There is an increasing interest in the use of insects in animal feed since they contain high proteins levels, lipids, vitamins and minerals. In particular, insect-derived proteins are seen as one of the potential solution to face the increasing protein shortage and are able to fully substitute soybean meal or fishmeal in aquaculture or livestock feeds. However, beside their interesting nutritional composition, insects are also rich in bioactive compounds such as chitin, antimicrobial peptides or specific fatty acids with immunostimulating, antimicrobial and/or anti-inflammatory properties able to sustain animal health, increase their resistance to diseases. Further studies will also have to investigate whether insects share similarities with bacterial or parasitical pathogens and may act as immunostimulants. These recent findings may launch insects beyond the protein concept into healthy animal feeds. This review presents the effects of insects and their bioactive compounds on fish and crustaceans, poultry, pigs and rabbits immune system, gut health, microbiota and resistance to diseases.
Ali, M.F.Z., Yasin, I.A., Ohta, T., Hashizume, A., Ido, A., Takahashi, T., Miura, C. and Miura, T., 2018. The silkrose ofBombyx mori effectively prevents vibriosis in penaeid prawns via the activation of innate immunity. Scientific Reports 8.https://doi.org/10.1038/s41598-018-27241-3
Alvarez, D., Wilkinson, K.A., Treilhou, M., Tene, N., Castillo, D. and Sauvain, M., 2019. Prospecting peptides isolated from black soldier fly (Diptera: Stratiomyidae) with antimicrobial activity againstHelicobacter pylori (Campylobacterales: Helicobacteraceae). Journal of Insect Science (Online) 19: 17.https://doi.org/10.1093/jisesa/iez120
Ankaku, A.A, Akyala, J.I., Juliet, A. and Obianuju, E.C., 2017. Antibacterial activity of lauric acid on some selected clinical isolates. Annals of Clinical and Laboratory Research 5: 2.https://doi.org/10.21767/2386-5180.1000170
Antonopoulou, E., Nikouli, E., Piccolo, G., Gasco, L., Gai, F., Chatzifotis, S., Mente, E. and Kormas, K.A., 2019. Reshaping gut bacterial communities after dietaryTenebrio molitor larvae meal supplementation in three fish species. Aquaculture 503: 628-635.https://doi.org/10.1016/j.aquaculture.2018.12.013
Ao, X., Yoo, J.S., Wu, Z.L. and Kim, I.H., 2020. Can dried mealworm (Tenebrio molitor) larvae replace fish meal in weaned pigs? Livestock Science 239: 104103.https://doi.org/10.1016/j.livsci.2020.104103.
Askarian, F., Zhou, Z., Olsen, R.E., Sperstad, S. and Ringo, E., 2012. Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes andin vitro growth inhibition of four fish pathogens. Aquaculture 326: 1-8.https://doi.org/10.1016/j.aquaculture.2011.10.016
Belforti, M., Gai, F., Lussiana, C., Renna, M., Malfatto, V., Rotolo, L., De Marco, M., Dabbou, S., Schiavone, A., Zoccarato, I. and Gasco, L., 2015.Tenebrio molitor meal in rainbow trout (Oncorhynchus mykiss) diets: effects on animal performance, nutrient digestibility and chemical composition of fillets. Italian Journal of Animal Science14: 670-675.https://doi.org/10.4081/ijas.2015.4170
Belghit, I., Liland, N.S., Gjesdal, P., Biancarosa, I., Menchetti, E., Li, Y., Waagbo, R., Krogdahl, A. and Lock, E.-J., 2019. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture 503: 609-619.https://doi.org/10.1016/j.aquaculture.2018.12.032
Belghit, I., Liland, N.S., Waagbo, R., Biancarosa, I., Pelusio, N., Li, Y., Krogdahl, A. and Lock, E.-J., 2018. Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture 491, 72-81.https://doi.org/10.1016/j.aquaculture.2018.03.016
Benhabiles, M. S., Salah, R., Lounici, H., Drouiche, N., Goosen, M. F. A. and Mameri, N., 2012. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloids 29: 48-56.https://doi.org/10.1016/j.foodhyd.2012.02.013
Benzertiha, A., Kierończyk, B., Kołodziejski, P., Pruszyńska-Oszmałek, E., Rawski, M., Józefiak, D. and Józefiak, A., 2020.Tenebrio molitor andZophobas morio full-fat meals as functional feed additives affect broiler chickens’ growth performance and immune system traits. Poultry Science 99: 196-206.https://doi.org/10.3382/PS/PEZ450
Benzertiha, A., Kierończyk, B., Rawski, M., Józefiak, A., Kozłowski, K., Jankowski, J. and Józefiak, D., 2019.Tenebrio molitor andZophobas morio full-fat meals in broiler chicken diets: effects on nutrients digestibility, digestive enzyme activities, and cecal microbiome. Animals 9: 1128.https://doi.org/10.3390/ani9121128
Biasato, I. Ferrocino, I., Biasibetti, E., Grego, E., Dabbou, S., Sereno, A., Gai, F., Schiavone, A. and Capucchio, M.T., 2018a. Modulation of intestinal microbiota, morphology and mucin composition by dietary insect meal inclusion in free-range chickens. BMC Veterinary Research 14: 383.https://doi.org/10.1186/s12917-018-1690-y
Biasato, I., De Marco, M., Rotolo, L., Renna, M., Lussiana, C., Dabbou, S., Capucchio, M.T., Biasibetti, E., Costa, P., Gai, F., Pozzo, L., Dezzutto, D., Bergagna, S., Martínez, S., Tarantola, M., Gasco, L. and Schiavone, A., 2016. Effects of dietaryTenebrio molitor meal inclusion in free-range chickens. Journal of Animal Physiology and Animal Nutrition 100: 1104-1112.https://doi.org/10.1111/jpn.12487
Biasato, I., Ferrocino, I., Colombino, E., Gai, F., Schiavone, A., Cocolin, L., Capucchio, M.T. and Gasco, L., 2020b. Effects of dietaryHermetia illucens meal inclusion on cecal microbiota and small intestine mucin dynamics and inflammatory status of weaned piglets. Journal of Animal Science and Biotechnology, 11: 64.https://doi.org/10.1186/s40104-020-00466-x
Biasato, I., Ferrocino, I., Dabbou, S., Evangelista, R., Gai, F., Gasco, L., Cocolin, L., Capucchio, M.T. and Schiavone, A., 2020a. Black soldier fly and gut health in broiler chickens: insights into the relationship between cecal microbiota and intestinal mucin composition. Journal of Animal Science and Biotechnology 11: 11.https://doi.org/10.1186/s40104-019-0413-y
Biasato, I., Ferrocino, I., Grego, E., Dabbou, S., Gai, F., Gasco, L., Cocolin, L., Capucchio, M.T. and Schiavone, A., 2019a. Gut Microbiota and Mucin Composition in Female Broiler Chickens Fed Diets including Yellow Mealworm. Animals 9: 213.https://doi.org/10.3390/ani9050213
Biasato, I., Gasco, L., De Marco, M., Renna, M., Rotolo, L., Dabbou, S., Capucchio, M.T., Biasibetti, E., Tarantola, M., Sterpone, L., Cavallarin, L., Gai, F., Pozzo, L., Bergagna, S., Dezzutto, D., Zoccarato, I., Schiavone, A., 2018b. Yellow mealworm larvae (Tenebrio molitor) inclusion in diets for male broiler chickens: effects on growth performance, gut morphology, and histological findings. Poultry Science 97: 540-548.https://doi.org/10.3382/ps/pex308
Biasato, I., Gasco, L., De Marco, M., Renna, M., Rotolo, L., Dabbou, S., Capucchio, M.T., Biasibetti, E., Tarantola, M., Bianchi, C., Cavallarin, L., Gai, F., Pozzo, L., Dezzutto, D., Bergagna, S. and Schiavone, A., 2017. Effects of yellow mealworm larvae (Tenebrio molitor) inclusion in diets for female broiler chickens: implications for animal health and gut histology. Animal Feed Science and Technology 234: 253-263.https://doi.org/10.1016/j.anifeedsci.2017.09.014
Biasato, I., Renna, M., Gai, F., Dabbou, S., Meneguz, M., Perona, G., Martinez, S., BarroetaLajusticia, A.C., Bergagna, S., Sardi, L., Capucchio, M.T., Bressan, E., Dama, A., Schiavone, A. and Gasco, L., 2019b. Partially defatted black soldier fly larva meal inclusion in piglet diets: effects on the growth performance, nutrient digestibility, blood profile, gut morphology and histological features. Journal of Animal Science and Biotechnology 10: 12.https://doi.org/10.1186/s40104-019-0325-x
Borrelli, L., Coretti, L., Dipineto, L., Bovera, F., Menna, F., Chiariotti, L., Nizza, A., Lembo, F. and Fioretti, A., 2017. Insect-based diet, a promising nutritional source, modulates gut microbiota composition and SCFAs production in laying hens. Scientific Reports 7: 16269.https://doi.org/10.1038/s41598-017-16560-6
Bosch, G., van Zanten, H.H.E., Zamprogna, A., Veenenbos, M., Meijer, N.P., van der Fels-Klerx, H.J. and van Loon, J.J.A., 2019. Conversion of organic resources by black soldier fly larvae: Legislation, efficiency and environmental impact. Journal of Cleaner Production 222: 355-363.https://doi.org/10.1016/j.jclepro.2019.02.270
Bovera, F., Loponte, R., Pero, M.E., Cutrignelli, M.I., Calabrò, S., Musco, N., Vassalotti, G., Panettieri, V., Lombardi, P., Piccolo, G., Di Meo, C., Siddi, G., Fliegerova, K. and Moniello, G., 2018. Laying performance, blood profiles, nutrient digestibility and inner organs traits of hens fed an insect meal fromHermetia illucens larvae. Research in Veterinary Science 120: 86-93.https://doi.org/10.1016/j.rvsc.2018.09.006
Bovera, F., Piccolo, G., Gasco, L., Marono, S., Loponte, R., Vassalotti, G., Mastellone, V., Lombardi, P., Attia Y.A and Nizza A. 2015. Yellow mealworm larvae (Tenebrio molitor, L.) as a possible alternative to soybean meal in broiler diets. British Poultry Science 56: 569-575,https://doi.org/10.1080/00071668.2015.1080815
Bradshaw, C.J.A., Leroy, B., Bellard, C., Roiz, D., Albert, C., Fournier, A., Barbet-Massin, M., Salles, J.M., Simard, F. and Courchamp F., 2016. Massive yet grossly underestimated global costs of invasive insects. Nature Communications 7: 12986.https://doi.org/10.1038/ncomms12986
Bruni, L., Pastorelli, R., Viti, C., Gasco, L. and Parisi, G., 2018. Characterization of the intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) fed withHermetia illucens (black soldier fly) partially defatted larva meal as partial dietary protein source. Aquaculture 487: 56-63.https://doi.org/10.1016/j.aquaculture.2018.01.006
Caimi, C., Gasco, L., Biasato, I., Malfatto, V., Varello, K., Prearo, M., Pastorino, P., Bona, M.C., Francese, D.R., Schiavone, A., Elia, A.C., Dörr, A.J.M. and Gai, F., 2020. Could Dietary Black Soldier Fly Meal Inclusion Affect the Liver and Intestinal Histological Traits and the Oxidative Stress Biomarkers of Siberian Sturgeon (Acipenser baerii) Juveniles? Animals 10: 155.https://doi.org/10.3390/ani10010155
Cardinaletti, G., Randazzo, B., Messina, M., Zarantoniello, M., Giorgini, E., Zimbelli, A., Bruni, B., Parisi, G., Olivotto, I. and Tulli, F., 2019. Effects of Graded Dietary Inclusion Level of Full-FatHermetia illucens Prepupae Meal in Practical Diets for Rainbow Trout (Oncorhynchus mykiss). Animals 9(5): 251.https://doi.org/10.3390/ani9050251
Cerezuela, R., Meseguer, J. and Esteban, M.A., 2013. Effects of dietary inulin,Bacillus subtilis and microalgae on intestinal gene expression in gilthead seabream (Sparus aurata L.). Fish & Shellfish Immunology 34: 843-848.https://doi.org/10.1016/j.fsi.2012.12.026
Chia, S.Y., Tanga, C.M., Osuga, I.M., Alaru, A.O., Mwangi, D.M., Githinji, M., Subramanian, S., Fiaboe, K.K.M., Ekesi, S., van Loon, J.J.A. and Dicke, M., 2019. Effect of dietary replacement of fishmeal by insect meal on growth performance, blood profiles and economics of growing pigs in Kenya. Animals 9: 705.https://doi.org/10.3390/ani9100705
Choi, S.C., Ingale, S.L., Kim, J.S., Park, Y.K., Kwon, I.K. and Chae, B.J., 2013a. An antimicrobial peptide-A3: effects on growth performance, nutrient retention, intestinal and faecal microflora and intestinal morphology of broilers. British Poultry Science 54: 738-746.https://doi.org/10.1080/00071668.2013.838746
Choi, S.C., Ingale, S.L., Kim, J.S., Park, Y.K., Kwon, I.K. and Chae, B.J., 2013b. Effects of dietary supplementation with an antimicrobial peptide-P5 on growth performance, nutrient retention, excreta and intestinal microflora and intestinal morphology of broilers. Animal Feed Science and Technology 185: 78-84.https://doi.org/10.1016/j.anifeedsci.2013.07.005
Chu, F.J., Jin, X.B., Xu, Y.Y., Ma, Y., Li, X.B., Lu, X.M., Liu, W.B. and Zhu, J.Y., 2013. Inflammatory regulation effect and action mechanism of anti-inflammatory effective parts of housefly (Musca domestica) larvae on atherosclerosis. Evidence-Based Complementary and Alternative Medicine: Article ID 340267: 10https://doi.org/10.1155/2013/340267
Cutrignelli, M.I., Messina, M., Tulli, F., Randazzo, B., Olivotto, I., Gasco, L., Loponte, R. and Bovera, F., 2018. Evaluation of an insect meal of the Black Soldier Fly (Hermetia illucens) as soybean substitute: Intestinal morphometry, enzymatic and microbial activity in laying hens. Research in Veterinary Science 117: 209-215.https://doi.org/10.1016/j.rvsc.2017.12.020
Dabbou S., Ferrocin, I., Gasco L., Schiavone A., Trocino, A., Xiccato, G., Barroeta A.C., Maione, S., Soglia, D., Biasato, I., Cocolin, L., Gai, F. and Nucera, D.D., 2020. Antimicrobial effects of black soldier fly and yellow mealworm fats and their impact on gut microbiota of growing rabbit. Animals 10: 1292.https://doi.org/10.3390/ani10081292
Dabbou S., Gai F., Biasato I., Capucchio MT., Biasibetti E., Dezzutto D., Meneguz M., Plachà I., Gasco L. and Schiavone A., 2018. Black soldier fly defatted meal as a dietary protein source for broiler chickens: effects on growth performance, blood traits, gut morphology and histological features. Journal of Animal Science and Biotechnology 9: 49.https://doi.org/10.1186/s40104-018-0266-9
Dang, X. L., Wang, Y. S., Huang, Y. D., Yu, X. Q. and Zhang, W. Q., 2010. Purification and characterization of an antimicrobial peptide, insect defensin, from immunized house fly (Diptera: Muscidae), Journal of Medical Entomology 47: 1141-1145.https://doi.org/10.1603/ME10016
Danieli, P.P., Lussiana, C., Gasco, L., Amici, A. and Ronchi, B., 2019. The effects of diet formulation on the yield, proximate composition, and fatty acid profile of the Black soldier fly (Hermetia illucens L.) prepupae intended for animal feed. Animals 9: 178.https://doi.org/10.3390/ani9040178
Dayrit, F.M., 2015. The properties of lauric acid and their significance in coconut oil. Journal of the American Oil Chemists’ Society 92: 1-15.https://doi.org/10.1007/s11746-014-2562-7
De Cesare, A., Parisi, A., Mioni, R., Comin, D., Lucchi, A. and Manfreda, G., 2017.Listeria monocytogenes circulating in rabbit meat products and slaughterhouses in Italy: prevalence data and comparison among typing results. Foodborne Pathogens and Disease 14: 167-176.https://doi.org/10.1089/fpd.2016.2211.
De Souza-Vilela, J., Andrew, N.R. and Ruhnke, I., 2019. Insect protein in animal nutrition. Animal Production Science 59: 2029-2036.https://doi.org/10.1071/AN19255
Di Rosa, M., Distefano, G., Zorena, K. and Malaguarnera, L., 2016. Chitinases and immunity: ancestral molecules with new functions. Immunobiology 221: 399-411.https://doi.org/10.1016/j.imbio.2015.11.014
Driemeyer, H., 2016. Evaluation of black soldier fly (Hermetia illucens) larvae as an alternative protein source in pig creep diets in relation to production, blood and manure microbiology parameters. MSc thesis, University of Stellenbosch, South Africa, p. 114.
Evaluation of black soldier fly (Hermetia illucens) larvae as an alternative protein source in pig creep diets in relation to production, blood and manure microbiology parameters 114
Egerton, S., Culloty, S., Whooley, J., Stanton, C. and Ross, R.P., 2018. The gut microbiota of marine fish. Frontiers Microbiology, 9: 873.https://doi.org/10.3389/fmicb.2018.00873.
Elahi, U., Wang, J., Ma, Y.B., Wu, S.G., Wu, J., Qi, G.H. and Zhang, H.J., 2020. Evaluation of yellow mealworm meal as a protein feedstuff in the diet of broiler chicks. Animals 10: 224.https://doi.org/10.3390/ani10020224
Elhag, O., Zhou, D., Song, Q., Soomro, A.A., Cai, M., Zheng, L., Yu, Z. and Zhang, J., 2017. Screening, expression, purification and functional characterization of novel antimicrobial peptide genes fromHermetia illucens (L.). PLoS ONE 12: e0169582.https://doi.org/10.1371/journal.pone.0169582
Elia, A.C., Capucchio, M.T., Caldaroni, B., Magara, G., Dorr, A.J.M., Biasato, I., Biasibetti, E., Righetti, M., Pastorino, P., Prearo, M., Gai, F., Schiavone, A. and Gasco, L., 2018. Influence ofHermetia illucens meal dietary inclusion on the histological traits, gut mucin composition and the oxidative stress biomarkers in rainbow trout (Oncorhynchus mykiss). Aquaculture 496: 50-57.https://doi.org/10.1016/j.aquaculture.2018.07.009
Esteban, M.A., Cuesta, A., Ortuño, J. and Meseguer, J., 2001. Immunomodulatory effects of dietary intake of chitin on gilthead seabream (Sparus aurata L.) innate immune system. Fish & Shellfish Immunology 11: 303-315.https://doi.org/10.1006/fsim.2000.0315
Food and Agriculture Organization of the United Nations (FAO), 2020. Forecasting threats to the food chain affecting food security in countries and regions. Food Chain Crisis Early Warning Bulletin no. 34, January-March 2020. FAO, Rome, Italy. Available athttp://www.fao.org/publications/card/en/c/ca7582en/.
Faruk, M.O., Yusof, F and Chowdhury, S., 2016. An overview of antifungal peptides derived from insect. Peptides 80: 80-88.https://doi.org/10.1016/j.peptides.2015.06.001
Foysal, M.J., Fotedar, R., Tay, C. and Gupta, S.K., 2019. Dietary supplementation of black soldier fly (Hermetica illucens) meal modulates gut microbiota, innate immune response and health status of marron (Cherax cainii, Austin 2002) fed poultry-by-product and fishmeal based diets. PeerJ 7.https://doi.org/10.7717/peerj.6891
Gariglio, M., Dabbou, S., Crispo, M., Biasato, I., Gai, F., Gasco, L., Piacente, F., Odetti, P., Bergagna, S., Plachà, I., Valle, E., Colombino, E., Capucchio, M.T. and Schiavone, A., 2019. Effects of the dietary inclusion of partially defatted black soldier fly (Hermetia illucens) meal on the blood chemistry and tissue (spleen, liver, thymus, and bursa of Fabricius) histology of muscovy ducks (Cairina moschata domestica). Animals 9: 307.https://doi.org/10.3390/ani9060307
Gasco, L., Acuti, G., Bani, P., Dalle Zotte, A., Danieli, P.P., De Angelis, A., Fortina, R., Marino, R., Parisi, G., Piccolo, G., Pinotti, L., Prandini, A., Schiavone, A., Terova, G., Tulli, F. and Roncarati, A., 2020a. Insects and fish by-products as sustainable alternatives to conventional animal proteins in animal nutrition. Italian Journal of Animal Science 19: 360-372.https://doi.org/10.1080/1828051X.2020.1743209
Gasco, L., Biancarosa, I. and Liland, N.S., 2020b. From waste to feed: a review of recent knowledge on insects as producers of protein and fat for animal feeds. Current Opinion in Green and Sustainable Chemistry 23: 67-79.https://doi.org/10.1016/j.cogsc.2020.03.003
Gasco, L., Biasato, I., Dabbou, S., Schiavone, A. and Gai, F., 2019a. Animals fed insect-based diets: state-of-the-art on digestibility, performance and product quality. Animals 9: 170.https://doi.org/10.3390/ani9040170.
Gasco, L., Dabbou, S., Trocino, A., Xiccato, G., Capucchio, M.T., Biasato, I., Dezzutto, D., Birolo, M., Meneguz, M., Schiavone, A. and Gai, F., 2019b. Effect of dietary supplementation with insect fats on growth performance, digestive efficiency and health of rabbits. Journal of Animal Science and Biotechnology 10: 4.https://doi.org/10.1186/s40104-018-0309-2
Gasco, L., Finke, M. and Van Huis, A., 2018b. Can diets containing insects promote animal health? Journal of Insects as Food and Feed 4: 1-4.https://doi.org/10.3920/jiff2018.x001
Gasco, L., Gai, F., Maricchiolo, G., Genovese, L., Ragonese, S., Bottari, T. and Caruso, G., 2018a. Fish meal alternative protein sources for aquaculture feeds. In: Gasco, L., Gai, F., Maricchiolo, G., Genovese, L., Ragonese, S., Bottari, T., Caruso, G. (eds) Feeds for the aquaculture sector – current situation and alternative sources. Springer Briefs in Molecular Science. Lightning Source UK Ltd, Cham, Switzerland, pp. 1-28.https://doi.org/10.1007/978-3-319-77941-6
Gasco, L., Henry, M., Piccolo, G., Marono, S., Gai, F., Renna, M., Lussiana, C., Antonopoulou, E., Mola, P. and Chatzifotis, S., 2016.Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.)juveniles: growth performance, whole body composition andin vivo apparent digestibility. Animal Feed Science and Technology 220: 34-45.https://doi.org/10.1016/j.anifeedsci.2016.07.003
Goulson, D., 2019. The insect apocalypse and why it matters. Current Biology 29: R942-R995.https://doi.org/10.1016/j.cub.2019.06.069
Goy, R.C., Debritto, D. and Assis, O.B.G., 2009. A review of the antimicrobial activity of chitosan. Polímeros 19: 241-247.https://doi.org/10.1590/S0104-14282009000300013
Guerrerio, I. Oliva-Teles, A. and Enes, P., 2018. Prebiotics as functional ingredients: focus on Mediterranean fish aquaculture. Reviews in Aquaculture 10: 800-832.https://doi.org/10.1111/raq.12201
Hardy, K., Radini, A., Buckley, S., Blasco, R., Copeland, L., Burjachs, F., Girbal, J., Yll, R., Carbonell, E. and Bermúdez de Castro, J.M., 2016. Diet and environment 1.2 million years ago revealed through analysis of dental calculus from Europe’s oldest hominin at Simadel Elefante, Spain. The Science of Nature 104: 2.https://doi.org/10.1007/s00114-016-1420-x
Henry, M., Gasco, L., Piccolo, G. and Fountoulaki, E., 2015. Review on the use of insects in the diet of farmed fish: Past and future. Animal Feed Science and Technology 203: 1-22.https://doi.org/10.1016/j.anifeedsci.2015.03.001
Henry, M.A., Gai, F., Enes, P., Perez-Jimenez, A. and Gasco, L., 2018b. Effect of partial dietary replacement of fishmeal by yellow mealworm (Tenebrio molitor) larvae meal on the innate immune response and intestinal antioxidant enzymes of rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology 83: 308-313.
'Effect of partial dietary replacement of fishmeal by yellow mealworm (Tenebrio molitor) larvae meal on the innate immune response and intestinal antioxidant enzymes of rainbow trout (Oncorhynchus mykiss) ' () 83 Fish & Shellfish Immunology : 308 -313.
Henry, M.A., Gasco, L., Chatzifotis, S. and Piccolo, G., 2018a. Does dietary insect meal affect the fish immune system? The case of mealworm,Tenebrio molitor on European sea bass,Dicentrarchus labrax. Developmental & Comparative Immunology 81: 204-209.https://doi.org/10.1016/j.dci.2017.12.002
Huyben, D., Vidakovic, A., Werner Hallgren, S. and Langeland, M., 2019. High-throughput sequencing of gut microbiota in rainbow trout (Oncorhynchus mykiss) fed larval and pre-pupae stages of black soldier fly (Hermetia illucens). Aquaculture 500: 485-491.https://doi.org/10.1016/j.aquaculture.2018.10.034
Ido, A., Hashizume, A., Ohta, T., Takahashi, T., Miura, C. and Miura, T., 2019. Replacement of fish meal by defatted yellow mealworm (Tenebrio molitor) larvae in diet improves growth performance and disease resistance in red seabream (Pagrus major). Animals 9: 100.https://doi.org/10.3390/ani9030100
Ido, A., Iwai, T., Ito, K., Ohta, T., Mizushige, T., Kishida, T., Miura, C. and Miura, T., 2015. Dietary effects of housefly (Musca domestica) (Diptera: Muscidae) pupae on the growth performance and the resistance against bacterial pathogen in red sea bream (Pagrus major) (Perciformes: Sparidae). Applied Entomology and Zoology 50: 213-221.https://doi.org/10.1007/s13355-015-0325-z
Imamura, M., Wada, S., Koizumi, N., Kadotani, T., Yaoi, K., Sato, R. and Iwahana, H., 1999. Acaloleptins A: inducible antibacterial peptides from larvae of the beetle,Acalolepta luxuriosa. Archives of Insect Biochemistry and Physiology 40: 88-98.https://doi.org/10.1002/(SICI)1520-6327(1999)40:2<88::AID-ARCH3>3.0.CO;2-B
Islam, M.M. and Yang, C.-J., 2017. Efficacy of mealworm and super mealworm larvae probiotics as an alternative to antibiotics challenged orally withSalmonella andE. coli infection in broiler chicks. Poultry Science 96: 27-34.https://doi.org/10.3382/ps/pew220
Ji, Y.J., Liu, H. N., Kong, X. F., Blachier, F., Geng, M.M., Liu, Y. Y. and Yin Y. L., 2016. Use of insect powder as a source of dietary protein in early-weaned piglets. Journal Animal Science 94: 111-116.https://doi.org/10.2527/jas2015-9555
Jin, X.H., Heo, P.S., Hong, J.S., Kim, N.J. and Kim, Y.Y., 2016. Supplementation of dried mealworm (Tenebrio molitor larva) on growth performance, nutrient digestibility and blood profiles in weaning pigs. Asian-Australasian Journal Animal Science 29: 979-86.https://doi.org/10.5713/ajas.15.0535
Józefiak, A. and Engberg, R.M., 2017. Insect proteins as a potential source of antimicrobial peptides in livestock production. A review. Journal of Animal and Feed Sciences 26: 87-99.https://doi.org/10.22358/jafs/69998/2017
Józefiak, A., Benzertiha, A., Kierończyk, B., Łukomska, A., Wesołowska, I. and Rawski, M., 2020. Improvement of cecal commensal microbiome following the insect additive into chicken diet. Animals 10: 577.https://doi.org/10.3390/ani10040577
Józefiak, A., Kierończyk, B., Rawski, M., Mazurkiewicz, J., Benzertiha, A., Gobbi, P., Nogales-Mérida, S., Świątkiewicz, S. and Józefiak, D., 2018. Full-fat insect meals as feed additive – the effect on broiler chicken growth performance and gastrointestinal tract microbiota. Journal of Animal and Feed Sciences 2: 131-139.https://doi.org/10.22358/jafs/91967/2018
Józefiak, A., Nogales-Merida, S., Mikołajczak, Z. and Mazurkiewicz, J., 2019b. The utilization of full-fat insect meal in rainbow trout (Oncorhynchus mykiss) nutrition: The effects on growth performance, intestinal microbiota and gastro-intestinal tract histomorphology. Annals of Animal Science 19: 747-765.https://doi.org/10.2478/aoas-2019-0020
Józefiak, A., Nogales-Merida, S., Rawski, M., Kieronczyk, B. and Mazurkiewicz, J., 2019a. Effects of insect diets on the gastrointestinal tract health and growth performance of Siberian sturgeon (Acipenser baerii Brandt, 1869). BMC Veterinary Research 15: 348.https://doi.org/10.1186/s12917-019-2070-y
Józefiak, D., Józefiak, A., Kierończyk, B., Rawski, M., Świątkiewicz, S., Długosz, J. and Engberg, R.M., 2016. Insects – a natural nutrient source for poultry – a review. Annals of Animal Science 16.https://doi.org/10.1515/aoas-2016-0010
Kaiser, P. and Balic, A., 2015. The avian immune system. Chapter 17. In: Scanes, C.G (ed.) Sturkie’s avian physiology (6th Ed.). Academic Press, San Diego, CA, USA, pp. 403-418.https://doi.org/10.1016/B978-0-12-407160-5.00017-8
Kayama, H., Okumura, R. and Takeda, K., 2020. Interaction between the microbiota, epithelia, and immune cells in the intestine. Annual Review of Immunology 38: 23-48.https://doi.org/10.1146/annurev-immunol-070119-115104
Khan, S.H., 2018. Recent advances in role of insects as alternative protein source in poultry nutrition. Journal of Applied Animal Research 46: 1144-1157.https://doi.org/10.1080/09712119.2018.1474743
Kierończyk, B., Rawski, M., Józefiak, A., Mazurkiewicz, J., Świątkiewicz, S., Siwek, M., Bednarczyk, M., Szumacher-Strabel, M., Cieślak, A., Benzertiha, A. and Józefiak, D. 2018. Effects of replacing soybean oil with selected insect fats on broiler. Animal Feed Science and Technology 240: 170-183.https://doi.org/10.1016/j.anifeedsci.2018.04.002
Klasing, K.C., 2005. Poultry Nutrition: A Comparative Approach. Journal of Applied Poultry Research 14: 426-436.https://doi.org/10.1093/japr/14.2.426
Kouřimská, L. and Adámková A., 2016. Nutritional and sensory quality of edible insects. NFS Journal 4: 22-26.https://doi.org/10.1016/j.nfs.2016.07.001
Koutsos, L., McComb A. and Finke, M., 2019. Insect composition and uses in animal feeding applications: A brief review. Annals of the Entomological Society of America 112: 544-551.https://doi.org/10.1093/aesa/saz033
Kumar, R., Kaur, N. and Kamilya, D., 2019. Chitin modulates immunity and resistance ofLabeo rohita (Hamilton, 1822) against gill monogeneans. Aquaculture 498: 522-527.https://doi.org/10.1016/j.aquaculture.2018.09.013
Kylie, K., McEwen, S.A., Boerlin, P., Reid-Smith, M.J., Weese, J.S. and Turner, P.V., 2017. Prevalence of antimicrobial resistance in fecalEscherichia coli andSalmonella enterica in Canadian commercial meat, companion, laboratory, and shelter rabbits (Oryctolagus cuniculus) and its association with routine antimicrobial use in commercial meat rabbits. Preventive Veterinary Medicine 147: 53-57.https://doi.org/10.1016/j.prevetmed.2017.09.004.
Lee, C.G., Da Silva, C.A., Lee, J.Y., Hartl, D. and Elias, J.A., 2008. Chitin regulation of immune responses: an old molecule with new roles. Current Opinion in Immunology 20: 684-691.https://doi.org/10.1016/j.coi.2008.10.002
Lee, J., Kim, Y-M., Park, Y-K., Yang, Y-C., Jung, B-G. and Lee B-J., 2018. Black soldier fly (Hermetia illucens) larvae enhances immune activities and increases survivability of broiler chicks against experimental infection ofSalmonella Gallinarum. Journal of Veterinaly Medical Science 80: 736-740.https://doi.org/10.1292/jvms.17-0236
Li, S., Ji, H., Zhang, B., Zhou, J. and Yu, H., 2017a. Defatted black soldier fly (Hermetia illucens) larvae meal in diets for juvenile Jian carp (Cyprinus carpio var. Jian): Growth performance, antioxidant enzyme activities, digestive enzyme activities, intestine and hepatopancreas histological structure. Aquaculture and Fisheries Management 477: 62-70.https://doi.org/10.1016/j.aquaculture.2017.04.015
Li, Y., Kortner, T.M., Chikwati, E.M., Belghit, I., Lock, E.-J. and Krogdahl, A., 2020. Total replacement of fish meal with black soldier fly (Hermetia illucens) larvae meal does not compromise the gut health of Atlantic salmon (Salmo salar). Aquaculture 520: 734967.https://doi.org/10.1016/j.aquaculture.2020.734967
Li, Y., Kortner, T.M., Chikwati, E.M., Munang’andu, H.M., Lock, E.-J. and Krogdahl, A., 2019. Gut health and vaccination response in pre-smolt Atlantic salmon (Salmo salar) fed black soldier fly (Hermetia illucens) larvae meal. Fish & Shellfish Immunology 86: 1106-1113.https://doi.org/10.1016/j.fsi.2018.12.057
Li, Z., Mao, R., Teng, D. Hao, Y., Chen, H., Wang, X., Wang, X, Yang, N and Wang, J. 2017b. Antibacterial and immunomodulatory activities of insect defensins-DLP2 and DLP4 against multidrug-resistantStaphylococcus aureus. Scientific Reports, 7: 12124.https://doi.org/10.1038/s41598-017-10839-4
Liland, N.S., Biancarosa, I., Araujo, P., Biemans, D., Bruckner, C.G., Waagbø, R., Torstensen, B.E. and Lock, E-J., 2017. Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PLoS ONE 12:e0183188.https://doi.org/10.1371/journal.pone.0183188
Lock, E.R., Arsiwalla, T. and Waagbo, R., 2016. Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquaculture Nutrition 22: 1202-1213.https://doi.org/10.1111/anu.12343
Lock, E-J., Biancarosa, I. and Gasco, L., 2018. Insects as raw materials in compound feed for aquaculture. In: Halloran, A., Flore, R., Vantomme, P., Roos, N. (eds) Edible insects in sustainable food systems. Springer, Cham, Switzerland, pp 263-276.https://doi.org/10.1007/978-3-319-74011-9_16
Magalhaes, R., Sanchez-Lopez, A., Leal, R.S., Martinez-Llorens, S., Oliva-Teles, A. and Peres, H., 2017. Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture 476: 79-85.https://doi.org/10.1016/j.aquaculture.2017.04.021
Marono, S., Loponte, R., Lombardi, P., Vassalotti, G., Pero, M.E., Russo, F., Gasco, L., Parisi, G., Piccolo, G., Nizza, S., Di Meo, C., Attia, Y.A. and Bovera, F., 2017. Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age. Poultry Science 96, 1783-1790.https://doi.org/10.3382/ps/pew461
Massacci, F.R., Magistrali, C.F., Cucco, L., Curcio, L., Bano, L., Mangili, P., Scoccia, E., Bisgaard, M., Aalbæk, B. and Christensen, H., 2018. Characterization ofPasteurella multocida involved in rabbit infections. Veterinary Microbiology 213: 66-72.https://doi.org/10.1016/j.vetmic.2017.11.023
Mbhele, F.G.T., Mnisi, C.M. and Mlambo, V.A., 2019. Nutritional evaluation of insect meal as a sustainable protein source for jumbo quails: physiological and meat quality responses. Sustainability 11: 6592.https://doi.org/10.3390/su11236592
McCarville, J.L., Chen, G.Y., Cuevas, V.D., Troha, K. and Ayres, J.S., 2020. Microbiota Metabolites in Health and Disease. Annual Review of Immunology 38: 147-170.https://doi.org/10.1146/annurev-immunol-071219-125715
Mikołajczak, Z., Rawski, M., Mazurkiewicz, J., Kierończyk, B. and Józefiak, D., 2020. The effect of hydrolyzed insect meals in sea trout fingerling (Salmo trutta) diets on growth performance, microbiota and biochemical blood parameters. Animals 10: 1031.https://doi.org/10.3390/ani10061031
Ming, J., Ye, J., Zhang, Y., Yang, X., Wu, C., Shao, X. and Liu, P., 2013. The influence of maggot meal and l-carnitine on growth, immunity, antioxidant indices and disease resistance of black carp (Mylopharyngodon piceus). Journal of the Chinese Cereals and Oils Association 28: 80-86
'The influence of maggot meal and l-carnitine on growth, immunity, antioxidant indices and disease resistance of black carp (Mylopharyngodon piceus) ' () 28 Journal of the Chinese Cereals and Oils Association : 80 -86.
Moniello, G., Ariano, A., Panettieri, V., Tulli, F., Olivotto, I., Messina, M., Randazzo, B., Severino, L., Piccolo, G., Musco, N., Addeo, N.F., Hassoun, G. and Bovera, F., 2019. Intestinal Morphometry, Enzymatic and Microbial Activity in Laying Hens Fed Different Levels of aHermetia illucens Larvae Meal and Toxic Elements Content of the Insect Meal and Diets. Animals 9: 86.https://doi.org/10.3390/ani9030086
Moon, H.J., Lee, S.Y., Kurata, S., Natori, S. and Lee, B.L., 1994. Purification and molecular cloning of cDNA for an inducible antibacterial protein from larvae of the coleopteran,Tenebrio molitor. Journal of Biochemistry 116: 53-58.https://doi.org/10.1093/oxfordjournals.jbchem.a124502
Mortensen, F.V., Langkilde, N.C., Joergensen, J.C. and Hessov, I., 1999. Short-chain fatty acids stimulate mucosal cell proliferation in the closed human rectum after Hartmann’s procedure. International Journal of Colorectal Disease 14: 150-154.https://doi.org/10.1007/s003840050201
Motte, C., Rios, A., Lefebvre, T., Do, H., Henry, M. and Jintasataporn, O., 2019. Replacing fish meal with defatted insect meal (yellow mealwormTenebrio molitor) improves the growth and immunity of pacific white shrimp (Litopenaeus vannamei). Animals 9: 258.https://doi.org/10.3390/ani9050258
Mylonakis, E., Podsiadlowski, L., Muhammed, M. and Vilcinskas, A., 2016. Diversity, evolution and medical application of insect antimicrobial peptides. Philosophical Transactions of the Royal Society B 371: 20150290.https://doi.org/10.1098/rstb.2015.0290
Ngo, D-H. and Kim, S-E., 2014. Antioxidant effects of chitin, chitosan, and their derivatives. Advances in Food and Nutrition Research 73: 15-31.https://doi.org/10.1016/B978-0-12-800268-1.00002-0
Nogales-Mérida, S., Gobbi, P., Józefiak, D., Mazurkiewicz, J., Dudek, K., Rawski, M., Kierończyk, B. and Józefiak, A., 2019. Insect meals in fish nutrition. Reviews in Aquaculture 11: 1080-1103.https://doi.org/10.1111/raq.12281
Noriega, J.A., Hortal, J., Azcárate, F.M., Berg, M., Bonada, N., Briones, M.J., Del Toro, I., Goulson, D., Ibañez, S., Landis, D.A., Moretti, M., Pott, S.G., Slade, E.M., Stout, J.C., Ulyshen, M.D., Wackers, F.L., Woodcock, B.A and Santos, A.M.C., 2018. Research trends in ecosystem services provided by insects. Basic and Applied Ecology 26: 8-23.https://doi.org/10.1016/j.baae.2017.09.006
Ohta, T., Ido, A., Kusano, K., Miura, C. and Miura, T., 2014. A Novel Polysaccharide in Insects Activates the Innate Immune System in Mouse Macrophage RAW264 Cells. PLoS ONE 9: e114823.https://doi.org/10.1371/journal.pone.0114823
Ohta, T., Kusano, K., Ido, A., Miura, C. and Miura, T., 2016. Silkrose: A novel acidic polysaccharide from the silkmoth that can stimulate the innate immune response. Carbohydrate Polymers 136: 995-1001.https://doi.org/10.1016/j.carbpol.2015.09.070
Oonincx, D.G.A.B., Van Broekhoven, S.V., Van Huis, A. and Van Loon, J.J.A., 2015. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE, 10: e0144601.https://doi.org/10.1371/journal.pone.0144601
Ostaszewska, T., Dabrowski, K., Kwasek, K., Verri, T., Kamaszewski, M., Sliwinski, J. and Napora-Rutkowski, L., 2011. Effects of various diet formulations (experimental and commercial) on the morphology of the liver and intestine of rainbow trout (Oncorhynchus mykiss) juveniles. Aquaculture Research 42: 1796-1806.https://doi.org/10.1111/j.1365-2109.2010.02779.x
Paini, D.R. Sheppard, A.W., Cook, D.C., De Barro, P.J., Worner, S.P and Thomas, M.B., 2016. Global threat to agriculture from invasive species. Proceedings of the National Academy of Sciences of the United States of America 113: 7575-7579.https://doi.org/10.1073/pnas.1602205113
Park S.I., Kim, J-W. and Yoe, S.M., 2015. Purification and characterization of novel antibacterial peptide from black soldier fly (Hermetia illucens) larvae. Developmental and Comparative Immunology 52: 98-106.https://doi.org/10.1016/j.dci.2015.04.018
Park, S.I., Chang, B.S. and Yoe. S.M., 2014. Detection of antimicrobial substances from larvae of the black soldier fly,Hermetia illucens (Diptera: Stratiomyidae). Entomological Research. 44: 58-64.https://doi.org/10.1111/1748-5967.12050
Pei, M.T., Yang, C., Yang, D.Q. and Yi, T.L., 2019. Effects of housefly maggot meal and earthworms on growth and immunity of the Asian swamp eelMonopterus albus (Zuiew). The Israeli Journal of Aquaculture – Bamidgeh 71: 8.http://hdl.handle.net/10524/62904
Qin, C., Zhang, Y., Liu, W., Xu, L., Yang, Y. and Zhou, Z., 2014. Effects of chito-oligosaccharides supplementation on growth performance, intestinal cytokine expression, autochthonous gut bacteria and disease resistance in hybrid tilapiaOreochromis niloticus ♀ xOreochromis aureus ♂. Fish & Shellfish Immunololy 40: 267-274.https://doi.org/10.1016/j.fsi.2014.07.010
Rangaswamy, C.P., 2006. Physiology of digestion in fish and shrimp. In: Ali SA (ed.) Training manual on shrimp and fish nutrition and feed management. Central Institute of Brackish Water Aquaculture, Chennai, India, pp. 2-9.
'Physiology of digestion in fish and shrimp ', () 2 -9.
Ravi, C., Jeyashree, A. and Renuka Devi, K., 2011. Antimicrobial peptides from insects: an overview. Research in Biotechnology 2: 1-7.
'Antimicrobial peptides from insects: an overview ' () 2 Research in Biotechnology : 1 -7.
Rimoldi S., Gini, E., Iannini, F., Gasco, L.and Terova, G., 2019. The effects of dietary insect meal fromHermetia illucens prepupae on autochthonous gut microbiota of rainbow trout (Oncorhynchus mykiss). Animals 9: 143https://doi.org/10.3390/ani9040143
Ringø, E., Zhou, Z., Olsen, R.E. and Song, S.K., 2012. Use of chitin and krill in aquaculture – the effect on gut microbiota and the immune system: a review. Aquaculture Nutrition 18: 117-131.https://doi.org/10.1111/j.1365-2095.2011.00919.x
Rodriguez-Calleja, J.M., Garcia-Lopez, I., Garcia Lopez, M.L., Santos, J.A. and Otero, A., 2006. Rabbit meats as a source of bacterial foodborne pathogens. Journal of Food Protection 69: 1106-1112.https://doi.org/10.4315/0362-028x-69.5.1106
Sankian, Z., Khosravi, S., Kim, Y.O. and Lee, S.M., 2018. Effects of dietary inclusion of yellow mealworm (Tenebrio molitor) meal on growth performance, feed utilization, body composition, plasma biochemical indices, selected immune parameters and antioxidant enzyme activities of mandarin fish (Siniperca scherzeri) juveniles. Aquaculture 496: 79-87.https://doi.org/10.1016/j.aquaculture.2018.07.012
Schiavone, A., Dabbou, S., De Marco, M., Cullere, M., Biasato, I., Biasibetti, E., Capucchio, M.T., Bergagna, S., Dezzutto, D., Meneguz, M., Gai, F., Dalle Zotte A. and Gasco, L., 2018. Black soldier fly larva fat inclusion in finisher broiler chicken diet as an alternative fat source. Animal 12: 2032-2039.https://doi.org/10.1017/S1751731117003743.
Schiavone, A., Dabbou, S., Petracci, M., Zampiga, M., Sirri, F., Biasato, I., Gai, F. and Gasco, L. 2019. Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on carcass traits, breast meat quality and safety. Animal 13: 2397-2405.https://doi.org/10.1017/S1751731119000685
Schuhmann, B., Seitz, V., Vilcinskas, A. and Podsiadlowski, L., 2003. Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae,Galleria mellonella. Archives of Insect Biochemistry and Physiology 53: 125-133.https://doi.org/10.1002/arch.10091
Shanthi Mari, L.S., Jagruthi, C., Anbazahan, S.M., Yogeshwari, G., Thirumurugan, R., Arockiaraj, J., Mariappan, P., Balasundaram, C. and Harikrishnan, R., 2014. Protective effect of chitin and chitosan enriched diets on immunity and disease resistance inCirrhina mrigala againstAphanomyces invadans. Fish & Shellfish Immunology 39: 378-385.https://doi.org/10.1016/j.fsi.2014.05.027
Shin, C.-S., Kim, D.-Y. and Shin, W.-S., 2019. Characterization of chitosan extracted from mealworm beetle (Tenebrio molitor, Zophobasmorio) and rhinoceros beetle (Allomyrina dichotoma) and their antibacterial activities. International Journal of Biological Macromolecules 125: 72-77.https://doi.org/10.1016/j.ijbiomac.2018.11.242
Smetana, S., Schmitt, E. and Mathys, A., 2019. Sustainable use ofHermetia illucens insect biomass for feed and food: Attributional and consequential life cycle assessment. Resources, Conservation and Recycling 144: 285-296.https://doi.org/10.1016/j.resconrec.2019.01.042
Sogari, G., Amato, M., Biasato, I., Chiesa, S. and Gasco, L. 2019. The potential role of insects as feed: a multi-perspective review. Animals 9: 119.https://doi.org/10.3390/ani9040119
Song, S.G., Chi, S.Y., Tan, B.P., Liang, G.L., Lu, B.Q., Dong, X.H., Yang, Q.H., Liu, H.Y. and Zhang, S., 2018. Effects of fishmeal replacement byTenebrio molitor meal on growth performance, antioxidant enzyme activities and disease resistance of the juvenile pearl gentian grouper (Epinephelus lanceolatus male xEpinephelus fuscoguttatus female). Aquaculture Research 49: 2210-2217.https://doi.org/10.1111/are.13677
Spranghers, T., Joris, M., Vrancx, J., Ovyn, A., Eeckhout, M., De Clercq, P. and De Smet, S., 2018. Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Animal Feed Science and Technology 235: 33-42.https://doi.org/10.1016/j.anifeedsci.2017.08.012
Stenberg, O.K., Holen, E., Piemontese, L., Liland, N.S., Lock, E.-J., Espe, M. and Belghit, I., 2019. Effect of dietary replacement of fish meal with insect meal onin vitro bacterial and viral induced gene response in Atlantic salmon (Salmo salar) head kidney leukocytes. Fish & Shellfish Immunology 91: 223-232.https://doi.org/10.1016/j.fsi.2019.05.042
St-Hilaire, S., Cranfill, K., McGuire, M.A., Mosley, E.E., Tomberlin, J.K., Newton, L., Sealey, W., Sheppard, C., Irving, S., 2007. Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids. Journal of the World Aquaculture Society 38: 309-313.
'Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids ' () 38 Journal of the World Aquaculture Society : 309 -313.
Su, J., Gong, Y., Cao, S., Lu, F., Han, D., Liu, H., Jin, J., Yang, Y., Zhu, X. and Xie, S., 2017. Effects of dietaryTenebrio molitor meal on the growth performance, immune response and disease resistance of yellow catfish (Pelteobagrus fulvidraco). Fish & Shellfish Immunology 69: 59-66.https://doi.org/10.1016/j.fsi.2017.08.008
Sun, H-X., Chen, L-Q., Zhang, J. and Chen, F-Y., 2014. Anti-tumor and immunomodulatory activity of peptide fraction fromMusca domestica. Journal of Ethnopharmacology 153: 831-839.https://doi.org/10.1016/j.jep.2014.03.052
Suresh, A., Praveenkumar, R., Thangaraj, R., Oscar, F.L., Baldev, E., Dhanasekaran, D. and Thajuddin, N., 2014. Microalgal fatty acid methyl ester a new source of bioactive compounds with antimicrobial activity. Asian Pacific Journal of Tropical Disease 4, Suppl. 2: S979-S984.https://doi.org/10.1016/S2222-1808(14)60769-6
Sypniewski, J., Kierończyk, B., Benzertiha, A., Mikołajczak, Z., Pruszyńska-Oszmałek, E., Kołodziejski, P., Sassek, M., Rawski, M., Czekała, W. and Józefiak, D., 2020. Replacement of soybean oil byHermetia illucens fat in turkey nutrition: effect on performance, digestibility, microbial community, immune and physiological status and final product quality. British Poultry Science 61: 294-302.https://doi.org/10.1080/00071668.2020.1716302
Terova, G., Rimoldi, S., Ascione, C., Gini, E., Ceccotti, C. and Gasco, L., 2019. Rainbow trout (Oncorhynchus mykiss) gut microbiota is modulated by insect meal fromHermetia illucens prepupae in the diet. Reviews in Fish Biology and Fisheries 29: 465-486.https://doi.org/10.1007/s11160-019-09558-y
Tian, Z., Feng, Q., Sun, H., Liao, Y., Du, L., Yang, R., Li, X., Yang, Y. and Xia, Q., 2018. Isolation and purification of active antimicrobial peptides fromHermetia illucens L., and its effects on CNE2 cells. bioRxiv 353367.https://doi.org/10.1101/353367
Udayangani, R.M.C., Dananjaya, S.H.S., Nikapitiya, C., Heo, G.-J., Lee, J. and De Zoysa, M., 2017. Metagenomics analysis of gut microbiota and immune modulation in zebrafish (Danio rerio) fed chitosan silver nanocomposites. Fish & Shellfish Immunololy 66: 173-184.https://doi.org/10.1016/j.fsi.2017.05.018
Urbanek, A., Szadziewski, R., Stepnowski, P., Boros-Majewska, J., Gabriel, I., Dawgul, M., Kamysz, W., Sonsowaska, D. and Gołębiowski, M., 2012. Composition and antimicrobial activity of fatty acids detected in the hygroscopic secretion collected from the secretory setae of larvae of the biting midgeForcipomyia nigra (Diptera: Ceratopogonidae). Journal of Insect Physiology, 58: 1265-1276.https://doi.org/10.1016/j.jinsphys.2012.06.014
Van Huis, A. 2017. Did early humans consume insects? Journal of Insects as Food and Feed 3: 161-163.https://doi.org/10.3920/jiff2017.x006
Van Huis, A., 2020. Insects as food and feed, a new emerging agricultural sector: a review. Journal of Insects as Food and Feed 6: 27-44.https://doi.org/10.3920/jiff2019.0017
Vargas-Abúndez, A., Randazzo, B., Foddai, M., Sanchini, L., Truzzi, C., Giorgini, E., Gasco, L. and Olivotto, I., 2019. Insect meal based diets for clownfish: Biometric, histological, spectroscopic, biochemical and molecular implications. Aquaculture 498: 1-11.https://doi.org/10.1016/j.aquaculture.2018.08.018
Vogel, H., Muller, A., Heckel, D.G., Gutzeit, H. and Vilcinskas, A., 2018. Nutritional immunology: Diversification and diet-dependent expression of antimicrobial peptides in the black soldier flyHermetia illucens. Developmental & Comparative Immunology 78: 141-148.https://doi.org/10.1016/j.dci.2017.09.008
Wang, G., Peng, K., Hu, J., Yi, C., Chen, X., Wu, H. and Huang, Y., 2019. Evaluation of defatted black soldier fly (Hermetia illucens L.) larvae meal as an alternative protein ingredient for juvenile Japanese seabass (Lateolabrax japonicus) diets. Aquaculture 507: 144-154.https://doi.org/10.1016/j.aquaculture.2019.04.023
Wen, L.-F. and He, J.-G., 2012. Dose-response effects of an antimicrobial peptide, a cecropin hybrid, on growth performance, nutrient utilisation, bacterial counts in the digesta and intestinal morphology in broilers. British Journal of Nutrition 108: 1756-1763.https://doi.org/10.1017/S0007114511007240
World Health Organization (WHO), 2015. World Malaria Report 2015. WHO, Geneva, Switzerland, 280 pp. Available athttps://www.who.int/malaria/publications/world-malaria-report-2015/report/en/.
Wu, Q., Patočka, J. and Kuča, K., 2018. Insect antimicrobial peptides, a mini review. Toxins 10: 461.https://doi.org/10.3390/toxins10110461
Xiang, J., Qin, L., Zhao, D., Xiong, F., Wang, G., Zou, H., Li, W., Li, M., Song, K. and Wu, S., 2019. Growth performance, immunity and intestinal microbiota of swamp eel (Monopterus albus) fed a diet supplemented with house fly larvae (Musca domestica). Aquaculture Nutrition 26: 693-704.https://doi.org/10.1111/anu.13029
Xiao, X., Jin, P., Zheng, L., Cai, M., Yu, Z., Yu, J. and Zhang, J., 2018. Effects of black soldier fly (Hermetia illucens) larvae mealprotein as a fishmeal replacement on the growth and immune index of yellow catfish (Pelteobagrus fulvidraco). Aquaculture Research 49: 1569-1577.https://doi.org/10.1111/are.13611
Yu, M., Li, Z., Chen, W., Rong, T., Wang, G. and Ma, X. 2019.Hermetia illucens larvae as a potential dietary protein source altered the microbiota and modulated mucosal immune status in the colon of finishing pigs. Journal of Animal Science and Biotechnology 10: 50.https://doi.org/10.1186/s40104-019-0358-1
Yu, M., Li, Z., Chen, W., Rong, T., Wang, G., Wang, F. and Ma, X. 2020b. Evaluation of full-fatHermetia illucens larvae meal as a fishmeal replacement for weanling piglets: Effects on the growth performance, apparent nutrient digestibility, blood parameters and gut morphology. Animal Feed Science and Technology 264: 114431.https://doi.org/10.1016/j.anifeedsci.2020.114431
Yu, M., Li, Z., Chen, W., Wang, G., Rong, T., Liu, Z., Wang, F. and Ma, X. 2020a.Hermetia illucens larvae as a fishmeal replacement alters intestinal specific bacterial populations and immune homeostasis in weanling piglets. Journal of Animal Science 98: akz395.https://doi.org/10.1093/jas/skz395
Zarantoniello, M., Bruni, L., Randazzo, B., Vargas, A., Gioacchini, G., Truzzi, C., Annibaldi, A., Riolo, P., Parisi, G., Cardinaletti, F., Tulli, F. and Olivotto, I., 2018. Partial dietary inclusion ofHermetia illucens (black soldier fly) full-fat prepupae in zebrafish feed: biometric, histological, biochemical, and molecular implications. Zebrafish 15: 519-532.https://doi.org/10.1089/zeb.2018.1596
Zhang, L-J. and Gallo, R.L., 2016. Antimicrobial peptides. Current Biology 26: R14-9.https://doi.org/10.1016/j.cub.2015.11.017
Zhou, Z., Karlsen, O., He, S., Olsen, R.E., Yao, B. and Ringo, E., 2013. The effect of dietary chitin on the autochthonous gut bacteria of Atlantic cod (Gadus morhua L.). Aquaculture Research 44: 1889-1900.https://doi.org/10.1111/j.1365-2109.2012.03194.x
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 783 | 509 | 123 |
PDF Views & Downloads | 997 | 661 | 105 |
There is an increasing interest in the use of insects in animal feed since they contain high proteins levels, lipids, vitamins and minerals. In particular, insect-derived proteins are seen as one of the potential solution to face the increasing protein shortage and are able to fully substitute soybean meal or fishmeal in aquaculture or livestock feeds. However, beside their interesting nutritional composition, insects are also rich in bioactive compounds such as chitin, antimicrobial peptides or specific fatty acids with immunostimulating, antimicrobial and/or anti-inflammatory properties able to sustain animal health, increase their resistance to diseases. Further studies will also have to investigate whether insects share similarities with bacterial or parasitical pathogens and may act as immunostimulants. These recent findings may launch insects beyond the protein concept into healthy animal feeds. This review presents the effects of insects and their bioactive compounds on fish and crustaceans, poultry, pigs and rabbits immune system, gut health, microbiota and resistance to diseases.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 783 | 509 | 123 |
PDF Views & Downloads | 997 | 661 | 105 |