Apparent Competition and Vector-Host Interactions

in Israel Journal of Ecology and Evolution
View More View Less
  • 1 Mathematical Ecology Research Group, Department of Zoology, University of Oxford
  • 2 St. Peter’s College, New Inn Hall Street
  • 3 Department of Biology, University of Florida

Infectious disease influences the dynamics of host populations and the structure of species communities via impacts on host demography. Species that share infectious diseases are well-known to interact indirectly through the process of apparent competition, but there has been little attention given to the role of vectors in these indirect interactions. Here we explore how vector-borne disease and host-vector interactions can drive apparent competitive interactions. We show that different facets of the ecology associated with vector-host-host interactions affect the structure of the three-species assemblage. Crucially, the patterns associated with invasion of alternative hosts, the spread of the infectious disease by the vector, and the dynamics of the community interactions are influenced by the mode of transmission. We highlight the role of alternative hosts on disease amplification, dilution and magnification and discuss the results with reference to recent developments in apparent competition and community structure.

  • Anderson, R. M., May, R. M. 1978. Regulation and stability of host-parasite population interactions. I. Regulatory processes. J. Anim. Ecol. 47: 219-247.

  • Anderson, R. M., May, R. M. 1979. Population biology of infectious disease: Part 1. Nature 180: 361-367.

  • Anderson, R. M., May, R. M. 1991. Infectious diseases of humans. Dynamics and control. Oxford Science Publications, Oxford, 757 pp.

  • Antonovics, J., Iwasa, Y., Hassell, M. P. 1995. A generalized model of parasitoid, venereal, and vector-based transmission processes. Am. Nat. 145: 661-675.

  • Baumgartner, J., Gilloli, G., Tikubet, G., Gutierrez, A. P. 2008. Eco-social analysis of an East African agro-pastoral system: management of tsetse and bovine trypanosomiasis. Ecol. Econ. 65: 125-135.

  • Begon, M., Bowers, R. G., Kadianakis, N., Hodgkinson, D. E. 1992. Disease and community structure—the importance of host self regulation in a host-host-pathogen model. Am. Nat. 139: 1131-1150.

  • Bonsall, M. B. Hassell, M. P. 1997. Apparent competition structures ecological assemblages. Nature 388: 371-373.

  • Bonsall, M. B. Hassell, M. P. 1998. The population dynamics of apparent competitionin a host-parasitoid assemblage. J. Anim. Ecol. 67: 918-929.

  • Bonsall, M. B. Hassell, M. P. 1999. Parasitoid mediated effects: apparent competition and the persistence of host-parasitoid assemblages. Res. Popul. Ecol. 41: 59-68.

  • Bonsall, M. B., Mangel, M. 2009. Density dependence, lifespan and the evolutionary ecology of longevity. Theor. Popul. Biol. 75: 46-55.

  • Bonsall, M. B., Bull, J. C., Pickup, N. J., Hassell, M. P. 2005. Indirect effects and spatial scaling affect the persistence of multispecies metapopulations. Proc. R. Soc. Lond. B. 272: 1465-1471.

  • Borer, E. T., Mitchell, C. E., Power, A. G., Seabloom, E. W. 2009. Consumers indirectly increase infection risk in grassland food webs. Proc. Natl. Acad. Sci. USA 106: 503-506.

  • Bull, J. C., Pickup, N. J., Hassell, M. P., Bonsall, M. B. 2006. Habitat shape, metapopulation processes and the dynamics of multispecies predator-prey interactions. J. Anim. Ecol. 75: 899-907.

  • Bull, J. C., Pickup, N. J., Pickett, B. Hassell, M. P., Bonsall, M. B. 2007. Metapopulation extinction risk is increased by environmental stochasticity and assemblage complexity. Proc. R. Soc. Lond. B. 274: 87-96.

  • Cable, J. M., Enquist, B. J., Moses, M. E. 2007. The allometry of host-pathogen interactions. PLoS ONE 2: e1130, 1-6.

  • Chaneton, E. J., Bonsall, M. B. 2000. Enemy-mediated apparent competition: empirical patterns and the evidence. Oikos 88: 380-394.

  • Diekmann, O., Heesterbeek, J. A. P., Metz, J. A. J. 1990. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous environments. J. Math. Biol. 28: 365-382.

  • Dobson, A. 2004. Population dynamics of pathogens with multiple host species. Am. Nat. 164: S64-S78.

  • Gaston, A. J., Hipfner, M. M., Campbell, D. 2002. Heat and mosquitoes cause breeding failures and adult mortality in an Arctic-nesting seabird. Ibis 144: 185-191.

  • Getz, W. M., Pickering, J. 1983. Epidemic models—thresholds and population regulation. Am. Nat. 121: 892-898.

  • Gilbert, L., Norman, R., Laurenson, K. M., Reid, H. W., Hudson, P. J. 2001. Disease persistence and apparent competition in a three-host community: an empirical and analytical study of large-scale, wild populations. J. Anim. Ecol. 70: 1053-1061.

  • Gog, J., Woodruffe, R., Swinton, J. 2002. Disease in endangered metapopulations: the importance of alternative hosts. Proc. R. Soc. Lond. B. 269: 671-676.

  • Greenman, J. V., Hudson, P. J. 1999. Multihost, multiparasite systems: an application of bifurcation theory. IMA J. Math. Appl. Med. Biol. 16: 333-367.

  • Greenman, J. V., Hudson, P. J. 2000. Parasite-mediated and direct competition in a two-host shared macroparasite system. Theor. Popul. Biol. 57: 13-34.

  • Haldane, J. B. S. 1949. Disease and Evolution. La Ricerca Scientifica (Suppl. A) 19: 68-76.

  • Hess, G. 1996. Disease in metapopulation models: implications for conservation. Ecology 77: 1617-1632.

  • Holt, R. D. 1977. Predation, apparent competition, and structure of prey communities. Theor. Popul. Biol. 12: 197-229.

  • Holt, R. D. 1984. Spatial heterogeneity, indirect interactions, and the coexistence of prey species. Am. Nat. 124: 377-406.

  • Holt, R. D. 1997. Community modules. In: Gange, A. C., Brown, V. K., eds. Multitrophic Interactions in Terrestrial Ecosystems, 36th Symposium of the British Ecological Society, Blackwell Science, Oxford, pp. 333-349.

  • Holt, R. D., Lawton, J. H. 1994. The ecological consequences of shared natural enemies. Ann. Rev. Ecol. System. 25: 495-520.

  • Holt, R. D., Pickering J. 1985. Infectious disease and species coexistence—a model of Lotka-Volterra form. Am. Nat. 126: 196-211.

  • Holt, R. D., Dobson, A. P., Begon, M., Bowers, R. G., Schauber, E. 2003. Parasite establishment and persistence in multi-host-species systems. Ecol. Lett. 6: 837-842.

  • Hudson, P., Greenman, J. 1998. Competition mediated by parasites: biological and theoretical progress. Trends Ecol. Evol. 13: 387-390.

  • Keeling, M. J., Gilligan, G. A. 2000. Metapopulation dynamics of bubonic plague. Nature 407: 903-906.

  • Keesing, F., Holt, R. D., Ostfeld, R. S. 2006. Effects of species diversity on disease risk. Ecol. Lett. 9: 485-498.

  • Klug, H., Bonsall, M. B. 2007. When to care for, abandon or eat your offspring: the evolution of parental care and filial cannibalism. Am. Nat. 170: 886-901.

  • Klug, H., Bonsall, M. B. 2010. Life history and the evolution of parental care. Evolution 64: 823-835.

  • Lafferty, K. D., Dobson, A. P., Kuris, A. M. 2006. Parasites dominate food web links. Proc. Natl. Acad. Sci. USA 103: 11211-11216.

  • Lederberg, J. 1999. J. B. S. Haldane (1949) on infectious diseases and evolution. Genetics 153: 1-3.

  • LoGiudice, K., Ostfeld, R. S., Schmidt, K. A., Kessing, F. 2003. The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk. Proc. Natl. Acad. Sci. USA 100: 567-571.

  • McCallum, H., Barlow, N., Hone, J. 2001. How should pathogen transmission be modelled? Trends Ecol. Evol. 16: 295-300.

  • MacDonald, G. 1957. The epidemiology and control of malaria. Oxford University Press, Oxford.

  • May, R. M., Anderson, R. M. 1978. Regulation and stability in host-parasite population interactions: II. Destabilizing processes. J. Anim. Ecol. 47: 249-267.

  • May, R. M., Anderson, R. M. 1979. Population biology of infectious disease: Part 2. Nature 280: 455-461.

  • Mehlhorn, H., Armstrong, P. M. 2001. Encyclopaedic reference of parasitology: biology, structure, function. 2nd ed. Springer, Berlin, 678 pp.

  • Peixoto, I. D., Abramson, G. 2006. The effects of biodiversity on the hantavirus epizootic. Ecology 87: 873-879.

  • Pielou, E. C. 1977. Mathematical ecology. Wiley, Chichester, 385 pp.

  • Price, P. W., Westoby, M., Rice, B., Atsatt, P. R., Fritz, R. S., Thompson, J. N., Mobley, K. 1986. Parasite mediation in ecological interactions. Ann. Rev. Ecol. Syst. 17: 487-506.

  • Ross, R. 1910. The prevention of malaria. Murray, London, 669 pp.

  • Rudolf, V. H. W., Antonovics, J. 2005. Species coexistence and pathogens with frequency-dependent transmission. Am. Nat. 166: 112-118.

  • Sainsbury, A. W., Deaville, R., Lawson, B., Cooley, W. A., Farrelly, S. S. J., Stack, M. J., Duff, P., McInnes, C. J., Gurnell, J., Russell, P. H., Rushton, S. P., Pfeiffer, D. U., Nettleton, P., Lurz, P. W. W. 2008. Poxviral disease in red squirrels Sciurus vulgaris in the UK: spatial and temporal trends of an emerging threat. EcoHealth 5: 305-316.

  • Stapp, P., Salkeld, D. J., Franklin, H. A., Kraft, J. P., Tripp, D. W., Antolin, M. F., Gage, K. L. 2009. Evidence for the involvement of an alternate rodent host in the dynamics of introduced plague in prairie dogs. J. Anim. Ecol. 78: 807-817.

  • Toupin, B., Huot, J., Manseau, M. 1996. Effect of insect harassment on the behaviour of the Rivere George caribou. Arctic 49: 375-382.

  • Thomas, F., Renaud, F., Guegan, J-F. 2005. Parasitism and ecosystems. Oxford University Press, Oxford, 221 pp.

  • van Riper, C., van Riper, S. G., Goff, M. L., Laird, M. 1986. The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol. Monogr. 56: 327-344.

  • Webb, C. T., Brook, C. P., Gage, K. L., Antolin, M. F. 2006. Classic flea-borne transmission does not drive plague epizootics in prairie dogs. Proc. Natl. Acad. Sci USA 103: 6236-6241.

  • Woolhouse, M. E. J., Taylor, L. H., Haydon, D. T. 2001. Population biology of multihost pathogens. Science 292: 1109-1112.

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 30 14 1
Full Text Views 10 1 0
PDF Downloads 6 1 0