What geckos are – an ecological-biogeographic perspective

In: Israel Journal of Ecology and Evolution

Geckos are a hyper-diverse, ancient, and globally distributed group. They have diverged early from other squamates and thus can be expected to differ from them along multiple ecological, life history, and biogeographic axes. I review a wide range of gecko traits, comparing them to those of other lizard taxa, to identify the unique, and unifying, attributes of geckos among lizards, based on comprehensive databases of lizard distributions and biological attributes. Few traits completely separate geckos from other lizard taxa, yet they differ to a large degree along many axes: they are more restricted to low latitudes and altitudes, are especially diverse on islands, but relatively scarce in America. They are small lizards, that lay small, fixed clutch sizes, for which they compensate only partially by laying frequently. Because they mature at relatively similar ages and have similar lifespans to other lizards, geckos produce fewer offspring over a year, and over their lifetimes, perhaps implying that they enjoy higher survival rates. While being the only large lizard clade of predominantly nocturnal lizards a large proportion of species is active by day. Gecko body temperatures and preferred temperatures are lower than those of other lizards –even when they are compared to lizards with similar activity times. Worryingly, most geckos have small ranges that often reside completely outside of protected areas – much more frequently than in other reptile and vertebrate taxa.

  • AdlerG. H. and LevinsR. (1994). The island syndrome in rodent populations. Quart. Rev. Biol. 69, pp. 473490.

  • ArnoldE. N. 1984. Evolutionary aspects of tail shedding in lizards and their relatives. J. Nat. Hist. 18, pp. 127169.

  • ArnoldE. N. and PoinarG. (2008). A 100 million year old gecko with sophisticated adhesive toe pads, preserved in amber from Myanmar. Zootaxa, 1847, pp. 6268.

    • Search Google Scholar
    • Export Citation
  • BarA . and HaimovitchG . 2018. A Field Guide to Reptiles and Amphibians of Israel. 2nd edition. Jerusalem: The Israeli Nature and Parks Authority Press. In Hebrew.

    • Export Citation
  • BauerA. M. (2013). Geckos. The animal answer guide. Baltimore: Johns Hopkins University Press.

    • Export Citation
  • BauerA. M. (2019). Gecko adhesion in space and time: a phylogenetic perspective on the scansorial success story. Int. Comp. Biol. doi:10.1093/icb/icz020.

    • Export Citation
  • BauerA. M. and RussellA. P. (1986). Hoplodactylus delcourti n. sp. (Reptilia: Gekkonidae), the largest known gecko. New Zeal. J. Zool. 13, pp. 141148.

    • Search Google Scholar
    • Export Citation
  • BoulengerG. A. (1885). Catalogue of the Lizards in the British Museum (Nat. Hist.) I. Geckonidae, Eublepharidae, Uroplatidae, Pygopodidae, Agamidae . London: Trustees of the British Museum.

    • Search Google Scholar
    • Export Citation
  • BouskilaA. (2020). TITLE TO BE DETERMINED. Isr. J. Ecol. Evol., this issue.

  • BrownJ. L. SilleroN. GlawF. BoraP. VieitesD. R. and VencesM. (2016). Spatial biodiversity patterns of Madagascar’s amphibians and reptiles. PLoS ONE 11, pp. e0144076.

    • Export Citation
  • CamachoA. RecoderR. TeixeiraM. KohlsdorfT. RodriguesM. T. and LeeM. S. Y. (2016). Overcoming phylogenetic and geographic uncertainties to test for correlates of range size evolution in gymnophthalmid lizards. Ecography 40: 764773.

    • Search Google Scholar
    • Export Citation
  • ComasM. EscorizaD. and Moreno-RuedaG. (2014). Stable isotope analysis reveals variation in trophic niche depending on altitude in an endemic alpine gecko. Bas. Appl. Ecol. 15, pp. 362369.

    • Search Google Scholar
    • Export Citation
  • ConradP. M. and BradleyP. V. (2009). Coleonyx variegatus (western banded gecko). Geographic distribution. Herp. Rev. 40, pp. 112.

    • Export Citation
  • CrochetP-A . and RenoultJ. P. (2008). Tarentola annularis annularis (Geoffroy de Saint-Hilaire, 1827) preying on a mammal. Herp. Not. 1, pp. 5859.

    • Search Google Scholar
    • Export Citation
  • DayanandaB. GrayS. PikeD. and WebbJ. K. (2016). Communal nesting under climate change: fitness consequences of higher incubation temperatures for a nocturnal lizard. Glob. Chan. Biol. 22, pp. 24052414.

    • Search Google Scholar
    • Export Citation
  • DazaJ. D. HerreraA. ThomasR. and ClaudioH. J. (2009). Are you what you eat? A geometric morphometric analysis of gekkotan skull shape. Biol. J. Linn. Soc. 97, pp. 677707.

    • Search Google Scholar
    • Export Citation
  • DazaJ. D. BauerA.M. and SnivelyE. (2013). Gobekko cretacicus (Reptilia: Squamata) and its bearing on the interpretation of gekkotan affinities. Zool. J. Linn. Soc., 167, pp. 430448.

    • Search Google Scholar
    • Export Citation
  • DazaJ. D. BauerA. M. and SnivelyE. D. (2014). On the fossil record of the Gekkota. Anat. Rec. 297, pp. 433462.

  • DazaJ. D. GambleT. AbdalaV. and BauerA. M. (2017). Cool geckos: does plesiomorphy explain morphological similarities between geckos from the Southern Cone?. J. Herpetol., 51, pp. 330342.

    • Search Google Scholar
    • Export Citation
  • DoodyJ. S. FreedbergS. and KeoghJ. S. (2009). Communal egg-laying in reptiles and amphibians: evolutionary patterns and hypotheses. Quart. Rev. Biol., 84, pp. 229252.

    • Search Google Scholar
    • Export Citation
  • DoughtyP. (1997). The effects of “fixed” clutch sizes on lizard life-histories: reproduction in the Australian velvet gecko, Oedura lesueurii . Herpetol. J. 31, pp. 266272.

    • Search Google Scholar
    • Export Citation
  • DuellmanW. E. and PiankaE. R. (1990). Biogeography of nocturnal insectivores: historical events and ecological filters. Ann. Rev. Ecol. Syst., 21, pp. 5768.

    • Search Google Scholar
    • Export Citation
  • EspinozaR. E. WiensJ. J. and TracyC. R. (2004). Recurrent evolution of herbivory in small, cold-climate lizards: breaking the ecophysiological rules of reptilian herbivory. PNAS 101, pp. 1681916824.

    • Search Google Scholar
    • Export Citation
  • FeldmanA. SabathN. PyronR. A. MayroseI. and MeiriS. (2016). Body-sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Glob. Ecol. Biogeog. 25, pp. 187197.

    • Search Google Scholar
    • Export Citation
  • GambleT. GreenbaumE. JackmanT. R. RussellA. P. and BauerA. M. (2012). Repeated origin and loss of adhesive toepads in geckos. PLoS ONE 7, pp. e39429.

    • Search Google Scholar
    • Export Citation
  • GambleT. GreenbaumE. JackmanT. R. and BauerA. M. (2015). Into the light: diurnality has evolved multiple times in geckos. Biol. J. Linn. Soc. 115, pp. 896910.

    • Search Google Scholar
    • Export Citation
  • GambleT. GreenbaumE. JackmanT. R. RussellA.P. and BauerA. M. (2017). Repeated evolution of digital adhesion in geckos: a reply to Harrington and Reeder. J. Evol. Biol., 30, pp. 14291436.

    • Search Google Scholar
    • Export Citation
  • GiuliaS. LucaL. and LeonardoV. (2019). Lizards and the city: A community study of Lacertidae and Gekkonidae from an archaeological park in Rome. Zool. Anz. 283, pp. 2026.

    • Search Google Scholar
    • Export Citation
  • GodoyM. and Pincheira-DonosoD. (2009). Multi-maternal nesting behaviour and a potential adaptive signal for its evolution in the Argentinean geckonid lizard Homonota borelli . J. Biol. Res. 12, pp. 221224.

    • Search Google Scholar
    • Export Citation
  • GordonC. E. DickmanC. R. and ThompsonM. B. (2010). Partitioning of temporal activity among desert lizards in relation to prey availability and temperature. Aust. Ecol. 35, pp. 4152.

    • Search Google Scholar
    • Export Citation
  • HageyT. J. UyedaJ. C. CrandellK. E. CheneyJ. A. AutumnK. and HarmonL. J. (2017). Tempo and mode of performance evolution across multiple independent origins of adhesive toe pads in lizards. Evolution 71, pp. 23442358.

    • Search Google Scholar
    • Export Citation
  • HallM. I. (2008). Comparative analysis of the size and shape of the lizard eye. Zoology, 111, pp. 6275.

  • HareK. M. ChappleD. G. TownsD. R. and van WinkelD. (2016). The ecology of New Zealand’s lizards. In Chapple D. G. , Ed., New Zealand Lizards. New York: Springer, pp. 133168.

    • Search Google Scholar
    • Export Citation
  • HarringtonS. and ReederT. W. (2017). Rate heterogeneity across Squamata, misleading ancestral state reconstruction and the importance of proper null model specification. J. Evol. Biol. 30, pp. 313325.

    • Search Google Scholar
    • Export Citation
  • HarringtonS. M. LeavittD. H. and ReederT. W. (2016). Squamate phylogenetics, molecular branch lengths, and molecular apomorphies: a response to McMahan et al. Copeia, 104, pp. 702707.

    • Search Google Scholar
    • Export Citation
  • HechtM. K. (1951). Fossil lizards of the West Indian genus Aristelliger (Gekkonidae). Am. Mus. Nov. 1538, pp. 133.

  • HenkelF-W . and SchmidtW . (1995). Geckoes. Biology, Husbandry, and Reproduction. Malabar: Kreiger,.

  • IUCN. (2012). IUCN Red List Categories and Criteria: Version 3.1. Second edition. Gland, Switzerland and Cambridge, UK: IUCN.

    • Export Citation
  • IUCN2019. The IUCN Red List of Threatened Species. http://www.iucnredlist.org. Downloaded on 10 July 2019.

    • Export Citation
  • KhanM. S. and TasnimR. (1990). A new gecko of the genus Tenuidactylus from northeastern Punjab, Pakistan, and southwestern Azad Kashmir. Herpetologica 46, pp. 142148.

    • Search Google Scholar
    • Export Citation
  • KingG. M. (1996). Reptiles and Herbivory. London: Chapman and Hall.

  • KohlerG. (2005). Incubation of Reptile Eggs. Malabar: Krieger Publishing Company.

  • KratochvilL. and KubickaL. (2007). Why reduce clutch size to one or two eggs? Reproductive allometries reveal different evolutionary causes of invariant clutch size in lizards. Funct. Ecol. 21, pp. 171177.

    • Search Google Scholar
    • Export Citation
  • Kronfeld-SchorN. and DayanT. (2003). Partitioning of time as an ecological resource. Annual Review of Ecol. Evol. Syst. 34, pp. 153181.

    • Search Google Scholar
    • Export Citation
  • MeiriS. (2016). Small, rare and trendy: traits and biogeography of lizards described in the 21st century. J. Zool. 299, pp. 251261.

    • Search Google Scholar
    • Export Citation
  • MeiriS. (2018). Traits of lizards of the world – variation around a successful evolutionary design. Glob. Ecol. Biogeog. 27, pp. 11681172.

    • Search Google Scholar
    • Export Citation
  • MeiriS. AvilaL. BauerA. M. ChappleD. G. DasI. DoanT. M. DoughtyP. EllisR ., GrismerL.L. KrausK. MorandoM. OliverP. Pincheira-DonosoD. Ribeiro-JuniorM. A. SheaG. , and RollU. (submitted). The global diversity and distribution of lizard clutch sizes. Global Ecol. Biogeogr.

    • Search Google Scholar
    • Export Citation
  • MeiriS. BauerA. M. ChirioL. ColliG. R. DasI. DoanT. M. FeldmanA. HerreraF-C ., NovosolovM. PafilisP. Pincheira-DonosoD. PowneyG. Torres-CarvajalO. UetzP. and Van DammeR. (2013). Are lizards feeling the heat? A tale of ecology and evolution under two temperatures. Glob. Ecol. Biogeog. 22, pp. 834845.

    • Search Google Scholar
    • Export Citation
  • Meiri, S. and Chapple, D. G. 2016. Biases in the current knowledge of threat status in lizards, and bridging the ‘assessment gap’. Biol. Conserv. 204: 6-15.

  • MeiriS. FeldmanA. and KratochvilL. (2015). Squamate hatchling size and the evolutionary causes of negative offspring size allometry. J. Evol. Biol. 28, pp. 438446.

    • Search Google Scholar
    • Export Citation
  • MeiriS. BauerA. M. AllisonA. Castro-HerreraF. ChirioL. ColliG. R. DasI. DoanT. M. GlawF. GrismerL. L. HoogmoedM. KrausF. LeBretonM. MeirteD. NagyZ. T. NogueiraC. C. OliverP. PauwelsO. S. G. Pincheira-DonosoD. SheaG. SindacoR. TallowinO. J. S. Torres-CarvajalO. TrapeJ-F ., UetzP. WagnerP. WangY. ZieglerT. and RollU. (2018). Extinct, obscure or imaginary: the lizard species with the smallest ranges. Div. & Dist. 24, pp. 262273.

    • Search Google Scholar
    • Export Citation
  • Moreno-AzanzaM. GascaJ. M. Diaz-MartínezI. Bauluz LázaroB. Canudo SanagustínJ. I. FernándezA. & Pérez-LorenteF. (2016). A multi-ootaxic assemblage from the Lower Cretaceous of the Cameros Basin (La Rioja; Northern Spain). Span. J. Palaeo., 31, pp. 305320.

    • Search Google Scholar
    • Export Citation
  • NgoH. N. NguyenT. Q. NguyenT. V. , van SchingenM. and ZieglerT. (2018). Microhabitat selection and communal nesting in the insular psychedelic rock gecko, Cnemaspis psychedelica, in Southern Vietnam with updated information on trade. Nat. Cons. 31, pp. 116.

    • Search Google Scholar
    • Export Citation
  • NovosolovM. and MeiriS. (2013). The effect of island type on lizard reproductive traits. Biogeog. J. 40, pp. 23852395.

  • NovosolovM. RaiaP. and MeiriS. (2013). The island syndrome in lizards. Glob. Ecol. Biogeog., 22, pp. 184191.

  • PafilisP. FoufopoulosJ. SagonasK. RunemarkA. SvenssonE. , and ValakosE. D. (2011). Reproductive biology of insular reptiles: marine subsidies modulate expression of the “island Syndrome”. Copeia, 2011, pp. 545552.

    • Search Google Scholar
    • Export Citation
  • PyronR. A. (2017). Novel approaches for phylogenetic inference from morphological data and total-evidence dating in squamate reptiles (lizards, snakes, and amphisbaenians). Syst. Bio., 66, pp. 3856.

    • Search Google Scholar
    • Export Citation
  • ReederT. W. TownsendT. M. MulcahyD. G. NoonanB. P. WoodP. L. SitesJ. W. and WiensJ. J. (2015). Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa. PLoS ONE 10, pp. e0118199.

    • Search Google Scholar
    • Export Citation
  • RollU. MittermeierJ. C. DiazG. I. NovosolovM. FeldmanA. ItescuY. MeiriS. and GrenyerR. (2016). Using Wikipedia page views to explore the cultural importance of global reptiles. Biol. Cons. 204, pp. 4250.

    • Search Google Scholar
    • Export Citation
  • RollU. FeldmanA. NovosolovM. AllisonA. BauerA. BernardR. BohmM. ChirioL. CollenB. ColliG. R. DabulL. DasI. DoanT. GrismerL. HerreraF. C. HoogmoedM. ItescuY. KrausF. LeBretonM. LewinA. MartinsM. MazaE. MeirteD. NagyZ. NogueiraC. C. PauwelsO. S.G. Pincheira-DonosoD. PowneyG. SindacoR. TallowinO. Torres-CarvajalO. TrapeJ. F. UetzP. VidanE. WagnerP. WangY. Z. OrmeD. GrenyerR. and MeiriS. (2017). The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. & Evol. 1, pp. 16771682.

    • Search Google Scholar
    • Export Citation
  • RoslerH. (2005). Vermehrung von Geckos. Offenbach: Herpeton.

  • ScharfI. FeldmanA. NovosolovM. Pincheira-DonosoD. DasI. BohmM. UetzP. Torres-CarvajalO. BauerA. M. RollU. and MeiriS. (2015). Late bloomers and baby boomers: ecological drivers of longevity in squamates and the tuatara. Glob. Ecol. Biogeog. 24, pp. 396405.

    • Search Google Scholar
    • Export Citation
  • ScherzM. D. DazaJ. D. KohlerJ. VencesM. , and GlawF. (2017). Off the scale: a new species of fishscale gecko (Squamata: Gekkonidae: Geckolepis) with exceptionally large scales. PeerJ 5, pp. e2955.

    • Export Citation
  • SchoenerT. W. (1974). Resource partitioning in ecological communities. Science, 185, pp. 2739.

    • Export Citation
  • Schwarz, R., Itescu, Y., Antonopoulos, A., Gavriilidi, I-A., Tamar, K., Pafilis, P. and Meiri, S. 2020. Isolation and predation drive gecko life-history evolution on islands. Biol. J. Linn. Soc. doi.org/10.1093/biolinnean/blz187.

  • SelcerK.W. (1986). Life history of a successful colonizer: the Mediterranean gecko, Hemidactylus turcicus, in southern Texas. Copeia, 1986, pp. 956962.

    • Search Google Scholar
    • Export Citation
  • SimõesT. R. CaldwellM. W. NydamR.L. and Jiménez-HuidobroP. (2017). Osteology, phylogeny, and functional morphology of two Jurassic lizard species and the early evolution of scansoriality in geckoes. Zool. J. Linn. Soc., 180, pp. 216241.

    • Search Google Scholar
    • Export Citation
  • SitesJ. W. ReederT. W. and WiensJ. J. (2011). Phylogenetic insights on evolutionary novelties in lizards and snakes: sex, birth, bodies, niches, and venom. Ann. Rev. Ecol. Evol. Syst. 42, pp. 227244.

    • Search Google Scholar
    • Export Citation
  • SlavenkoA. ItescuY. FoufopoulosJ. PafilisP. and MeiriS. (2015). Clutch size variability in an ostensibly fix-clutched lizard: effects of insularity on a Mediterranean gecko. Evol. Biol., 42, pp. 129136.

    • Search Google Scholar
    • Export Citation
  • StarkG. SchwarzG. and MeiriG. (2020). Does nocturnal activity prolong longevity of geckos, compared to other lizard clades? Isr. J. Ecol. Evol., this issue.

    • Search Google Scholar
    • Export Citation
  • StarkG. TamarK. ItescuY. FeldmanA. and MeiriS. (2018). Cold and isolated ectotherms: drivers of reptilian longevity. Biol. J. Linn. Soc. 125, pp. 730740.

    • Search Google Scholar
    • Export Citation
  • TingleyR. HitchmoughR. A. and ChappleD. G. (2013). Life-history traits and extrinsic threats determine extinction risk in New Zealand lizards. Biol. Cons. 165, pp. 6268.

    • Search Google Scholar
    • Export Citation
  • ToftC.A. (1985). Resource partitioning in amphibians and reptiles. Copeia, 1985, pp. 121.

  • UetzP . (2019). The reptile databasehttp://reptile-database.reptarium.cz, accessed July 13, 2019.

    • Export Citation
  • Uetz, P., Slavenko, A., Meiri, S. and Heinicke, M. 2020. Gecko diversity: a history of global discovery. Isr. J. Ecol. Evol.

  • Uyeda, J. C., Zenil-Ferguson, R. and Pennell, M. W. 2018. Rethinking phylogenetic comparative methods. Syst. Biol. 67, pp. 1091–1109.

  • van WinkelD. BalingM. and HitchmoughR. (2019). Reptiles and Amphibians of New Zealand. A Field Guide. Auckland: Auckland University Press.

    • Search Google Scholar
    • Export Citation
  • VidanE. RollU. BauerA. M. GrismerL. L. GuoP. MazaE. NovosolovM. SindacoR. WagnerP. BelmakerJ. and MeiriS. (2017). The Eurasian hot nightlife - environmental forces associated with nocturnality in lizards. Glob. Ecol. Biogeog. 26, pp. 13161325.

    • Search Google Scholar
    • Export Citation
  • VittL. J. (1986). Reproductive tactics of sympatric gekkonid lizards with a comment on the evolutionary and ecological consequences of invariant clutch size. Copeia 1986, pp. 773786.

    • Search Google Scholar
    • Export Citation
  • VittL. J. and PiankaE. R. (2005). Deep history impacts present-day ecology and biodiversity. PNAS 102, pp. 78777881.

  • WernerY. L. (1969). Eye size in geckos of various ecological types (Reptilia: Gekkonidae and Sphaerodactylidae). Isr. J. Zool., 18, pp. 291316.

    • Search Google Scholar
    • Export Citation
  • WestobyM. LeishmanM. and LordJ. (1995a). On misinterpreting phylogenetic correction. J. Ecol. 83, pp. 531534.

  • WestobyM. LeishmanM. and LordJ. (1995b). Further remarks on phylogenetic correction. J. Ecol. 83, pp. 727734.

  • ZhengY. and WiensJ. J. (2016). Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylog. Evol. 94, pp. 537547.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 175 175 175
Full Text Views 12 12 12
PDF Downloads 4 4 4