Agricultural technology adoption that increases individual firm productivity is generally assumed to improve competitiveness and profitability. However, technology that is adopted by many firms in an industry can shift the basic supply relationship, increasing total production while lowering farm prices. While generally beneficial to consumers, this result can reduce (or completely offset) benefits for farmers, especially late or non-adopters. Our objective is to assess the market dynamics of alternative assumptions about exogenous productivity-enhancing technology adoption by Brazilian dairy farms. Of particular interest is the distributional impact on farm incomes and on the proportion of milk production for different farm size classes. To achieve this objective, we developed an empirical System Dynamics model that evaluates market and farm profitability impacts from 2006 to 2016. We simulated six counterfactual scenarios comprising three rates of adoption (slow, medium and fast) by two farm size categories (small and large). Technology adoption impact differs in the short- and long-term and depending on the assumed rates and farm sizes. Non-adopters of technology can experience lower incomes and a smaller production and income shares when other farms adopt. The underlying causal structure of farm profitability and the herd management decisions suffices to explain the potential market exclusion of non-adopting farms (especially small-scale farms) when others adopt.
Asres, A., J. Sölkner, R. Puskur, and M. Wurzinger. 2012. Livestock innovation systems and networks: Findings from smallholder dairy farmers in Ethiopia. Livestock Research for Rural Development 24 (9): 13.
'Livestock innovation systems and networks: Findings from smallholder dairy farmers in Ethiopia ' () 24 Livestock Research for Rural Development : 13 .
Batz, F.-J., K. Peters and W. Janssen. 1999. The influence of technology characteristics on the rate and speed of adoption. Agricultural Economics 21 (2): 121-130. https://doi.org/10.1016/S0169-5150(99)00026-2.
Baumgart-Getz, A., L.S. Prokopy and K. Floress. 2012. Why farmers adopt best management practice in the United States: a meta-analysis of the adoption literature. Journal of Environmental Management 96 (1): 17-25. https://doi.org/10.1016/J.JENVMAN.2011.10.006.
Bhattacharya, P., B. N. Rath and A.K. Dash. 2016. Supply response of milk production: analysis and implications for BRIC countries. Applied Econometrics and International Development 16 (1): 179-192.
'Supply response of milk production: analysis and implications for BRIC countries ' () 16 Applied Econometrics and International Development : 179 -192.
Bozic, M., C. Wolf and F. Yang. 2014. What do dairy producers think about the margin protection program? working paper 13-05. Available at: https://dairymarkets.org/PubPod/Pubs/WP14-05.pdf.
Breitenbach, R. 2018. Economic viability of semi-confined and confined milk production systems in free-stall and compost barn. Food and Nutrition Sciences 09 (05): 609-618. https://doi.org/10.4236/fns.2018.95046.
Camilo Neto, M., J.M. de S. Campos, A.S. de Oliveira and S.T. Gomes. 2012. Identification and quantification of benchmarks of milk production systems in Minas Gerais. Revista Brasileira de Zootecnia 41 (10): 2279-02288.
'Identification and quantification of benchmarks of milk production systems in Minas Gerais ' () 41 Revista Brasileira de Zootecnia : 2279 -02288.
Campos, S.A.C., A.B. Coelho, A.P. Gomes and L.B. de Mattos. 2014. Efficiency and costs associated to environmental adequacy for milk production in Minas Gerais, Brazil. Organizações Rurais & Agroindustriais 16 (3): 324-342.
'Efficiency and costs associated to environmental adequacy for milk production in Minas Gerais, Brazil ' () 16 Organizações Rurais & Agroindustriais : 324 -342.
Carvalho, B.H.P., P.L. Rosado, S. de F.N. Shiki and A.C. Cruz. 2014. Integração intra e inter-mercado: o caso dos preços do leite e derivados no Brasil. Anais Do XLI Encontro Nacional de Economia 19.
'Integração intra e inter-mercado: o caso dos preços do leite e derivados no Brasil ', in Anais Do XLI Encontro Nacional de Economia , () 19 .
Chavas, J.-P. and R.M. Klemme. 1986. Aggregate milk supply response and investment behavior on U.S. dairy farms. American Journal of Agricultural Economics 68 (1): 55-66. https://doi.org/10.2307/1241649.
El-Osta, H.S. and M.J. Morehart. 2000. Technology adoption and its impact on production performance of dairy operations. Review of Agricultural Economics 22 (2): 477-498. http://www.jstor.org/stable/1349806.
FAO. 2018. FAOSTAT: food and agricultural commodities production; commodity per country. Available at: http://www.fao.org/faostat/en/#home.
Fassio, L.H., R.P. Reis and L.G. Geraldo. 2006. Desempenho técnico e econômico da atividade leiteira em Minas Gerais. Ciência e Agrotecnologia 30 (6): 1154-1161. https://doi.org/10.1590/S1413-70542006000600018.
Fassio, L.H., R.P. Reis, L.C.T. Yamaguchi and A.J. dos Reis. 2005. Custos e shut-down point da atividade leiteira em Minas Gerais. Revista de Economia e Sociologia Rural 43 (4): 759-777. https://doi.org/10.1590/S0103-20032005000400007.
Feder, G. and D.L. Umali. 1993. The adoption of agricultural innovations: a review. Technological Forecasting and Social Change 43 (3-4): 215-239. https://doi.org/10.1016/0040-1625(93)90053-A.
Feder, G., R.E. Just and D. Zilberman. 1985. Adoption of agricultural innovations in developing countries: a survey. Economic Development and Cultural Change 33 (2): 255-298. https://doi.org/10.1086/451461.
Fernandes, R.A.S., M.J. Braga and J.E. de Lima. 2010. Elasticidade de transmissão e formação espacial de preços de leite ao produtor nos maiores estados produtores. Revista de Economia e Administração 9 (3): 368-385.
'Elasticidade de transmissão e formação espacial de preços de leite ao produtor nos maiores estados produtores ' () 9 Revista de Economia e Administração : 368 -385.
Fuglie, K.O., P.W. Heisey, J.L. King, C. Pray, K.D. Rubenstein, D.E. Schimmelpfennig, S.L. Wang and R. Karmarkar-Deshmukh. 2011. Research investments and market structure in the food processing, agricultural input, and biofuel industries worldwide. USDA-ERS economic research report no. 130. Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2027051##.
Gomes, S.T. 2006. Diagnóstico Da Pecuária Leiteira Do Estado de Minas Gerais Em 2005. Available at: https://tinyurl.com/y4jb3c53.
Howley, P., C.O. Donoghue and K. Heanue. 2012. Factors affecting farmers’ adoption of agricultural innovations: a panel data analysis of the use of artificial insemination among dairy farmers in Ireland. Journal of Agricultural Science 4 (6): 171. https://doi.org/10.5539/jas.v4n6p171.
Instituto Brasileiro de Geografia e Estatística - IBGE. 2017. Censo Agropecuário. Available at: https://censos.ibge.gov.br/agro/2017.
Johnson, N.L. and V.W. Ruttan. 1997. The diffusion of livestock breeding technology in the U.S.: observations on the relationship between technical change and industry structure. Journal of Agribusiness 15: 19-35.
'The diffusion of livestock breeding technology in the U.S.: observations on the relationship between technical change and industry structure ' () 15 Journal of Agribusiness : 19 -35.
Meadows, D.L. 1970. Dynamics of commodity production cycles. Pegasus Communications, Waltham, MA, USA.
Dynamics of commodity production cycles , ().
Nascif, C. 2008. Indicadores técnicos e econômicos em sistemas de produção de leite de quatro Mesorregiões do Estado de Minas Gerais. Universidade Federal de Viçosa. Available at: https://preview.tinyurl.com/y3v3yxd6.
Nicholson, C.F. and M.W. Stephenson. 2010. Analysis of proposed programs to mitigate price volatility in the U.S. dairy industry. Available at: http://www.futurefordairy.com/pdfs/Nicholson-and-Stephenson-Analysis.pdf.
Nicholson, C.F., and M.W. Stephenson. 2014. Modeling government intervention in agricultural commodity markets: U.S. dairy policy under the agricultural act of 2014. Plenary paper. 32nd International Conference of the System Dynamics Society, Delft, the Netherlands, 20-24 July 2014. Available at: https://www.systemdynamics.org/assets/conferences/2014/proceed/papers/P1191.pdf.
Nicholson, C.F., and M.W. Stephenson. 2015. Milk price cycles in the U.S. dairy supply chain and their management implications. Agribusiness: An International Journal 31 (4): 507-520. https://doi.org/10.1002/agr.21416.
Novo, A.M., M. Slingerland, K. Jansen, A. Kanellopoulos and K.E. Giller. 2013. Feasibility and competitiveness of intensive smallholder dairy farming in Brazil in comparison with soya and sugarcane: case study of the Balde Cheio Programme. Agricultural Systems 121 (0): 63-72. https://doi.org/10.1016/j.agsy.2013.06.007.
Olaya, C. 2015. Cows, agency, and the significance of operational thinking. System Dynamics Review 31 (4): 183-219. https://doi.org/10.1002/sdr.1547.
Oliveira, A.S. de, D. de N.F.V. da Cunha, J.M. de S. Campos, S.M.L.R. do Vale and A.J. de Assis. 2007. Identificação e quantificação de indicadores-referência de sistemas de produção de leite. Revista Brasileira de Zootecnia 36 (2): 507-516. https://doi.org/10.1590/S1516-35982007000200030.
Oliveira, M.V.M., O.F.N. e Sá, C.L. de Abreu, D.P. de Oliveira, A.R.P. Simoes, F.M. de V. Junior, D.F. Luz, and P. Maltempi Filho. 2015. Dairy calves fed with milk replacer in substitution to whole milk. Agrarian 8 (30): 405-413.
'Dairy calves fed with milk replacer in substitution to whole milk ' () 8 Agrarian : 405 -413.
Parsons, D. and C.F. Nicholson. 2017. Assessing policy options for agricultural livestock development: a case study of Mexico’s sheep sector. Cogent Food & Agriculture 3 (1) https://doi.org/10.1080/23311932.2017.1313360.
Quiroga, R.E., and B.E. Bravo-Ureta. 1992. Short- and long-run adjustments in dairy production: A profit function analysis. Applied Economics 24 (6): 607-616. https://doi.org/10.1080/00036849200000029.
Silva, L.H.A. da, M.R.G. da Camara, and T.S. Telles. 2016. Evolution and spatial distribution of dairy production in Paraná State, Brazil. Acta Scientiarum. Human and Social Sciences 38 (1): 37-47. https://doi.org/10.4025/actascihumansoc.v38i1.30006.
Simões, A.R.P., V.P. Silva Junior and R.M. Protil. 2015. Technologic profile of dairy farming in Minas Gerais. 53° Congresso Da Sociedade Brasileira de Economia Administração e Sociologia Rural - SOBER 15.
'Technologic profile of dairy farming in Minas Gerais ', in 53° Congresso Da Sociedade Brasileira de Economia Administração e Sociologia Rural - SOBER , () 15 .
Simões, A.R.P., J.D. dos Reis, and P.S. Avelar. 2017. The Technological heterogeneity of dairy farming in Minas Gerais. Agrarian 10 (38): 261-269. https://doi.org/10.30612/agrarian.v10i37.6782.
Siqueira, K.B., R.L. Kilmer and A.C. Campos. 2010. The dynamics of farm milk price formation in Brazil. Revista de Economia e Sociologia Rural 48 (1): 41-61. https://doi.org/10.1590/S0103-20032010000100003.
Spielman, D.J. 2005. Innovation systems perspectives on developing-country agriculture: a critical review. International Food Policy Research Institute, Washington, DC, USA.
Innovation systems perspectives on developing-country agriculture: a critical review , ().
Sterman, J.D. 2000. Business dynamics: systems thinking and modeling for a complex world. Mcgraw-Hill Education, New York, NY, USA.
Business dynamics: systems thinking and modeling for a complex world , ().
Telles, T.S., M.D. Bacchi and J. Shimizu. 2017. Spatial distribution of microregions specialized in milk production. Semina: Ciências Agrárias 38 (1): 443-454. https://doi.org/10.5433/1679-0359.2017v38n1p443.
Verner, C. and P.M. Gubbels. 1967. The adoption or rejection of innovations by dairy farm operators in the lower fraser valley. Agricultural Economics Research Council of Canada (11):88.
'The adoption or rejection of innovations by dairy farm operators in the lower fraser valley ', in Agricultural Economics Research Council of Canada , () 88 .
Weersink, A. and L. Tauer. 1990. Regional and temporal impacts of technical change in the U.S. dairy sector. American Journal of Agricultural Economics 72 (4): 923-934. https://doi.org/10.2307/1242624.
Weersink, A., and L.W. Tauer. 1991. Causality between dairy farm size and productivity. American Journal of Agricultural Economics 73 (4): 1138-1145. https://doi.org/10.2307/1242442.
Zepeda, L., L.J. Butler and H.O. Carter. 1991. Simulating BST Introduction in california for dairy policy analysis. Western Journal of Agricultural Economics 16 (2): 228-237,.
'Simulating BST Introduction in california for dairy policy analysis ', in Western Journal of Agricultural Economics , ().
Zoccal, R., A.V. Cerneiro, G. Carvalho, L.A. Stock, H. Chaib Filho and F.L. Garagorry. 2007. Distribuição espacial da pecuária leiteira no Brasil. Reunion Latino Americana de Produccion Animal (ALPA) 4.
'Distribuição espacial da pecuária leiteira no Brasil ', in Reunion Latino Americana de Produccion Animal (ALPA) , () 4 .
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 368 | 212 | 27 |
PDF Views & Downloads | 390 | 199 | 16 |
Agricultural technology adoption that increases individual firm productivity is generally assumed to improve competitiveness and profitability. However, technology that is adopted by many firms in an industry can shift the basic supply relationship, increasing total production while lowering farm prices. While generally beneficial to consumers, this result can reduce (or completely offset) benefits for farmers, especially late or non-adopters. Our objective is to assess the market dynamics of alternative assumptions about exogenous productivity-enhancing technology adoption by Brazilian dairy farms. Of particular interest is the distributional impact on farm incomes and on the proportion of milk production for different farm size classes. To achieve this objective, we developed an empirical System Dynamics model that evaluates market and farm profitability impacts from 2006 to 2016. We simulated six counterfactual scenarios comprising three rates of adoption (slow, medium and fast) by two farm size categories (small and large). Technology adoption impact differs in the short- and long-term and depending on the assumed rates and farm sizes. Non-adopters of technology can experience lower incomes and a smaller production and income shares when other farms adopt. The underlying causal structure of farm profitability and the herd management decisions suffices to explain the potential market exclusion of non-adopting farms (especially small-scale farms) when others adopt.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 368 | 212 | 27 |
PDF Views & Downloads | 390 | 199 | 16 |