Diversity of anatomical structure of tension wood among 242 tropical tree species

In: IAWA Journal

ABSTRACT

Angiosperm trees produce tension wood to actively control their vertical position. Tension wood has often been characterised by the presence of an unlignified inner fibre wall layer called the G-layer. Using this definition, previous reports indicate that only one-third of all tree species have tension wood with G-layers. Here we aim to (i) describe the large diversity of tension wood anatomy in tropical tree species, taking advantage of the recent understanding of tension wood anatomy and (ii) explore any link between this diversity and other ecological traits of the species. We sampled tension wood and normal wood in 432 trees from 242 species in French Guiana. The samples were observed using safranin and astra blue staining combined with optical microscopy. Species were assigned to four anatomical groups depending on the presence/absence of G-layers, and their degree of lignification. The groups were analysed for functional traits including wood density and light preferences. Eighty-six% of the species had G-layers in their tension wood which was lignified in most species, with various patterns of lignification. Only a few species did not have G-layers. We found significantly more species with lignified G-layers among shade-tolerant and shade-demanding species as well as species with a high wood density. Our results bring up-to-date the incidence of species with/without G-layers in the tropical lowland forest where lignified G-layers are the most common anatomy of tension wood. Species without G-layers may share a common mechanism with the bark motor taking over the wood motor. We discuss the functional role of lignin in the G-layer.

  • Abedini R , Clair B , Pourtahmasi K , Laurans F , Arnould O . 2015. Cell wall thickening in developing tension wood of artificially bent poplar trees. IAWA J. 36: 44–57. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alméras T , Clair B . 2016. Critical review on the mechanisms of maturation stress generation in trees. J. R. Soc. Interface 13: 20160550. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alméras T , Derycke M , Jaouen G , Beauchêne J , Fournier M . 2009. Functional diversity in gravitropic reaction among tropical seedlings in relation to ecological and developmental traits. J. Exp. Bot. 60: 4397– 4410. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alméras T , Fournier M . 2009. Biomechanical design and long-term stability of trees: Morphological and wood traits involved in the balance between weight increase and the gravitropic reaction. J. Theor. Biol. 256: 370–381. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angyalossy V , Pace MR , Evert RF , Marcati CR , Oskolski AA , Terrazas T , Kotina E , Lens F , Mazzoni-Viveiros SC , Angeles G , Machado SR , Crivellaro A , Rao KS , Junikka L , Nikolaeva N , Baas P . 2016. IAWA list of microscopic bark features. IAWA J. 37: 517–615. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum S , Schwarze FWMR , Fink S . 2000. Persistence of the gelatinous layer within altered tension-wood fibres of beech degraded by Ustulina deusta . New Phytol. 147: 347–355. DOI : .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang S-S , Quignard F , Alméras T , Clair B . 2015. Mesoporosity changes from cambium to mature tension wood: a new step toward the understanding of maturation stress generation in trees. New Phytol. 205: 1277–1287. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chave J , Coomes D , Jansen S , Lewis SL , Swenson NG , Zanne AE . 2009. Towards a worldwide wood economics spectrum. Ecol. Lett. 12: 351–366. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clair B , Alméras T , Pilate G , Jullien D , Sugiyama J , Riekel C . 2011. Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction. Plant Physiol. 155: 562–570. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clair B , Ghislain B , Prunier J , Lehnebach R , Beauchêne J , Alméras T . 2019. Mechanical contribution of secondary phloem to postural control in trees: the bark side of the force. New Phytol. 221: 209–217. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clair B , Gril J , Baba K , Thibaut B , Sugiyama J . 2005. Precautions for the structural analysis of the gelatinous layer in tension wood. IAWA J. 26: 189–195. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clair B , Gril J , Di Renzo F , Yamamoto H , Quignard F . 2008. Characterization of a gel in the cell wall to elucidate the paradoxical shrinkage of tension wood. Biomacromolecules 9: 494 – 498. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clair B , Ruelle J , Beauchêne J , Prévost M-F , Fournier M . 2006. Tension wood and opposite wood in 21 tropical rain forest species. 1. Occurrence and efficiency of G-layer. IAWA J. 27: 329–338. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clair B , Thibaut B , Sugiyama J . 2005. On the detachment of the gelatinous layer in tension wood fiber. J. Wood. Sci. 51: 218–221. DOI: .

  • Daniel G , Nilsson T . 1996. Polylaminate concentric cell wall layering in fibres of Homalium foetidum and its effect on degradation by microfungi. In: Donaldson LA , Butterfield BG , Whitehouse L (eds.), Recent Advances in Wood Anatomy: 369–372. New Zealand Forest Research Institute, Rotorua.

    • Search Google Scholar
    • Export Citation
  • Détienne P , Jacquet P . 1983. Atlas d’identification des bois de l’amazonie et des régions voisines. GERDAT - CTFT, Nogent-sur-Marne.

    • Search Google Scholar
    • Export Citation
  • Dlouhá J , Alméras T , Beauchêne J , Clair B , Fournier M . 2018. Biophysical dependences among functional wood traits. Funct. Ecol. 32: 2652–2665. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Encinas O , Daniel G . 1997. Degradation of the gelatinous layer in aspen and rubberwood by the blue stain fungus Lasiodiplodia theobromae . IAWA J. 18: 107–115. DOI:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang C-H , Clair B , Gril J , Alméras T . 2007. Transverse shrinkage in G-fibers as a function of cell wall layering and growth strain. Wood Sci. Technol. 41: 659–671. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Favrichon V. 1995. Modèle matriciel déterministe en temps discret: Application à l’étude de la dynamique d’un peuplement forestier tropical humide (Guyane Française). Thesis, Université Lyon 1, Lyon, 252 pp.

    • Search Google Scholar
    • Export Citation
  • Ferry B , Morneau F , Bontemps J-D , Blanc L , Freycon V . 2010. Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest: Treefall and biomass in a tropical rain forest. J. Ecol. 98: 106–116. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher JB , Stevenson JW . 1981. Occurrence of reaction wood in branches of dicotyledons and its role in tree architecture. Bot. Gaz. 142: 82–95. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortunel C , Ruelle J , Beauchêne J , Fine PVA , Baraloto C . 2014. Wood specific gravity and anatomy of branches and roots in 113 Amazonian rainforest tree species across environmental gradients. New Phytol. 202: 79–94. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fournier M , Dlouhá J , Jaouen G , Alméras T . 2013. Integrative biomechanics for tree ecology: beyond wood density and strength. J. Exp. Bot. 64: 4793– 4815. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardiner BA , Barnett J , Saranpää P , Gril J . 2014. The biology of reaction wood. Springer, Heidelberg, New York.

  • Gérard J , Guibal D , Paradis S , Cerre J-C . 2016. Atlas des bois tropicaux: caractéristiques technologiques et utilisations.

  • Ghislain B , Alméras T , Prunier J , Clair B . 2019. Contributions of bark and tension wood and role of the G-layer lignification in the gravitropic movements of 21 tropical tree species. Ann. For. Sci. (in press).

    • Search Google Scholar
    • Export Citation
  • Ghislain B , Clair B . 2017. Diversity in the organisation and lignification of tension wood fibre walls – A review. IAWA J. 38: 245–265. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghislain B , Nicolini E-A , Romain R , Ruelle J , Yoshinaga A , Alford MH , Clair B . 2016. Multi-layered structure of tension wood cell walls in Salicaceae sensu lato and its taxonomic significance. Bot. J. Linn. Soc. 182: 744 –756. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorshkova T , Mokshina N , Chernova T , Ibragimova N , Salnikov V , Mikshina P , Tryfona T , Banasiak A , Immerzeel P , Dupree P , Mellerowicz EJ . 2015. Aspen tension wood fibers contain β-(1→4)-galactans and acidic arabinogalactans retained by cellulose microfibrils in gelatinous walls. Plant Physiol. 169: 2048–2063. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guedes FTP , Laurans F , Quemener B , Assor C , Lainé-Prade V , Boizot N , Vigouroux J , Lesage-Descauses M-C , Leplé J-C , Déjardin A , Pilate G . 2017. Non-cellulosic polysaccharide distribution during G-layer formation in poplar tension wood fibers: abundance of rhamnogalacturonan I and arabinogalactan proteins but no evidence of xyloglucan. Planta 246: 857–878. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higaki A , Yoshinaga A , Takabe K . 2017. Heterogeneous distribution of xylan and lignin in tension wood G-layers of the S1+G type in several Japanese hardwoods. Tree Physiol. 37: 1767–1775. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IAWA Committee. 1964. Multilingual glossary of terms used in wood. Verlagsbuchanstalt Konkordia, Winterthur.

  • Joseleau J-P , Imai T , Kuroda K , Ruel K . 2004. Detection in situ and characterization of lignin in the G-layer of tension wood fibres of Populus deltoides . Planta 219: 338–345. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehnebach R , Doumerc L , Clair B , Alméras T . 2019. Mechanical stress in inner bark of 15 tropical tree species and relation with anatomical structure. Botany. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molino J-F , Sabatier D , Prévost M-F , Frame D , Gonzales S , Bilot-Guérin V . 2009. Convention E 24/08 entre le Ministère de l’Agriculture et de la Pêche et l’IRD, dans le cadre du Programme 149 Forêt BOP 14901C, sous-action 15, destiné a la réalisation du programme intitulé «Établissement d’une liste des espèces d’arbres de la Guyane Française» - Rapport final.

    • Search Google Scholar
    • Export Citation
  • Morris H , Jansen S . 2016. Secondary xylem parenchyma – From classical terminology to functional traits. IAWA J. 37: 1–15. DOI: .

  • Moulia B , Coutand C , Lenne C . 2006. Posture control and skeletal mechanical acclimation in terrestrial plants: implications for mechanical modeling of plant architecture. Am. J. Bot. 93: 1477–1489. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onaka F. 1949. Studies on compression and tension wood. Wood Res. 1– 88.

  • Pilate G , Chabbert B , Cathala B , Yoshinaga A , Leplé J-C , Laurans F , Lapierre C , Ruel K . 2004. Lignification and tension wood. C. R. Biol. 327: 889–901. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosell JA . 2016. Bark thickness across the angiosperms: more than just fire. New Phytol. 211: 90 –102. DOI: .

  • Rosell JA , Olson ME . 2014. The evolution of bark mechanics and storage across habitats in a clade of tropical trees. Am. J. Bot. 101: 764 –777. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roussel J-R , Clair B . 2015. Evidence of the late lignification of the G-layer in Simarouba tension wood, to assist understanding how non-G-layer species produce tensile stress. Tree Physiol. 35: 1366 –1377. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruelle J , Yoshida M , Clair B , Thibaut B . 2007. Peculiar tension wood structure in Laetia procera (Poepp.) Eichl. (Flacourtiaceae). Trees 21: 345–355. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt U , Peek R-D , Wong A . 1995. A note on the fine structure of soft rot decay in the polylamellate fibre walls of kempas (Koompassia malaccensis Maing. ex Benth.). Holz Roh-Werkst. 54: 42– 42. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarze FWMR , Fink S . 1998. Host and cell type affect the mode of degradation by Meripilus giganteus . New Phytol. 139: 721–731. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh AP , Wong AHH , Kim YS , Wi SG . 2004. The relationship of fiber cell wall ultrastructure to soft rot decay in kempas (Koompassia malaccensis) heartwood. IRG 35. Ljubljana, Slovenia.

    • Search Google Scholar
    • Export Citation
  • ter Steege H , . 2013. Hyperdominance in the Amazonian tree flora. Science 342: 1243092–1243092. DOI: .

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 205 205 40
Full Text Views 19 19 2
PDF Downloads 19 19 1