaffey N Cholewa E Regan S Sundberg B . 2002. Secondary xylem development in Arabidopsis: a model for wood formation. Physiol. Plant. 114: 594600. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choat B Badel E Burlett R Delzon S Cochard H Jansen S . 2016. Noninvasive measurement of vulnerability to drought-induced embolism by X-ray microtomography. Plant Physiol. 170: 273282. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choat B Ball M Luly J Holtum J . 2003. Pit membrane porosity and water stress-induced cavitation in four co-existing dry rainforest tree species. Plant Physiol. 131: 4148. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choat B Brodie TW Cobb AR Zwieniecki MA Holbrook NM . 2006. Direct measurements of intervessel pit membrane hydraulic resistance in two angiosperm tree species. Am. J. Bot. 93: 9931000. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choat B Cobb AR Jansen S . 2008. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytol. 177: 608626. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choat B Jansen S Brodribb TJ Cochard H Delzon S Bhaskar R Bucci SJ Feild TS Gleason SM Hacke UG . 2012. Global convergence in the vulnerability of forests to drought. Nature 491: 752755. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choat B Jansen S Zwieniecki MA Smets E Holbrook NM . 2004. Changes in pit membrane porosity due to deflection and stretching: the role of vestured pits. J. Exp. Bot. 55: 15691575. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen-Dalsgaard KK Tyree MT Mussone PG Meinzer F . 2011. Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species. Tree Physiol. 31: 361368. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christman MA Sperry JS . 2010. Single-vessel flow measurements indicate scalariform perforation plates confer higher flow resistance than previously estimated. Plant Cell Environ. 33: 431443. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon HH . 1914. Transpiration and the ascent of sap in plants. Macmillan and Co.London.

  • Dixon HH Joly J . 1895. On the ascent of sap. Philos. Trans. Royal Soc. Lond. (B) 186: 563576. DOI: .

  • Donaldson LA Cairns M Hill SJ . 2018. Comparison of micropore distribution in cell walls of softwood and hardwood xylem. Plant Physiol. 178: 11421153. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donaldson LA Kroese HW Hill SJ Franich RA . 2015. Detection of wood cell wall porosity using small carbohydrate molecules and confocal fluorescence microscopy. J. Microsc. 259: 228236. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dória L Podadera D Lima R Lens F Marcati C . 2019. Axial sampling height outperforms site as predictor of wood trait variation. IAWA J. 40: 191214. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du G Feng F Wang Y Tyree MT . 2019. Do nano-particles cause recalcitrant vulnerability curves in Robinia? Testing with a four-cuvette Cochard rotor and with water extraction curves. Tree Physiol. 39: 156165. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dusotoit-Coucaud A Brunel N Tixier A Cochard H Herbette S . 2014. Hydrolase treatments help unravel the function of intervessel pits in xylem hydraulics. Physiol. Plant. 150: 388396. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dute R Daniel Jandrlich M Thornton S Callahan N Hansen C . 2011. Tori in species of Diarthron, Stellera and Thymelaea (Thymelaeaceae). IAWA J. 32: 5466. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dute R Patel J Jansen S . 2010. Torus-bearing pit membranes in Cercocarpus . IAWA J. 31533166. DOI: .

  • Ellerby DJ Ennos AR . 1998. Resistances to fluid flow of model xylem vessels with simple and scalariform perforation plates. J. Exp. Bot. 49: 979985. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Escamez S Stael S Vainonen JP Willems P Jin H Kimura S Van Breusegem F Gevaert K Wrzaczek M Tuominen H . 2019. Extracellular peptide Kratos restricts cell death during vascular development and stress in Arabidopsis . J. Exp. Bot. 70: 21992210. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ewart AJ . 1906. The ascent of water in trees. Philos. Trans. Royal Soc. Lond. (B) 198: 4185.

  • Fardim P Moreno T Holmbom B . 2005. Anionic groups on cellulosic fiber surfaces investigated by XPS, FTIR-ATR, and different sorption methods. J. Colloid Interface Sci. 290: 383391. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funada R. 2000. Control of wood structure. In: Nick P (ed.) Plant Microtubules: Potential for Biotechnology. Springer VerlagBerlin, Heidelberg.

    • Search Google Scholar
    • Export Citation
  • Gierlinger N Schwanninger M Reinecke A Burgert I . 2006. Molecular changes during tensile deformation of single wood fibers followed by Raman microscopy. Biomacromolecules 7: 20772081. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gor GY Huber P Bernstein N . 2017. Adsorption-induced deformation of nanoporous materials -A review. Appl. Phys. Rev. 4: 011303. DOI: .

  • Guo F Altaner CM . 2018. Molecular deformation of wood and cellulose studied by near infrared spectroscopy. Carbohydr. Polym. 197: 18. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hacke UG Sperry JS Wheeler JK Castro L . 2006. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol. 26: 689701. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hacke U Stiller V Sperry J Pittermann J McCulloh KA . 2001. Cavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem. Plant Physiol. 125: 779786. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herbette S Bouchet B Brunel N Bonnin E Cochard H Guillon F . 2015. Immunolabeling of intervessel pits for polysaccharides and lignin helps in understanding their hydraulic properties in Populus tremula × alba . Ann. Bot. 115: 187199. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hillabrand RM Hacke UG Lieffers VJ . 2016. Drought-induced xylem pit membrane damage in aspen and balsam poplar. Plant Cell Environ. 39: 22102220. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinterstoisser B Akerholm M Salmén L . 2003. Load distribution in native cellulose. Bio-macromolecules 4: 12321237. DOI: .

  • Holler M Raabe J Diaz A Guizar-Sicairos M Wepf R Odstrcil M Shaik FR Panneels V Menzel A Sarafimov B . 2018. OMNY-A tOMography Nano crYo stage. Rev. Sci. Instrum. 89: 043706. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iakimova ET Woltering EJ . 2017. Xylogenesis in zinnia (Zinnia elegans) cell cultures: unravelling the regulatory steps in a complex developmental programmed cell death event. Planta 245: 681705. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito J Fukuda H . 2002. ZEN1 is a key enzyme in the degradation of nuclear DNA during programmed cell death of tracheary elements. Plant Cell 14: 32013211. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen S Choat B Pletsers A . 2009. Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. Am. J. Bot. 96: 409419. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen S Dute R Allison J Rabaey D . 2010. Torus-bearing pit membranes in species of Osmanthus . IAWA J. 31: 217226. DOI: .

  • Jansen S Klepsch M Li S Kotowska M Schiele S Zhang Y Schenk H . 2018. Challenges in understanding air-seeding in angiosperm xylem. Acta Hortic. 1222: 1320. DOI: .

    • Search Google Scholar
    • Export Citation
  • Jansen S McAdam S . 2019. Pits with aspiration explain life expectancy of a conifer species. PNAS 116: 1479414796. DOI: .

  • Jansen S Pletsers A Sano Y . 2008. The effect of preparation techniques on SEM-imaging of pit membranes. IAWA J. 29: 161178. DOI: .

  • Jansen S Sano Y Choat B Rabaey D Lens F Dute RR . 2007. Pit membranes in tracheary elements of Rosaceae and related families: new records of tori and pseudotori. Am. J. Bot. 94: 503514. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen S Schuldt B Choat B . 2015. Current controversies and challenges in applying plant hydraulic techniques. New Phytol. 205: 961964. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson D Eckart P Alsamadisi N Noble H Martin C Spicer R . 2018. Polar auxin transport is implicated in vessel differentiation and spatial patterning during secondary growth in Populus . Am. J. Bot. 105: 186196. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juniper BE . 1977. Some speculations on the possible roles of the plasmodesmata in the control of differentiation. J. Theoret. Biol. 66: 583592. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaushik M Fraschini C Chauve G Putaux J-L Moores A . 2015. Transmission electron microscopy for the characterization of cellulose nanocrystals. In: Maaz K (ed.) The Transmission Electron Microscope - Theory and Applications: 12163. IntechOpenLondon. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenrick P Crane PR . 1991. Water-conducting cells in early fossil land plants: Implications for the early evolution of tracheophytes. Bot. Gaz. 152: 335356. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenrick P Crane PR . 1997. The origin and early evolution of plants on land. Nature 389: 3339. DOI: .

  • Kerr T Bailey IW . 1934. The cambium and its derivative tissues: X. Structure, optical properties and chemical composition of the so-called middle lamella. J. Arnold Arbor. 15: 327349.

    • Search Google Scholar
    • Export Citation
  • Kim JS Daniel G . 2013. Developmental localization of homogalacturonan and xyloglucan epitopes in pit membranes varies in two poplar species. IAWA J. 34: 245262. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim JS Sandquist D Sundberg B Daniel G . 2012. Spatial and temporal variability of xylan distribution in differentiating secondary xylem of hybrid aspen. Planta 235: 13151330. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kininmonth JA . 1971. Permeability and fine structure of certain hardwoods and effects on drying. I. Transverse permeability of wood to micro-filtered water. Holzforschung 25: 127133. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kininmonth JA . 1972. Permeability and fine structure of certain hardwoods and effects on drying. II. Differences in fine structure of Nothofagus fusca sapwood and heartwood. Holzforschung 26: 3238. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitin P Funada R . 2016. Earlywood vessels in ring-porous trees become functional for water transport after bud burst and before the maturation of the current-year leaves. IAWA J. 37: 315331. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klepsch MM Schmitt M Paul Knox J Jansen S . 2016. The chemical identity of intervessel pit membranes in Acer challenges hydrogel control of xylem hydraulic conductivity. AoB Plants 8: plw052. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klepsch MM Zhang Y Kotowska MM Lamarque LJ Nolf M Schuldt B Torres-Ruiz JM Qin D-W Choat B Delzon S . 2018. Is xylem of angiosperm leaves less resistant to embolism than branches? Insights from microCT, hydraulics, and anatomy. J. Exp. Bot. 69: 56115623.

    • Search Google Scholar
    • Export Citation
  • Kotowska MM Thom R Zhang Y Schenk HJ Jansen S . 2019. Within-tree variability and sample storage effects of bordered pit membranes in xylem of Acer pseudoplatanus . Trees. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kroon-Batenburg LMJ Kroon JW Northolt MG . 1986. Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibers. Polym. Commun. 27: 290292.

    • Search Google Scholar
    • Export Citation
  • Lee J Holbrook NM Zwieniecki MA . 2012. Ion induced changes in the structure of bordered pit membranes. Front. Plant Sci. 3: 55. DOI: .

  • Lens F Sperry JS Christman MA Choat B Rabaey D Jansen S . 2011. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer . New Phytol. 190: 709723. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li S Lens F Espino S Karimi Z Klepsch M Schenk HJ Schmitt M Schuldt B Jansen S . 2016. Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem. IAWA J. 37: 152171. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liese W. 2007. Electron microscopy of wood: the pioneering years. Mitt Bundesforschungsanst. Forst-Holzwirtschaft Hamburg 223: 312.

  • Liese W Côté WA . 1960. Electron microscopy of wood: results of the first ten years of research. Proceedings of the Fifth Word Forestry Congress, Seattle2: 12881298.

    • Search Google Scholar
    • Export Citation
  • Lindström T Wågberg L Larsson T . 2005. On the nature of joint strength in paper - A review of dry and wet strength resins in paper manufacturing. Nord Pulp Paper Res. J. 31: 459468. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martínez-Sanz M Pettolino F Flanagan B Gidley MJ Gilbert EP . 2017. Structure of cellulose microfibrils in mature cotton fibres. Carbohydr. Polym. 175: 450463. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meylan BA Butterfield BG . 1981. Perforation plant differentiation in the vessels of hardwoods. In: Barnett JR (ed.) Xylem Cell Development. Castle House Publications Ltd.Tunbridge Wells.

    • Search Google Scholar
    • Export Citation
  • Meyra AG Kuz VA Zarragoicoechea GJ . 2007. Geometrical and physicochemical considerations of the pit membrane in relation to air seeding: the pit membrane as a capillary valve. Tree Physiol. 27: 14011405. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muhammad AF Sattler R . 1982. Vessel structure of Gnetum and the origin of angiosperms. Am. J. Bot. 69: 10041021. DOI: .

  • Murmanis L Chudnoff M . 1979. Lateral flow in beech and birch as revealed by the electron microscope. Wood Sci. Technol. 13: 7987. DOI: .

  • Nardini A Salleo S Jansen S . 2011. More than just a vulnerable pipeline: xylem physiology in the light of ion-mediated regulation of plant water transport. J. Exp. Bot. 62: 47014718. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neumann M Hirsch C Staněk J Beneš V Schmidt V . 2019. Estimation of geodesic tortuosity and constrictivity in stationary random closed sets. Scand. J. Stat. 46: 848884. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neumann PM Weissman R Stefano G Mancuso S . 2010. Accumulation of xylem transported protein at pit membranes and associated reductions in hydraulic conductance. J. Exp. Bot. 61: 17111717. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Brien TP . 1970. Further observations on hydrolysis of the cell wall in the xylem. Protoplasma 69: 114. DOI: .

  • O’Brien TP . 1981. The primary xylem. In: Barnett JR (ed.) Xylem Cell Development. Castle House Publications Ltd.Tunbridge Wells.

  • Oda Y Fukuda H . 2013. Rho of plant GTPase signaling regulates the behavior of Arabidopsis Kinesin-13A to establish secondary cell wall patterns. Plant Cell 25: 44394450. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Odstrcil M Holler M Raabe J Sepe A Sheng X Vignolini S Schroer CG Guizar-Sicairos M . 2019. Ab initio nonrigid X-ray nanotomography. Nat. Commun. 10: 2600. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osorio DA Seifried B Moquin P Grandfield K Cranston ED . 2018. Morphology of cross-linked cellulose nanocrystal aerogels: cryo-templating versus pressurized gas expansion processing. J. Mater. Sci. 53: 98429860. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan R Tyree MT . 2019. How does water flow from vessel to vessel? Further investigation of the tracheid bridge concept. Tree Physiol. 39: 10191031. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park JY Go T Ryu J Lee SJ . 2019. Air spreading through wetted cellulose membranes: implications for the safety function of hydraulic valves in plants. Phys. Rev. E 100: 032409. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pereira L Flores-Borges DNA Bittencourt PRL Mayer JLS Kiyota E Araújo P Jansen S Freitas RO Oliveira RS Mazzafera P . 2018. Infrared nanospectroscopy reveals the chemical nature of pit membranes in water-conducting cells of the plant xylem. Plant Physiol. 177: 16291638. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pesacreta TC Groom LH Rials TG . 2005. Atomic force microscopy of the intervessel pit membrane in the stem of Sapium sebiferum (Euphorbiaceae). IAWA J. 26: 397426. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty JA Preston RD . 1972. The aspiration of bordered pits in conifer wood. Proc. Royal Soc. Lond. (B) 181: 395406. DOI: .

  • Peyrega C Jeulin D . 2013. Estimation of tortuosity and reconstruction of geodesic paths in 3D. Image Anal. Stereol. 32: 2743.

  • Pfautsch S Aspinwall MJ Drake JE Chacon-Doria L Langelaan RJA Tissue DT Tjoelker MG Lens F . 2018. Traits and trade-offs in whole-tree hydraulic architecture along the vertical axis of Eucalyptus grandis . Ann. Bot. 121: 129141.

    • Search Google Scholar
    • Export Citation
  • Pittermann J Limm E Rico C Christman MA . 2011. Structure-function constraints of tracheidbased xylem: a comparison of conifers and ferns. New Phytol. 192: 449461. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pittermann J Sperry JS Hacke UG Wheeler JK Sikkema EH . 2005. Torus-margo pits help conifers compete with angiosperms. Science 310: 19241924. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plavcová L Hacke UG . 2011. Heterogeneous distribution of pectin epitopes and calcium in different pit types of four angiosperm species. New Phytol. 192: 885897. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plavcová L Jansen S Klepsch M Hacke UG . 2013. Nobody’s perfect: can irregularities in pit structure influence vulnerability to cavitation? Front. Plant Sci. 4: 453. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabaey D Lens F Huysmans S Smets E Jansen S . 2008. A comparative ultrastructural study of pit membranes with plasmodesmata associated thickenings in four angiosperm species. Protoplasma 233: 255262. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reza M Kontturi E Jääskeläinen A-S Vuorinen T Ruokolainen J . 2015. Transmission electron microscopy for wood and fiber analysis − A review. BioResources 10: 6230-62616261. DOI: .

    • Search Google Scholar
    • Export Citation
  • Riemersma JC . 1968. Osmium tetroxide fixation of lipids for electron microscopy. A possible reaction mechanism. Biochim. Biophys. Acta 152: 718727. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robards AW Humpherson PG . 1967. Microtubules and angiosperm bordered pit formation. Planta 77: 233238. DOI: .

  • Rongpipi S Ye D Gomez ED Gomez EW . 2018. Progress and opportunities in the characterization of cellulose - An important regulator of cell wall growth and mechanics. Front. Plant Sci. 9: 1894. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roth-Nebelsick A. 2019. It’s contagious: calculation and analysis of xylem vulnerability to embolism by a mechanistic approach based on epidemic modeling. Trees 33: 15191533. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudman P. 1966. Studies in wood preservation Pt. II. Movement of aqueous solutions through the pits and cell walls of eucalypt sapwoods. Holzforschung 20: 5760. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruel K Nishiyama Y Joseleau J-P . 2012. Crystalline and amorphous cellulose in the secondary walls of Arabidopsis . Plant Sci. 193–194: 4861. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sano Y. 2005. Inter-and intraspecific structural variations among intervascular pit membranes, as revealed by field-emission scanning electron microscopy. Am. J. Bot. 92: 10771084. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sano Y Morris H Shimada H Ronse De Craene LP Jansen S . 2011. Anatomical features associated with water transport in imperforate tracheary elements of vessel-bearing angiosperms. Ann. Bot. 107: 953964. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sano Y Utsumi Y Nakada R . 2013. Homoplastic occurrence of perforated pit membranes and torus-bearing pit membranes in ancestral angiosperms as observed by field-emission scanning electron microscopy. J. Wood Sci. 59: 95103. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santiago M Pagay V Stroock AD . 2013. Impact of electroviscosity on the hydraulic conductance of the bordered pit membrane: a theoretical investigation. Plant Physiol. 163: 9991011. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schacht H. 1859. Über die Tüpfel der Gefäss-und Holzzellen. Bot. Zeitung 17: 238239.

  • Schenk HJ Espino S Rich-Cavazos SM Jansen S . 2018. From the sap’s perspective: The nature of vessel surfaces in angiosperm xylem. Am. J. Bot. 105: 172185. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenk HJ Espino S Romo DM Nima N Do AYT Michaud JM Papahadjopoulos-Sternberg B Yang J Zuo YY Steppe K Jansen S . 2017. Xylem surfactants introduce a new element to the cohesion-tension theory. Plant Physiol. 173: 11771196. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenk HJ Michaud JM Espino S Melendres T Roth MR Welti R Kaack L Jansen S . 2019. Lipids in xylem sap of woody plants across the angiosperm phylogeny. bioRxiv: 763771. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenk HJ Steppe K Jansen S . 2015. Nanobubbles: a new paradigm for air-seeding in xylem. Trends Plant Sci. 20: 199205. DOI: .

  • Schmid R Machado RD . 1968. Pit membranes in hardwoods - fine structure and development. Protoplasma 66: 185204. DOI: .

  • Schmitz N Jansen S Verheyden A Kairo JG Beeckman H Koedam N . 2007. Comparative anatomy of intervessel pits in two mangrove species growing along a natural salinity gradient in Gazi BayKenya. Ann. Bot. 100: 271281. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scholz A Rabaey D Stein A Cochard H Smets E Jansen S . 2013. The evolution and function of vessel and pit characters with respect to cavitation resistance across 10 Prunus species. Tree Physiol. 33: 684694. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulte PJ Gibson AC . 1988. Hydraulic conductance and tracheid anatomy in six species of extant seed plants. Can. J. Bot. 66: 10731079. DOI: .

  • Shahmoradian SH Tsai EHR Diaz A Guizar-Sicairos M Raabe J Spycher L Britschgi M Ruf A Stahlberg H Holler M . 2017. Three-dimensional imaging of biological tissue by cryo X-ray ptychography. Sci. Rep. 7: 6291. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shane MW McCully ME Canny MJ . 2000. Architecture of branch-root junctions in maize: structure of the connecting xylem and the porosity of pit membranes. Ann. Bot. 85: 613624. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi W Vieitez JR Berrier AS Roseveare MW Surinach DA Srijanto BR Collier CP Boreyko JB . 2019. Self-stabilizing transpiration in synthetic leaves. ACS Appl. Mater. Interfaces 11: 1376813776. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shou D Fan J Ding F . 2011. Hydraulic permeability of fibrous porous media. Int. J. Heat Mass Transf. 54: 40094018. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skelton RP Brodribb TJ Choat B . 2017. Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation. New Phytol. 214: 561569.

    • Search Google Scholar
    • Export Citation
  • Smetana O Mäkilä R Lyu M Amiryousefi A Rodríguez FS Wu M-F Solé-Gil A Gavarrón ML Siligato R Miyashima S . 2019. High levels of auxin signaling define the stem-cell organizer of the vascular cambium. Nature 565: 485489. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperry JS Hacke UG . 2004. Analysis of circular bordered pit function I. Angiosperm vessels with homogeneous pit membranes. Am. J. Bot. 91: 369385. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperry JS Hacke UG Wheeler JK . 2005. Comparative analysis of end wall resistivity in xylem conduits. Plant Cell Environ. 28: 456465. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperry JS Tyree M . 1988. Mechanism of water stress-induced xylem embolism. Plant Physiol. 88: 581587. DOI: .

  • Stiller V Sperry JS . 2002. Cavitation fatigue and its reversal in sunflower (Helianthus annuus L.). J. Exp. Bot. 53: 11551161. DOI: .

  • Šturcová A Eichhorn SJ Jarvis MC . 2006. Vibrational spectroscopy of biopolymers under mechanical stress: Processing cellulose spectra using bandshift difference integrals. Biomacromolecules 7: 26882691. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugiyama Y Nagashima Y Wakazaki M Sato M Toyooka K Fukuda H Oda Y . 2019. A Rhoactin signaling pathway shapes cell wall boundaries in Arabidopsis xylem vessels. Nature Communications 10: 468. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugiyama Y Wakazaki M Toyooka K Fukuda H Oda Y . 2017. A novel plasma membrane- anchored protein regulates xylem cell-wall deposition through microtubule-dependent lateral inhibition of Rho GTPase domains. Curr. Biol. 27: 25222528.e4. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sulbarán B Toriz G Allan GG Pollack GH Delgado E . 2014. The dynamic development of exclusion zones on cellulosic surfaces. Cellulose 21: 11431148. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun Q Sun Y Juzenas K . 2017. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls. J. Exp. Bot. 68: 22312244. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson WP . 1918. Independent evolution of vessels in Gnetales and angiosperms. Bot. Gaz. 65: 8390. DOI: .

  • Tixier A Herbette S Jansen S Capron M Tordjeman P Cochard H Badel E . 2014. Modelling the mechanical behaviour of pit membranes in bordered pits with respect to cavitation resistance in angiosperms. Ann. Bot. 114: 325334. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres-Ruiz JM Cochard H Choat B Jansen S López R Tomášková I Padilla-Díaz CM Badel E Burlett R King A Lenoir N Martin-St Paul NK Delzon S . 2017. Xylem resistance to embolism: presenting a simple diagnostic test for the open vessel artefact. New Phytol. 215: 489499. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tschernitz JL Sachs IB . 1975. Observations on microfibril organization of Douglas-Fir bordered pit-pair membranes by scanning electron microscopy. Wood Fiber Sci. 6: 332340.

    • Search Google Scholar
    • Export Citation
  • Tyree MT Sperry JS . 1989. Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 1936. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uehara K Hogetsu T . 1993. Arrangement of cortical microtubules during formation of bordered pit in the tracheids of Taxus . Protoplasma 172: 145153. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallabh R Banks-Lee P Seyam A-F . 2010. New approach for determining tortuosity in fibrous porous media. JEFF 5: 715. DOI: .

  • Vallabh R Ducoste J Seyam A-F Banks-Lee P . 2011. Modeling tortuosity in thin fibrous porous media using computational fluid dynamics. J. Porous Media 14: 791804. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Doorn WG Hiemstra T Fanourakis D . 2011. Hydrogel regulation of xylem water flow: An alternative hypothesis. Plant Physiol. 157: 16421649. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wardrop AB . 1958. The organization of the primary wall in differentiating conifer tracheids. Aust. J. Bot. 6: 299305. DOI: .

  • Weber F Koller G Schennach R Bernt I Eckhart R . 2013. The surface charge of regenerated cellulose fibres. Cellulose 20: 27192729. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler EA . 1981. Intervascular pitting in Fraxinus americana L. IAWA Bull. n.s. 2: 169174. DOI: .

  • Wheeler EA . 1983. Intervascular pit membranes in Ulmus and Celtis native to the United States. IAWA J. 4: 7988. DOI: .

  • Wheeler JK Sperry JS Hacke UG Hoang N . 2005. Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant Cell Environ. 28: 800812. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler TD Stroock AD . 2008. The transpiration of water at negative pressures in a synthetic tree. Nature 455: 208212. DOI: .

  • Williamson VG Milburn JA . 2017. Xylem vessel length and distribution: does analysis method matter? A study using Acacia . Aust. J. Bot. 65: 292303. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu P Donaldson LA Gergely ZR Staehelin LA . 2007. Dual-axis electron tomography: A new approach for investigating the spatial organization of wood cellulose microfibrils. Wood Sci. Technol. 41: 101116. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang KC . 1978. Fine structure of pits in yellow birch (Betula alleghaniensis Britton). IAWA Bull. n. s. 4: 7177.

  • Yata S Itoh T Kishima T . 1970. Formation of perforation plates and bordered pits in differentiating vessel elements. Wood Res. 50: 111.

    • Search Google Scholar
    • Export Citation
  • Zhang H Zhao C Li Z Li J . 2016. The fiber charge measurement depending on the poly-DADMAC accessibility to cellulose fibers. Cellulose 23: 163173. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang Y Klepsch M Jansen S . 2017. Bordered pits in xylem of vesselless angiosperms and their possible misinterpretation as perforation plates. Plant Cell Environ. 40: 21332146. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang Y Carmesin C Kaack L Klepsch MM Kotowska M Matei T Schenk HJ Weber M Walter P Schmidt V Jansen S . 2019. High porosity with tiny pore constrictions and unbending pathways characterise the 3D structure of intervessel pit membranes in angiosperm xylem. Plant Cell Environ. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zimmermann MH Brown CL . 1971. Trees: structure and function. Springer VerlagNew York, Berlin, Heidelberg.

  • Zimmermann MH . 1983. Xylem structure and the ascent of sap. Springer VerlagNew York.

  • Zwieniecki MA Melcher PJ Michele Holbrook NM . 2001. Hydrogel control of xylem hydrau-lic resistance in plants. Science 291: 10591062. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 187 188 188
Full Text Views 30 30 30
PDF Downloads 24 24 24