Resources, mortality, and disease ecology: importance of positive feedbacks between host growth rate and pathogen dynamics

In: Israel Journal of Ecology and Evolution
View More View Less
  • 1 Department of Ecology and Evolutionary Biology, University of Kansas
  • 2 Department of Biology, University of Florida
  • 3 Department of Microbiology, University of Kansas Medical Center
  • 4 Viracor-IBT Laboratories
  • 5 Department of Microbiology, University of Kansas Medical Center
  • 6 Microarray Core Facility, University of Kansas Medical Center
  • 7 Department of Biology, University of Florida

Resource theory and metabolic scaling theory suggest that the dynamics of a pathogen within a host should strongly depend upon the rate of host cell metabolism. Once an infection occurs, key ecological interactions occur on or within the host organism that determine whether the pathogen dies out, persists as a chronic infection, or grows to densities that lead to host death. We hypothesize that, in general, conditions favoring rapid host growth rates should amplify the replication and proliferation of both fungal and viral pathogens. If a host population experiences an increase in mortality, to persist it must have a higher growth rate, per host, often reflecting greater resource availability per capita. We hypothesize that this could indirectly foster the pathogen, which also benefits from increased within-host resource turnover. We first bring together in a short review a number of key prior studies which illustrate resource effects on viral and fungal pathogen dynamics. We then report new results from a semi-continuous cell culture experiment with SHIV, demonstrating that higher mortality rates indeed can promote viral proliferation. We develop a simple model that illustrates dynamical consequences of these resource effects, including interesting effects such as alternative stable states and oscillatory dynamics. Our paper contributes to a growing body of literature at the interface of ecology and infectious disease epidemiology, emphasizing that host abundances alone do not drive community dynamics: the physiological state and resource content of infected hosts also strongly influence host–pathogen interactions.

  • Ågren G.2008. Stoichiometry and nutrition of plant growth in natural communities. Annu Rev Ecol Evol Syst. 39:153170.

  • Andrews JH.1991. Comparative ecology of microorganisms and macroorganisms. New York (NY): Springer-Verlag.

  • Birch EW, , Ruggero NA, , Covert MW. 2012. Determining host metabolic limitations on viral replication via integrated modeling and experimental perturbation. PLoS Comput Biol. 8(10):e1002746. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohannan BJM., 2000. Effect of resource supply rate on host-pathogen dynamics. In: Bell CR, , Brylinsky M, , Johnson-Green P, editors. Microbial biosystems: new frontiers. Proceedings of the 8th International Symposium on Microbial Ecology. Halifax: Atlantic Canada Society for Microbial Ecology; p. 595601.

    • Search Google Scholar
    • Export Citation
  • Bonhoeffer S, , May RM, , Shaw GM, , Nowak MA. 1997. Virus dynamics and drug therapy. Proc Natl Acad Sci USA. 94:69716976.

  • Borer ET, , Seabloom EW, , Mitchell CE, , Cronin JP. 2014. Multiple nutrients and herbivores interact to govern diversity, productivity, composition, and infection in a successional grassland. Oikos. 123:214224.

    • Search Google Scholar
    • Export Citation
  • Borer ET, , Seabloom EW, , Mitchell CE, , Power AG. 2010. Local context drives infection of grasses by vector-borne generalist viruses. Ecol Lett. 13:810818.

    • Search Google Scholar
    • Export Citation
  • Bratbak G, , Jacobsen A, , Heldal M, , Nagasaki K, , Thingstad F. 1998. Virus production in Phaeocystis pouchetii and its relation to host cell growth and nutrition. Aquat Microb Ecol. 16:19.

    • Search Google Scholar
    • Export Citation
  • Brown JH, , Gillooly JF, , Allen AP, , Savage VM, , West GB. 2004. Toward a metabolic theory of ecology. Ecology. 85:17711789.

  • Brown SA, , Palmer KL, , Whitely M. 2008. Revisiting the host as a growth medium. Nature Rev Microbiol. 6:657666.

  • Bruning K.1991a. Infection of the diatom Asterionella by a chytrid. I. Effects of light on reproduction and infectivity of the parasite. J Plankton Res. 13:103117.

    • Search Google Scholar
    • Export Citation
  • Bruning K.1991b. Effects of phosphorus limitation on the epidemiology of a chytrid phytoplankton parasite. Freshwater Biol. 25:409417.

    • Search Google Scholar
    • Export Citation
  • Cable JM, , Enquist BJ, , Moses ME. 2007. The allometry of host-pathogen interactions. Plos One. 2(11):e1130. doi:.

  • Chillakuru RA, , Ryu DDY, , Yilma T. 1991. Propagation of recombinant vaccinia virus in HeLa cells: adsorption kinetics and replication in batch cultures. Biotechnol Prog. 7:8592.

    • Search Google Scholar
    • Export Citation
  • Clasen JL, , Elser JJ. 2007. The effect of host Chlorella NC64A carbon: phosphorus ratio on the production of Paramecium bursaria Chlorella Virus-1. Freshwater Biol. 52:112122.

    • Search Google Scholar
    • Export Citation
  • Cohen SS.1949. Growth requirements of bacterial viruses. Bacteriol Rev. 13:124.

  • Cressler CE, , Nelson WA, , Day T, , McCauley E. 2014. Disentangling the interaction among host resources, the immune system and pathogens. Ecol Lett. 17:284293.

    • Search Google Scholar
    • Export Citation
  • Cronin JP, , Rúa MA, , Mitchell CE. 2014. Why is living fast dangerous? Disentangling the roles of resistance and tolerance of disease. Am Nat. 184:172187.

    • Search Google Scholar
    • Export Citation
  • Cronin JP, , Welsh ME, , Dekkers MG, , Abercrombie ST, , Mitchell CE. 2010. Host physiological phenotype explains pathogen reservoir potential. Ecol Lett. 13:12211232.

    • Search Google Scholar
    • Export Citation
  • Davenport MP, , Fazou C, , McMichael AJ, , Callan MF. 2002. Clonal selection, clonal senescence, and clonal succession: the evolution of the T cell response to infection with a persistent virus. J Immunol. 168:33093317.

    • Search Google Scholar
    • Export Citation
  • Davenport MP, , Zhang L, , Shiver JW, , Casmiro DR, , Ribeiro RM, , Perelson AS. 2006. Influence of peak viral load on the extent of CD4+ T-cell depletion in simian HIV infection. J Acquir Immune Defic Syndr. 41:259265.

    • Search Google Scholar
    • Export Citation
  • DeLong JP, , Hanson DT. 2009. Metabolic rate links density to demography in Tetrahymena pyriformis. ISME J. 3:13961401.

  • Droop MR.1974. The nutrient status of algal cells in continuous culture. J Mar Biol Assoc UK. 54:825855.

  • Garber ED.1960. The host as a growth medium. Ann. NY Acad Sci. 8:11871194.

  • Gerla DJ, , Gsell AS, , Kooi BW, , Ibelings BW, , van Donk E, , Mooi JWM. 2013. Alternative states and population crashes in a resource-susceptible-infected model for planktonic parasites and hosts. Freshwater Biol. 58:538551.

    • Search Google Scholar
    • Export Citation
  • Gilchrist MA, , Coombs D, , Perelson AS. 2004. Optimizing within-host viral fitness: infected cell lifespan and virion production rate. J Theor Biol. 229:281288.

    • Search Google Scholar
    • Export Citation
  • Gons HJ, , Hoogveld HL, , Simis SGH, , Tijdens M. 2006. Dynamic modelling of viral impact on cyanobacterial populations in shallow lakes: implications of burst size. J Mar Biol Assoc UK 86:537542.

    • Search Google Scholar
    • Export Citation
  • Graham AL.2008. Ecological rules governing helminth-microparasite coinfection. Proc Nat Acad Sci USA. 105:566570.

  • Grover JP.1997. Resource competition. London: Chapman & Hall.

  • Gsell AS, , De Senerpont Domis LH, , Naus-Wiezer SMH, , Helmsing NR, , van Donk E, , Ibelings BW. 2013. Spatiotemporal variation in the distribution of chytrid parasites in diatom host populations. Freshwater Biol. 58:523537.

    • Search Google Scholar
    • Export Citation
  • Hall SR, , Knight CJ, , Becker CR, , Duffy MA, , Tessier AJ, , Caceres CE. 2009. Quality matters: resource quality for hosts and the timing of epidemics. Ecol Lett. 12:118128.

    • Search Google Scholar
    • Export Citation
  • Hoffland E, , Jeger MJ, , van Beusichem ML. 2000. Effect of nitrogen supply rate on disease resistance in tomato depends on the pathogen. Plant Soil. 218:239247.

    • Search Google Scholar
    • Export Citation
  • Holm NP, , Armstrong DE. 1981. Role of nutrient limitation and competition in controlling the populations of Asterionella formosa and Microcystis aeruginosa in semicontinuous culture. Limnol Oceanogr. 26:622634.

    • Search Google Scholar
    • Export Citation
  • Holt RD., 2008. The community context of disease emergence: could changes in predation be a key driver? In: Ostfeld RS, , Keesing F, , Eviner VT, editors. Infectious disease ecology: effects of ecosystems on disease and of disease on ecosystems. Princeton (NJ): Princeton University Press; p. 324346.

    • Search Google Scholar
    • Export Citation
  • Holt RD, , Barfield M, . 2006. Within-host pathogen dynamics: Some ecological and evolutionary consequences of transients, dispersal mode, and within-host spatial heterogeneity. In: Feng Z, , Dieckmann U, , Levin S, editors. Disease evolution: models, concepts, and data analyses. Providence (RI): American Mathematical Society; p. 4566.

    • Search Google Scholar
    • Export Citation
  • Holt RD, , Barfield M. 2013. Direct plant-predator interactions as determinants of food chain dynamics. J Theor Biol. 339:4757.

  • Holt RD, , Roy M. 2007. Predation can increase the prevalence of infectious disease. Am Nat. 169:690699.

  • Hurtado PJ, , Hall SR, , Ellner SP. 2014. Infectious disease in consumer populations: dynamic consequences of resource-mediated transmission and infectiousness. Theor Ecol. 7:163179.

    • Search Google Scholar
    • Export Citation
  • Inchausti P, , Ginzburg LR. 2008. Maternal effects mechanism of population cycling: a formidable competitor to the traditional predator-prey view. Phil Trans R Soc Lond B Biol Sci. 364:11171124.

    • Search Google Scholar
    • Export Citation
  • Johnson PTJ, , Rohr JR, , Hoverman JT, , Kellermanns E, , Bowerman J, , Lunde KB. 2012. Living fast and dying of infection: host life history drives interspecific variation in infection and disease risk. Ecol Lett. 15:235242.

    • Search Google Scholar
    • Export Citation
  • Johnson PTJ, , Townsend AR, , Cleveland CC, , Glibert PM, , Howarth RW, , McKenzie VJ, , Rejmankova E, , Ward MH. 2010. Linking environmental nutrient enrichment and disease emergence in humans and wildlife. Ecol Appl. 20:1629.

    • Search Google Scholar
    • Export Citation
  • Kooijman SALM.2010. Dynamic energy budget theory for metabolic organization. Cambridge: Cambridge University Press.

  • Lacroix C, , Seabloom EW, , Borer ET. 2014. Environmental nutrient supply alters prevalence and weakens competitive interactions among coinfecting viruses. New Phytol. 204:424433.

    • Search Google Scholar
    • Export Citation
  • Levi T, , Kilpatrick AM, , Mangel M, , Wilmers CC. 2012. Deer, predators, and the emergence of Lyme disease. Proc Natl Acad Sci USA. 19:1094210947.

    • Search Google Scholar
    • Export Citation
  • Lloyd AL.2001. The dependence of viral parameter estimates on the assumed viral life cycle: limitations of studies of viral load data. Proc R. Soc Lond B. 268:847854.

    • Search Google Scholar
    • Export Citation
  • Mackay GA, , Niu Y, , Liu ZQ, , Mukherjee S, , Li Z, , Adany I, , Buch S, , Zhuge W, , McClure HM, , Narayan O, , Smith MS. 2002. Presence of intact vpu and ef genes in non-pathogenic SHIV is essential for acquisition of pathogenicity of this virus by serial passage in macaques. Virology. 295:133146.

    • Search Google Scholar
    • Export Citation
  • Middelboe M.2000. Bacterial growth rate and marine virus-host dynamics. Microb Ecol. 40:114124.

  • Monier A, , Welsh RM, , Gentemann C, , Weinstock G, , Sodergren E, , Armbrust EV, , Eisen JA, , Worden AZ. 2012. Phosphate transporters in marine phytoplankton and their viruses: cross-domain commonalities in viral-host gene exchanges. Environ Microbiol. 14:162176.

    • Search Google Scholar
    • Export Citation
  • Neumann AU, , Lam NP, , Dahari H, , Gretch DR, , Wiley TE, , Layden TJ, , Perelson AS. 1998. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-α therapy. Science. 282:103107.

    • Search Google Scholar
    • Export Citation
  • Nowak M, , May RM. 2000. Virus dynamics: mathematical principles of immunology and virology. Oxford: Oxford University Press.

  • Ogura H, , Sato H, , Hatano M. 1984. Relation of HVJ (Sendai Virus) production to cell growth phase in persistently infected mouse 3T3 cells. Arch Virol. 80:4757.

    • Search Google Scholar
    • Export Citation
  • Packer C, , Holt RD, , Dobson A, , Hudson P. 2003. Keeping the herds healthy and alert: impacts of predation upon prey with specialist pathogens. Ecol Lett. 6:797802.

    • Search Google Scholar
    • Export Citation
  • Perelson AS, , Nelson PW. 1999. Mathematical analysis of HIV-1: dynamics in vivo. SIAM Rev. 41:344.

  • Perelson AS, , Neumann AU, , Markowitz M, , Leonard JM, , Ho DD. 1996. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science. 271:15821586.

    • Search Google Scholar
    • Export Citation
  • Pietschmann T, , Lohmann V, , Rutter G, , Kurpanek K, , Bartenschlager R. 2001. Characterization of cell lines carrying self-replicating hepatitis C virus RNAs. J Virol. 75:12521264.

    • Search Google Scholar
    • Export Citation
  • Radford KM, , Reid S, , Greenfield PF. 1997. Substrate limitation in the baculovirus expression vector system. Biotechnol Bioeng. 56:3244.

  • Smith VH.1993a. Resource competition between host and pathogen. Bio Sci. 43:2131.

  • Smith VH., 1993b. Implications of resource-ratio theory for microbial ecology. In: Jones JG, editor. Advances in microbial ecology, Vol. 13. New York (NY): Plenum; p. 137.

    • Search Google Scholar
    • Export Citation
  • Smith VH.2007. Host resource supplies influence the dynamics and outcome of infectious disease. Integr Comp Bio. 47:310316.

  • Smith VH, , Jones TP, , II, Smith MS. 2005. Host nutrition and infectious disease: an ecological view. Front Ecol Environ. 3:268274.

  • Smith MS, , Niu Y, , Li Z, , Adany I, , Pinson DM, , Liu ZQ, , Berry T, , Sheffer D, , Jia F, , Narayan O. 2002. Systemic infection and limited replication of SHIV vaccine virus in brains of macaques inoculated intracerebrally with infectious viral DNA. Virology. 301:130135.

    • Search Google Scholar
    • Export Citation
  • Solomon PS, , Tan K-C, , Oliver RP. 2003. The nutrient supply of pathogenic fungi; a fertile field for study. Mol Plant Pathol. 4:203210.

  • Tilman D.1982. Resource competition and community structure. Princeton (NJ): Princeton University Press.

  • Våge S, , Storesund JE, , Thingstad TF. 2013. Adding a cost of resistance description extends the ability of virus–host model to explain observed patterns in structure and function of pelagic microbial communities. Environ Microbiol. 15:18421852.

    • Search Google Scholar
    • Export Citation
  • van Donk E, , Bruning K, . 1995. Effects of fungal parasites on planktonic algae and the role of environmental factors in the fungus-alga relationship. In: Wiessner W, , Schnepf E, , Starr RC, editors. Algae, environment and human affairs. Bristol: Biopress Limited; p. 223234.

    • Search Google Scholar
    • Export Citation
  • van Donk E, , Ringelberg J. 1983. The effect of fungal parasitism on the succession of diatoms in Lake Maarsseveen I (The Netherlands). Freshwater Biol. 13:241251.

    • Search Google Scholar
    • Export Citation
  • Wilson WH, , Carr NG, , Mann NH. 1996. The effect of phosphate status on the kinetics of cyanophage infection in the oceanic cyanobacterium Synechococcus sp. WH7803. J Phycol. 32:506516.

    • Search Google Scholar
    • Export Citation
  • Wodarz D.2006. Ecological and evolutionary principles in immunology. Ecol Lett. 9:694705.

  • Wu JT, , Byrne HM, , Kirn DH, , Wein LM. 2001. Modeling and analysis of a virus that replicates selectively in tumor cells. Bull Math Biol. 63:731768.

    • Search Google Scholar
    • Export Citation
  • You L, , Suthers PF, , Yin J. 2002. Effects of Escherichia coli physiology on growth of phage T7 in vivo and in silico. J Bacteriol. 184:18881894.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 126 95 16
Full Text Views 18 2 2
PDF Downloads 10 2 2