The Effectof Multiple Vectors on Arbovirus Transmission

In: Israel Journal of Ecology and Evolution
View More View Less
  • 1 Florida Medical Entomology Laboratory, University of Florida—IFAS

Many mosquito-borne arboviruses have more than one competent vector. These vectors may or may not overlap in space and time, and may interact differently with vertebrate hosts. The presence of multiple vectors for a particular virus at one location over time will influence the epidemiology of the system, and could be important in the design of intervention strategies to protect particular hosts. A simulation model previously developed for West Nile and St. Louis encephalitis viruses and Culex nigripalpus was expanded to consider two vector species. These vectors differed in their abundance through the year, but were otherwise similar. The model was used to examine the consequences of different combinations of abundance patterns on the transmission dynamics of the virus. The abundance pattern based on Cx. nigripalpus dominated the system and was a key factor in generating epidemics in the wild bird population. The presence of two vectors often resulted in multiple epidemic peaks of transmission. A species which was active in the winter could enable virus persistence until another vector became active in the spring, summer, or fall. The day the virus was introduced into the system was critical in determining how many epidemic peaks were observed and when the first peak occurred. The number of epidemic peaks influenced the overall proportion of birds infected. The implications of these results for assessing the relative importance of different vector species are discussed.

  • Alto, B. W., Lounibos, L. P., Higgs, S., Juliano, S. A. 2005. Larval competition differentially affects arbovirus infection in Aedes mosquitoes. Ecology 86: 3279-3288.

  • Alto, B. W., Lounibos, L. P., Mores, C. N., Reiskind, M. H. 2008. Larval competition alters susceptibility of adult Aedes mosquitoes to dengue infection. Proc. R. Soc. Lond. B275: 463-471.

  • Anderson, J. F., Vossbrink, C. R., Andreadis, T. G., Iton, A., Beckwith III, W. H., Mayo, D. R. 2001. A phylogenetic approach to following West Nile virus in Connecticut. Proc. Nat. Acad. Sci. USA 98: 12885-12889.

  • Andreadis, T. G., Anderson, J. F., Vossbrinck, C. R. 2001. Mosquito surveillance for West Nile virus in Connecticut, 2000: isolation from Culex pipiens, Cx. restuans, Cx. salinarius, and Culiseta melanura. Emerg. Inf. Dis. 7: 670-674.

  • Bicout, D. J., Sabatier, P. 2004. Mapping Rift Valley fever vectors and prevalence using rainfall variations. Vector Borne Zoonotic Dis. 4: 33-43.

  • Billingsley, P. F., Baird, J., Mitchell, J. A., Drakeley, C. 2006. Immune interactions between mosquitoes and their hosts. Parasite Immunol. 28: 143-153.

  • Blower, S. M., Dowlatabadi, H. 1994. Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Rev. 62: 229-243.

  • Blower, S. M., Hartel, D., Dowlatabadi, H., Anderson, R. M., May, R. M. 1991. Drugs, sex and HIV: a mathematical model for New York City. Phil. Trans. R. Soc. Lond. B321: 171-187.

  • Brisson, D., Dykhuizen, D. E., Ostfeld, R. S. 2008. Conspicuous impacts of inconspicuous hosts on the Lyme disease epidemic. Proc. R. Soc. Lond. B275: 227-235.

  • Centers for Disease Control. 2009. West Nile virus: entomology.

  • Chandler, L. J., Parsons, R., Randle, Y. 2001. Multiple genotypes of St. Louis encephalitis virus (Flaviviridae: Flavivirus) circulate in Harris County, Texas. Am. J. Trop. Med. Hyg. 64: 12-19.

  • Davis, C. T., Ebel, G. D., Lanciotti, R. S., Brault, A. C., Guzman, H., Siirin, M., Lambert, A., Parsons, R. E., Beasley, D. W. C., Novak, R. J., Elizondo-Quiroga, D., Green, E. N., Young, D. S., Stark, L. M., Drebot, M. A., Artsob, H., Tesh, R. B., Kramer, L. D., Barrett, A. D. T. 2005. Phylogenetic analysis of North American West Nile virus isolates, 2001-2004: evidence for the emergence of a dominant genotype. Virology 342: 252-265.

  • Day, J. F., Curtis, G. A. 1989. Influence of rainfall on Culex nigripalpus (Diptera: Culicidae) blood-feeding behavior in Indian River County, Florida. Ann. Entomol. Soc. Am. 82: 32-37.

  • Day, J. F., Curtis, G. A. 1993. Annual emergence patterns of Culex nigripalpus females before, during, and after a widespread St. Louis encephalitis epidemic in South Florida. J. Am. Mosq. Contol Assoc. 9: 249-255.

  • Day, J. F., Edman, J. D. 1988. Host location, blood-feeding and oviposition behavior of Culex nigripalpus (Diptera: Culicidae): their influence on St. Louis encephalitis virus transmission in southern Florida. Entomol. Soc. Am. Misc. Publ. 68: 1-8.

  • Day, J. F., Stark, L. M. 1996. Transmission patterns of St. Louis encephalitis and Eastern equine encephalitis viruses in Florida: 1978-1993. J. Med. Entomol. 33: 132-139.

  • Ebel, G. D., Rochlin, I., Longacker, J., Kramer, L. D. 2005. Culex restuans (Diptera: Culicidae) relative abundance and vector competence for West Nile virus. J. Med. Entomol. 42: 838-843.

  • Edman, J. D., Taylor, D. J. 1968. Culex nigripalpus: seasonal shift in the bird-mammal feeding ratio in a mosquito vector of human encephalitis. Science 161: 67-68.

  • Edman, J. D., Webber, L. A., Kale II, H. W. 1972. Effect of mosquito density on the interrelationship of host behavior and mosquito feeding success. Am. J. Trop. Med. Hyg. 21: 487-491.

  • Edman, J. D., Webber, L. A., Schmid, A. A. 1974. Effect of host defenses on the feeding pattern of Culex nigripalpus when offered a choice of blood sources. J. Parasitol. 60: 874-883.

  • Glass, K. 2005. Ecological mechanisms that promote arbovirus survival: a mathematical model of Ross River virus transmission. Trans. R. Soc. Trop. Med. Hyg. 99: 252-260.

  • Goddard, L. B., Roth, A. E., Reisen, W. K., Scott, T. W. 2002. Vector competence of California mosquitoes for West Nile virus. Emerg. Inf. Dis. 8: 1385-1391.

  • Hribar, L. J., Vlach, J. J., Demay, D. J., Stark, L. M., Stoner, R. L., Godsey, M. S., Burkhalter, K. L., Spoto, M. C., James, S. S., Smith, J. M., Fussell, E. M. 2003. Mosquitoes infected with West Nile virus in the Florida Keys, Monroe County, Florida, USA. J. Med. Entomol. 40: 361-363.

  • Iman, R. L., Shortencarrier, M. J. 1984. A Fortran 77 program & user's guide for the generation of Latin hypercubes & random samples for use with computer models. Sandia National Laboratories, Albuquerque, NM, 40 pp.

  • Jacups, S. P., Whelan, P. I., Currie, B. J. 2008. Ross River virus and Barmah Forest virus infections: a review of history, ecology, and predictive models, with implications for tropical northern Australia. Vector Borne Zoonotic Dis. 8: 283-297.

  • Juliano, S. A. 2009. Species interactions among larval mosquitoes: context dependence across habitat gradients. Ann. Rev. Entomol. 54: 37-56.

  • Keesing, F., Holt, R. D., Ostfeld, R. S. 2006. Effects of species diversity on disease risk. Ecol. Lett. 9: 485-498.

  • Kelly, D. W., Mustafa, Z., Dye, C. 1996. Density-dependent feeding success in a field population of the sandfly Lutzomyia longipalpis. J. Anim. Ecol. 65: 517-527.

  • Kettle, D. S. 1990. Medical and Veterinary Entomology. CABInternational, Wallingford, 658 pp.

  • Kunkel, K., Novak, R. J., Lampman, R. L., Gu, W. 2006. Modeling the impact of variable climatic factors on the crossover of Culex restuans and Culex pipiens (Diptera: Culicidae), vectors of West Nile virus in Illinois. Am. J. Trop. Med. Hyg. 74: 168-173.

  • LoGiudice, K., Ostfeld, R. S., Schmidt, K. A., Keesing, F. 2003. The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc. Nat. Acad. Sci. USA 100: 567-571.

  • Lord, C. C., Day, J. F. 2001a. Simulation studies of St. Louis encephalitis in South Florida. Vector Borne Zoonotic Dis. 1: 299-316.

  • Lord, C. C., Day, J. F. 2001b. Simulation studies of St. Louis encephalitis and West Nile viruses: the impact of bird mortality. Vector Borne Zoonotic Dis. 1: 317-330.

  • Lord, C. C., Woolhouse, M. E. J., Heesterbeek, J. A. P., Mellor, P. S. 1996a. Vector-borne diseases and the basic reproduction number: a case-study of African horse sickness. Med. Vet. Ent. 10: 19-28.

  • Lord, C. C., Woolhouse, M. E. J., Rawlings, P., Mellor, P. S. 1996b. Simulation studies of African horse sickness and Culicoides imicola (Diptera: Ceratopogonidae). J. Med. Entomol. 33: 328-338.

  • Lord, C. C., Woolhouse, M. E. J., Mellor, P. S. 1997. Simulation studies of vaccination strategies in African horse sickness. Vaccine 15: 519-524.

  • Mitchell, C. J., Francy, D. B., Monath, T. P. 1980. Arthropod vectors. Monath, T. P., ed. St. Louis Encephalitis. American Public Health Association, Washington, DC, pp. 313-379.

  • Nayar, J. K. 1982. Bionomics and physiology of Culex nigripalpus (Diptera: Culicidae) of Florida: an important vector of diseases. Florida Agricultural Experiment Station Technical Bulletin 827.

  • O'Meara, G. F., Evans, F. D. S. 1983. Seasonal patterns of abundance among three species of Culex mosquitoes in a south Florida wastewater lagoon. Ann. Entomol. Soc. Am. 76: 130-133.

  • O'Meara, G. F., Vose, F. E., Carlson, D. B. 1989. Environmental factors influencing oviposition by Culex (Culex) (Diptera: Culicidae) in two types of traps. J. Med. Entomol. 26: 528-534.

  • Rogers, D. J. 1988. A general model for the African trypanosomiases. Parasitology 97: 193-212.

  • Rutledge, C. R., Day, J. F., Lord, C. C., Stark, L. M., Tabachnick, W. J. 2003. West Nile virus infection rates in Culex nigripalpus (Diptera: Culicidae) do not reflect transmission rates in Florida. J. Med. Entomol. 40: 253-258.

  • Sardelis, M. R., Turell, M. J., Dohm, D. J., O'Guinn, M. L. 2001. Vector competence of selected North American Culex and Coquillettidia mosquitoes for West Nile virus. Emerging Infect. Dis. 7: 1018-1022.

  • Savage, H. M., Anderson, M., Gordon, E., McMillen, L., Colton, L., Delorey, M., Sutherland, G., Aspen, S., Charnetzky, D., Burkhalter, K., Godsey, M. 2008. Host-seeking heights, host-seeking activity patterns, and West Nile virus infection rates for members of the Culex pipiens complex at different habitat types within the hybrid zone, Shelby, County, TN, 2002. J. Med. Entomol. 45: 276-288.

  • Schmidt, K. A., Ostfeld, R. S. 2001. Biodiversity and the dilution effect in disease ecology. Ecology 82: 609-619.

  • Schneider, B. S., Higgs, S. 2008. The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response. Trans. R. Soc. Trop. Med. Hyg. 102: 400-408.

  • Sota, T., Mogi, M. 1989. Effectiveness of zooprophylaxis in malaria control: a theoretical inquiry, with a model for mosquito populations with two bloodmeal hosts. Med. Vet. Entomol. 3: 337-345.

  • Trawinski, P. R., Mackay, D. S. 2008. Meteorologically conditioned time-series predictions of West Nile virus vector mosquitoes. Vector Borne Zoonotic Dis. 8: 505-522.

  • Turell, M. J., Dohm, D. J., Sardelis, M. R., Oguinn, M. L., Andreadis, T. G., Blow, J. A. 2005. An update on the potential of North American mosquitoes (Diptera: Culicidae) to transmit West Nile virus. J. Med. Entomol. 42: 57-62.

  • Turell, M. J., O'Guinn, M. L., Dohm, D. J., Jones, J. W. 2001. Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. J. Med. Entomol. 38: 130-134.

  • Turell, M. J., O'Guinn, M., Oliver, J. 2000. Potential for New York mosquitoes to transmit West Nile virus. Am. J. Trop. Med. Hyg. 62: 413-414.

  • Unnasch, R. S., Sprenger, T., Katholi, C. R., Cupp, E. W., Hill, G. E., Unnasch, T. R. 2006. A dynamic transmission model of eastern equine encephalitis virus. Ecol. Modelling 192: 425-440.

  • Vaidyanathan, R., Edman, J. D. 1997a. Sampling methods for potential epidemic vectors of eastern equine encephalomyelitis virus in Massachusetts. J. Am. Mosq. Contol Assoc. 13: 342-347.

  • Vaidyanathan, R., Edman, J. D. 1997b. Sampling with light traps and human bait in epidemic foci for Eastern equine encephalomyelitis virus in southeastern Massachusetts. J. Am. Mosq. Contol Assoc. 13: 348-355.

  • Weaver, S. C., Barrett, A. D. 2004. Transmission cycles, host range, evolution and emergence of arboviral disease. Nature Reviews Microbiology 2: 789-801.

  • Zyzak, M., Loyless, T., Cope, S., Wooster, M., Day, J. F. 2002. Seasonal abundance of Culex nigripalpus Theobald and Culex salinarius Coquillett in north Florida, USA. J. Vector Ecol. 27: 155-162.

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 51 6 0
Full Text Views 1135 496 43
PDF Views & Downloads 1094 451 37