Unifying Ecological and Evolutionary Dynamics Through Experimental Stochastic Demography

In: Israel Journal of Ecology and Evolution
View More View Less
  • 1 Imperial College London, Division of Biology
  • | 2 Imperial College London, Division of Biology

Purchase instant access (PDF download and unlimited online access):


Ecological and evolutionary dynamics depend upon variation in birth and death rates. Consequently characterizing birth and death rates, and identifying factors that explain variation in these rates, should be the foundation of population and evolutionary ecology. Given the central role of birth and death, it is perhaps surprising that relatively few population biologists apply the most recent demographic approaches to their research. This may be because demography is seen as little more than accounting, and therefore dull, or because stochastic demography is seen as mathematically challenging. It is our belief that ecologists and evolutionary biologists have much to gain through increased mastery of stochastic demography. Its applications could push forward our understanding of eco-evolutionary dynamics in stochastic environments, and the outcome could further the unification of ecology and evolution. In this essay we briefly explain why mastering demographic approaches should be a desirable objective for any evolutionary ecologist. We start by describing some aspects and insights gained through application of demographic methods, before suggesting an area where we believe application could prove insightful.

  • Benton, T. G., Cameron, T. C., Grant, A. 2004. Population responses to perturbations: predictions and responses from laboratory mite populations. J. Anim. Ecol. 73: 983-995.

  • Carroll, S. P., Hendry, A. P., Reznick, D. N., Fox, C. W. 2007. Evolution on ecological time-scales. Funct. Ecol. 21: 387-393.

  • Caswell, H. 2001. Matrix population models. Sinauer Associates, Sunderland, MA.

  • Coltman, D. W., O'Donoghue, P., Jorgenson, J. T., Hogg, J. T., Strobeck, C., Festa-Bianchet, M. 2003. Undesirable evolutionary consequences of trophy hunting. Nature 426: 655-658.

  • Conover, D. O., Munch, S. B. 2002. Sustaining fisheries yields over evolutionary time scales. Science 297: 94-96.

  • Conover, D. O., Munch, S. B., Arnott, S. A. 2009. Reversal of evolutionary downsizing caused by selective harvest of large fish. Proc. R. Soc. London, B 276: 2015-2020.

  • Costantino, R. F., Cushing, J. M., Dennis, B., Desharnais, R. A. 1995. Experimentally induced transitions in the dynamic behaviour of insect populations. Nature 375: 227-230.

  • Coulson, T., Kruuk, L. E. B., Tavecchia, G., Pemberton, J. M., Clutton-Brock, T. H. 2003. Estimating selection on neonatal traits in red deer using elasticity path analysis. Evolution 57: 2879-2892.

  • Coulson, T., Benton, T. G., Lundberg, P., Dall, S. R. X., Kendall, B. E. 2006. Putting evolutionary biology back in the ecological theatre: a demographic framework mapping genes to communities. Evol. Ecol. Res. 8: 1155-1171.

  • Ellner, S. P., McCauley, E., Kendall, B. E., Briggs, C. J., Hosseini, P. R., Wood, S. N., Janssen, A., Sabelis, M. W., Turchin, P., Nisbet, R. M., Murdoch, W. W. 2001. Habitat structure and population persistence in an experimental community. Nature 412: 538-543.

  • Ezard, T. H. G., Gaillard, J.-M., Crawley, M., Coulson, T. 2008. Habitat dependence and correlations between elasticities of long-term growth rates. Am. Nat. 172: 424-430.

  • Geritz, S. A. H., Kisdi, E., Meszena, G., Metz, J. A. J. 1998. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12: 35-57.

  • Gerson, U., Capua, S., Thorens, D. 1983. Life history and life tables of Rhizoglyphus robini Claparede (Acari: Astigmata: Acaridae). Acarologia 24: 439-448.

  • Hairston, N. G., Jr, Ellner, S. P., Geber, M., Yoshida, T., Fox, J. E. 2005. Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 8: 1114-1127.

  • Hesse, E., Rees, M., M�ller-Sch�rer, H. 2008. Life-history variation in contrasting habitats: flow-ering decisions in a clonal perennial herb (Veratrum album). Am. Nat. 172: 196-213.

  • Hsieh, C., Reiss, C. S., Hunter, J. R., Beddington, J. R., May, R. M., Sugihara, G. 2006. Fishing elevates variability in the abundance of exploited species. Nature 443: 859-862.

  • Huffaker, C. B., Shea, K. B., Herman, S. G. 1963. Experimental studies on predation: Complex dispersion and levels of food in acarine predator-prey interaction. Hilgardia 34: 305-330.

  • Metcalf, C. J. E., Rose, K. E., Childs, D. Z., Sheppard, A. W., Grubb, P. J., Rees, M. 2008. Evolution of flowering decisions in a stochastic, density-dependent environment. Proc. Natl. Acad. Sci. USA. 105: 10466-10470.

  • Metz, J. A. J., Nisbet, R. M., Geritz, S. A. H. 1992. How should we define ‘fitness’ for general ecological scenarios? Trends Ecol. Evol. 7: 198-202.

  • Morris, W. F., Doak, D. F. 2005. How general are the determinants of the stochastic population growth rate across nearby sites? Ecol. Monogr. 75: 119-137.

  • Morris, W. F., Pfister, C. A., Tuljapurkar, S., Haridas, C. V., Boggs, C. L., Boyce, M. S., Bruna, E. M., Church, D. R., Coulson, T., Doak, D. F., Forsyth, S., Gaillard, J.-M., Horvitz, C. C., Kalisz, S., Kendall, B. E., Knight, T. M., Lee, C. T., Menges, E. S. 2008. Longevity can buffer plant and animal populations against changing climatic variability. Ecology 89: 19-25.

  • Mueller, L. D., Joshi, A. 2000. Stability in model populations. Princeton University Press, Princeton, NJ, 319 pp.

  • Reuman, D. C., Desharnais, R. A., Costantino, R. F., Ahmad, O. S., Cohen, J. E. 2006. Power spectra reveal the influence of stochasticity on nonlinear population dynamics. Proc. Natl. Acad. Sci. USA 103: 18860-18865.

  • Roff, D. A. 2008. Defining fitness in evolutionary models. J. Genet. 87: 339-348.

  • Sabelis, M. W., Janssen, A., Diekmann, O., Jansen, V. A. A., van Gooland, E., van Baalen, M. 2005. Global persistence despite local extinction in acarine predator-prey systems: lessons from experimental and mathematical exercises. Adv. Ecol. Res. 37: 183-220.

  • Tuljapurkar, S. 1990. Population dynamics in variable environments. Springer, New York, 154 pp.

  • Tuljapurkar, S., Horvitz, C. C., Pascarella, J. B. 2003. The many growth rates and elasticities of populations in random environments. Am. Nat. 162: 489-502.

  • Venables, W. N., Ripley, B. D. 1999. Modern applied statistics with S-PLUS: statistics and computing. Springer, New York, 548 pp.

  • Walsh, M. R., Munch, S. B., Chiba, S., Conover, D. O. 2006. Maladaptive changes in multiple traits caused by fishing: impediments to population recovery. Ecol. Lett. 9: 142-148.

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 46 24 2
Full Text Views 13 0 0
PDF Views & Downloads 7 0 0