A major challenge for development of sustainable aquafeeds is its dependence on fish meal and fish oil. Replacement with more sustainable, nutritious and safe ingredients is now a priority. Over the last years, among several alternatives proposed, insects have received great attention as possible candidates. In particular, the black soldier fly (Hermetia illucens; BSF) represents a concrete example of how the circular economy concept can be applied to fish culture, providing a valuable biomass rich in fat and protein valorising organic by-products. In the last decade, several studies have been published about the use of different BSF dietary inclusion levels for various fish species including experimental models. Varying and encouraging results have been obtained in this research field using a plethora of laboratory methodological approaches that can be applied and coupled to obtain a comprehensive view of the BSF-based diets effects on fish physiology, health, and quality. The present review aims to explore some of the most promising laboratory approaches like histology, infrared spectroscopy, gut microbiome sequencing, molecular biology, fish fillets’ physico-chemical and sensory properties, essential for a better understanding of fish welfare and fillet quality, when BSF is used as aquafeed ingredient. In particular, great importance has been given to European finfish species and experimental models.
Ahmed, N. and Thompson, S., 2019. The blue dimensions of aquaculture: a global synthesis. Science of the Total Environment 652: 851-861.https://doi.org/10.1016/j.scitotenv.2018.10.163
Apper, E., Weissman, D., Respondek, F., Guyonvarch, A., Baron, F., Boisot, P., Rodiles, A. and Merrifield, D.L., 2016. Hydrolysed wheat gluten as part of a diet based on animal and plant proteins supports good growth performance of Asian seabass (Lates calcarifer), without impairing intestinal morphology or microbiota. Aquaculture 453: 40-48.https://doi.org/10.1016/j.aquaculture.2015.11.018
Ashley, P.J., 2007. Fish welfare: current issues in aquaculture. Applied Animal Behaviour Science 104(3-4): 199-235.https://doi.org/10.1016/j.applanim.2006.09.001
Askarian, F., Zhou, Z., Olsen, R.E., Sperstad, S. and Ringø, E., 2012. Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes andin vitro growth inhibition of four fish pathogens. Aquaculture 326-329: 1-8.https://doi.org/10.1016/j.aquaculture.2011.10.016
Aziza, A., Awadin, W. and Orma, A., 2013. Effect of dietary substitution of cod liver oil by vegetable oils on growth performance, body composition, lipid peroxidation, liver and muscle histopathological state in Nile tilapia (Oreochromis niloticus). Journal of Fisheries and Aquaculture 4(2): 87-94.http://dx.doi.org/10.9735/0976-9927.4.2.87-94
Baeverfjord, G. and Krogdahl, A., 1996. Development and regression of soybean meal induced enteritis in Atlantic salmon,Salmo salar L., distal intestine: a comparison with the intestines of fasted fish. Journal of Fish Diseases 19(5): 375-387.https://doi.org/10.1046/j.1365-2761.1996.d01-92.x
Balcázar, J.L., De Blas, I., Ruiz-Zarzuela, I., Cunningham, D., Vendrell, D. and Múzquiz, J.L., 2006. The role of probiotics in aquaculture. Veterinary Microbiology 114(3-4): 173-186.https://doi.org/10.1016/j.vetmic.2006.01.009
Barragan-Fonseca, K.B., Dicke, M. and Van Loon, J.J.A., 2017. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed – a review. Journal of Insects as Food Feed 3(2): 105-120.https://doi.org/10.3920/JIFF2016.0055
Barreto-Curiel, F., Parés-Sierra, G., Correa-Reyes, G., Durazo-Beltrán, E. and Viana, M.T., 2016. Total and partial fishmeal substitution by poultry by-product meal (Petfood grade) and enrichment with acid fish silage in aquafeeds for juveniles of rainbow troutOncorhynchus mykiss. Latin American Journal of Aquatic Research 44(2): 327-335.https://doi.org/10.3856/vol44-issue2-fulltext-13
Barroso, F.G., De Haro, C., Sánchez-Muros, M.J., Venegas, E., Martínez-Sánchez, A. and Pérez-Bañón, C., 2014. The potential of various insect species for use as food for fish. Aquaculture 422-423: 193-201.https://doi.org/10.1016/j.aquaculture.2013.12.024
Barton, B.A., 2002. Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and Comparative Biology 42(3): 517-525.https://doi.org/10.1093/icb/42.3.517
Basto-Silva, C., Guerreiro, I., Oliva-Teles, A. and Neto, B., 2019. Life cycle assessment of diets for gilthead seabream (Sparus aurata) with different protein/carbohydrate ratios and fishmeal or plant feedstuffs as main protein sources. The International Journal of Life Cycle Assessment 24: 2023-2034.https://doi.org/10.1007/s11367-019-01625-7
Beier, S. and Bertilsson, S., 2013. Bacterial chitin degradation-mechanisms and ecophysiological strategies. Frontiers in Microbiology 4: 149.https://doi.org/10.3389/fmicb.2013.00149
Belforti, M., Gai, F., Lussiana, C., Renna, M., Malfatto, V., Rotolo, L., De Marco, M., Dabbou, S., Schiavone, A., Zoccarato, I. and Gasco, L., 2015.Tenebrio molitor meal in rainbow trout (Oncorhynchus mykiss) diets: effects on animal performance, nutrient digestibility and chemical composition of fillets. Italian Journal of Animal Science 14(4): 4170.https://doi.org/10.4081/ijas.2015.4170
Belghit, I., Liland, N.S., Gjesdal, P., Biancarosa, I., Menchetti, E., Li, Y., Waagbø, R., Krogdahl, Å. and Lock, E.J., 2019a. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture 503: 609-619.https://doi.org/10.1016/j.aquaculture.2018.12.032
Belghit, I., Liland, N.S., Waagbø, R., Biancarosa, I., Pelusio, N., Li, Y., Krogdahl, Å. and Lock, E.J., 2018. Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture 491: 72-81.https://doi.org/10.1016/j.aquaculture.2018.03.016
Belghit, I., Waagbø, R., Lock, E.-J. and Liland, N.S., 2019b. Insect-based diets high in lauric acid reduce liver lipids in freshwater Atlantic salmon. Aquaculture Nutrition 25: 343-357.https://doi.org/10.1111/anu.12860
Berggren, Å., Jansson, A. and Low, M., 2019. Approaching ecological sustainability in the emerging insects-as-food industry. Trends in Ecology & Evolution 34(2): 132-138.https://doi.org/10.1016/j.tree.2018.11.005
Bernstein, A.M., Ding, E.L., Willett, W.C. and Rimm, E.B., 2012. A meta-analysis shows that docosahexaenoic acid from algal oil reduces serum triglycerides and increases hdl-cholesterol and ldl-cholesterol in persons without coronary heart disease. The Journal of Nutrition 142(1): 99-104.https://doi.org/10.3945/jn.111.148973
Bernués, A., Olaizola, A. and Corcoran, K., 2003. Extrinsic attributes of red meat as indicators of quality in Europe: an application for market segmentation. Food Quality and Preference 14(4): 265-276.https://doi.org/10.1016/S0950-3293(02)00085-X
Bertucci, J.I., Blanco, A.M., Sundarrajan, L., Rajeswari, J.J., Velasco, C. and Unniappan, S., 2019. Nutrient regulation of endocrine factors influencing feeding and growth in fish. Frontiers in Endocrinology 10: 83.https://doi.org/10.3389/fendo.2019.00083
Blaufuss, P.C., Bledsoe, J.W., Gaylord, T.G., Sealey, W.M., Overturf, K.E. and Powell, M.S., 2020. Selection on a plant-based diet reveals changes in oral tolerance, microbiota and growth in rainbow trout (Oncorhynchus mykiss) when fed a high soy diet. Aquaculture 525: 735287.https://doi.org/10.1016/j.aquaculture.2020.735287
Borgogno, M., Dinnella, C., Iaconisi, V., Fusi, R., Scarpaleggia, C., Schiavone, A., Monteleone, E., Gasco, L. and Parisi, G., 2017. Inclusion ofHermetia illucens larvae meal on rainbow trout (Oncorhynchus mykiss) feed: effect on sensory profile according to static and dynamic evaluations. Journal of the Science of Food and Agriculture 97(10): 3402-3411.https://doi.org/10.1002/jsfa.8191
Bosch, G., Van Zanten, H.H.E., Zamprogna, A., Veenenbos, M., Meijer, N.P., Van der Fels-Klerx, H.J. and Van Loon, J.J.A., 2019. Conversion of organic resources by black soldier fly larvae: legislation, efficiency and environmental impact. Journal of Cleaner Production 222: 355-363.https://doi.org/10.1016/j.jclepro.2019.02.270
Bosi, G., Giari, L., DePasquale, J.A., Carosi, A., Lorenzoni, M. and Dezfuli, B.S., 2017. Protective responses of intestinal mucous cells in a range of fish-helminth systems. Journal of Fish Diseases 40(8): 1001-1014.https://doi.org/10.1111/jfd.12576
Brennan, N.M., Ward, A.C., Beresford, T.P., Fox, P.F., Goodfellow, M. and Cogan, T.M., 2002. Biodiversity of the bacterial flora on the surface of a smear cheese. Applied and Environmental Microbiology 68(2): 820-830.https://doi.org/10.1128/AEM.68.2.820-830.2002
Brijs, J., Sandblom, E., Axelsson, M., Sundell, K., Sundh, H., Huyben, D., Broström, R., Kiessling, A., Berg, C. and Gräns, A., 2018. The final countdown: continuous physiological welfare evaluation of farmed fish during common aquaculture practices before and during harvest. Aquaculture 495: 903-911.https://doi.org/10.1016/j.aquaculture.2018.06.081
Bruni, L., Belghit, I., Lock, E.J., Secci, G., Taiti, C. and Parisi, G., 2020a. Total replacement of dietary fish meal with black soldier fly (Hermetia illucens) larvae does not impair physical, chemical or volatile composition of farmed Atlantic salmon (Salmo salar L.). Journal of Science of Food and Agriculture 100(3): 1038-1047.https://doi.org/10.1002/jsfa.10108
Bruni, L., Pastorelli, R., Viti, C., Gasco, L. and Parisi, G., 2018. Characterisation of the intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) fed withHermetia illucens (black soldier fly) partially defatted larva meal as partial dietary protein source. Aquaculture 487: 56-63.https://doi.org/10.1016/j.aquaculture.2018.01.006
Bruni, L., Randazzo, B., Cardinaletti, G., Zarantoniello, M., Mina, F., Secci, G., Tulli, F., Olivotto, I. and Parisi, G., 2020b. Dietary inclusion of full-fatHermetia illucens prepupae meal in practical diets for rainbow trout (Oncorhynchus mykiss): lipid metabolism and fillet quality investigations. Aquaculture 529: 735678.https://doi.org/10.1016/j.aquaculture.2020.735678
Buckley, J.D. and Howe, P.R.C., 2009. Anti-obesity effects of long-chain omega-3 polyunsaturated fatty acids. Obesity Reviews 10(6): 648-659.https://doi.org/10.1111/j.1467-789X.2009.00584.x
Bui-Nguyen, T.M., Baer, C.E., Lewis, J.A., Yang, D., Lein, P.J. and Jackson, D.A., 2015. Dichlorvos exposure results in large scale disruption of energy metabolism in the liver of the zebrafish,Danio rerio. BMC Genomics 16: 853.https://doi.org/10.1186/s12864-015-1941-2
Caimi, C., Gasco, L., Biasato, I., Malfatto, V., Varello, K., Prearo, M., Pastorino, P., Bona, M.C., Francese, D.R., Schiavone, A., Elia, A.C., Dörr, A.J.M. and Gai, F., 2020a. Could dietary black soldier fly meal inclusion affect the liver and intestinal histological traits and the oxidative stress biomarkers of Siberian sturgeon (Acipenser baerii) juveniles? Animals 10: 155.https://doi.org/10.3390/ani10010155
Caimi, C., Renna, M., Lussiana, C., Bonaldo, A., Gariglio, M., Meneguz, M., Dabbou, S., Schiavone, A., Gai, F., Elia, A.C., Prearo, M. and Gasco, L., 2020b. First insights on black soldier fly (Hermetia illucens L.) larvae meal dietary administration in Siberian sturgeon (Acipenser baerii Brandt) juveniles. Aquaculture 515: 734539.https://doi.org/10.1016/j.aquaculture.2019.734539
Cardinaletti, G., Randazzo, B., Messina, M., Zarantoniello, M., Giorgini, E., Zimbelli, A., Bruni, L., Parisi, G., Olivotto, I. and Tulli, F., 2019. Effects of graded dietary inclusion level of full-fatHermetia illucens prepupae meal in practical diets for rainbow trout (Oncorhynchus mykiss). Animals 9: 251.https://doi.org/10.3390/ani9050251
Dama, L.B. and Pathan, A.V., 2019. Histochemical analysis of gastrointestinal mucosubstances of fresh water fishMastacembelus armatus infected by helminth parasiteCircumonco bothrium sp. Journal of Animal and Feed Research 9(6): 265-269.https://doi.org/10.36380/SCIL.2019.OJAFR37
Daprà, F., Geurden, I., Corraze, G., Bazin, D., Zambonino-Infante, J.L. and Fontagné-Dicharry, S., 2011. Physiological and molecular responses to dietary phospholipids vary between fry and early juvenile stages of rainbow trout (Oncorhynchus mykiss). Aquaculture 319(3-4): 377-384.https://doi.org/10.1016/j.aquaculture.2011.07.016
Das Neves Cardoso, N., Da Silveira Firmiano, E.M., Gomes, I.D., Nascimento, A.A., Sales, A. and Araújo, F.G., 2015. Histochemical and immunohistochemical study on endocrine cells (5HT, GAS, and SST) of the gastrointestinal tract of a teleost, the characinAstyanax bimaculatus. Acta Histochemica 117(7): 595-604.https://doi.org/10.1016/j.acthis.2015.05.007
Devic, E., Leschen, W., Murray, F. and Little, D.C., 2018. Growth performance, feed utilization and body composition of advanced nursing Nile tilapia (Oreochromis niloticus) fed diets containing black soldier fly (Hermetia illucens) larvae meal. Aquaculture Nutrition 24(1): 416-423.https://doi.org/10.1111/anu.12573
Donaldson, G.P., Lee, S.M. and Mazmanian, S.K., 2015. Gut biogeography of the bacterial microbiota. Nature Reviews Microbiology 14: 20-32.https://doi.org/10.1038/nrmicro3552
Dumas, A., Raggi, T., Barkhouse, J., Lewis, E. and Weltzien, E., 2018. The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture 492: 24-34.https://doi.org/10.1016/j.aquaculture.2018.03.038
Egerton, S., Culloty, S., Whooley, J., Stanton, C. and Ross, R.P., 2018. The gut microbiota of marine fish. Frontiers in Microbiology 9: 873.https://doi.org/10.3389/fmicb.2018.00873
EL-Haroun, E.R., Azevedo, P.A. and Bureau, D.P., 2009. High dietary incorporation levels of rendered animal protein ingredients on performance of rainbow troutOncorhynchus mykiss (Walbaum, 1972). Aquaculture 290(3-4): 269-274.https://doi.org/10.1016/j.aquaculture.2009.02.014
Elia, A.C., Capucchio, M.T., Caldaroni, B., Magara, G., Dörr, A.J.M., Biasato, I., Biasibetti, E., Righetti, M., Pastorino, P., Prearo, M., Gai, F., Schiavone, A. and Gasco, L., 2018. Influence ofHermetia illucens meal dietary inclusion on the histological traits, gut mucin composition and the oxidative stress biomarkers in rainbow trout (Oncorhynchus mykiss). Aquaculture 496: 50-57.https://doi.org/10.1016/j.aquaculture.2018.07.009
European Commission, 2008. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives (text with EEA relevance). Official Journal of the European Union L 312: 3-30.
European Commission, 2013. Commission Regulation No 56/2013 of 16 January 2013 amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council laying down rules for the prevention, control and eradication of certain transmissible spongiform encephalopathies. Official Journal of the European Union L 21: 3-16.
European Food Safety Authority (EFSA), 2009. Statement of the animal health and welfare panel (AHAW): knowledge gaps and research needs for the welfare of farmed fish. EFSA Journal 7(6): 1145.https://doi.org/10.2903/j.efsa.2009.1145
European Food Safety Authority (EFSA), 2015. Statement on the benefits of fish/seafood consumption compared to the risks of methylmercury in fish/seafood. EFSA Journal 13(1): 3982.https://10.2903/j.efsa.2015.3982
Ewald, N., Vidakovic, A., Langeland, M., Kiessling, A., Sampels, S. and Lalander, C., 2020. Fatty acid composition of black soldier fly larvae (Hermetia illucens) – possibilities and limitations for modification through diet. Waste Management 102: 40-47.https://doi.org/10.1016/j.wasman.2019.10.014
Fehrmann-Cartes, K., Coronado, M., Hernández, A.J., Allende, M.L. and Feijoo, C.G., 2019. Anti-inflammatory effects of aloe vera on soy meal-induced intestinal inflammation in zebrafish. Fish & Shellfish Immunology 95: 564-573.https://doi.org/10.1016/j.fsi.2019.10.075
Fernqvist, F. and Ekelund, L., 2014. Credence and the effect on consumer liking of food – a review. Food Quality and Preference 32: 340-353.https://doi.org/10.1016/j.foodqual.2013.10.005
Ferrer Llagostera, P., Kallas, Z., Reig, L. and Amores de Gea, D., 2019. The use of insect meal as a sustainable feeding alternative in aquaculture: current situation, Spanish consumers’ perceptions and willingness to pay. Journal of Cleaner Production 229: 10-21.https://doi.org/10.1016/j.jclepro.2019.05.012
Food and Agriculture Organisation (FAO), 2016. The state of world fisheries and aquaculture 2016 – contributing to food security and nutrition for all. FAO, Rome, Italy, 200 pp. Available at:http://www.fao.org/3/a-i5555e.pdf
Food and Agriculture Organisation (FAO), 2018. State of world fisheries and aquaculture 2018 – meeting the sustainable development goals. FAO, Rome, Italy, 210 pp. Available at:http://www.fao.org/3/i9540en/i9540en.pdf
Francis, G., Makkar, H. and Becker, K., 2001. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199(3-4): 197-227.https://doi.org/10.1016/S0044-8486(01)00526-9
Fratini, G., Lois, S., Pazos, M., Parisi, G. and Medina, I., 2012. Volatile profile of Atlantic shellfish species by HS-SPME GC/MS. Food Research International 48(2): 856-865.https://doi.org/10.1016/j.foodres.2012.06.033
Gajardo, K., Jaramillo-Torres, A., Kortner, T.M., Merrifield, D.L., Tinsley, J., Bakke, A.M. and Krogdahl, Å., 2017. Alternative protein sources in the diet modulate microbiota and functionality in the distal intestine of Atlantic salmon (Salmo salar). Applied Environmental Microbiology 83(5): e02615-16.https://doi.org/10.1128/AEM.02615-16
Gasco, L., Acuti, G., Bani, P., Dalle Zotte, A., Danieli, P., De Angelis, A., Fortina, R., Marino, R., Parisi, G., Piccolo, G., Pinotti, L., Prandini, A., Schiavone, A., Terova, G., Tulli, F. and Roncarati, A., 2020. Insect and fish by-products as sustainable alternatives to conventional animal proteins in animal nutrtion. Italian Journal of Animal Science 19(1): 360-372.https://doi.org/10.1080/1828051X.2020.1743209
Gasco, L., Finke, M. and Van Huis, A., 2018. Can diets containing insects promote animal health? Journal of Insects as Food and Feed 4(1): 1-4.https://doi.org/10.3920/JIFF2018.x001
Gatlin, D.M., Barrows, F.T., Brown, P., Dabrowski, K., Gaylord, T.G., Hardy, R.W., Herman, E., Hu, G., Krogdahl, Å., Nelson, R., Overturf, K., Rust, M., Sealey, W., Skonberg, D., Souza, E.J., Stone, D., Wilson, R. and Wurtele, E., 2007. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture Research 38(6): 551-579.https://doi.org/10.1111/j.1365-2109.2007.01704.x
Gerile, S. and Pirhonen, J., 2017. Replacement of fishmeal with corn gluten meal in feeds for juvenile rainbow trout (Oncorhynchus mykiss) does not affect oxygen consumption during forced swimming. Aquaculture 479: 616-618.https://doi.org/10.1016/j.aquaculture.2017.07.002
Ghanbari, M., Kneifel, W. and Domig, K.J., 2015. A new view of the fish gut microbiome: advances from next-generation sequencing. Aquaculture 448: 464-475.https://doi.org/10.1016/j.aquaculture.2015.06.033
Giannetto, A., Oliva, S., Ceccon Lanes, C.F., de Araújo Pedron, F., Savastano, D., Baviera, C., Parrino, V., Lo Paro, G., Spanò, N.C., Cappello, T., Maisano, M., Mauceri, A. and Fasulo, S., 2020.Hermetia illucens (Diptera: Stratiomydae) larvae and prepupae: biomass production, fatty acid profile and expression of key genes involved in lipid metabolism. Journal of Biotechnology 307: 44-54.https://doi.org/10.1016/j.jbiotec.2019.10.015
Giorgini, E., Randazzo, B., Gioacchini, G., Cardinaletti, G., Vaccari, L., Tibaldi, E. and Olivotto, I., 2018a. New insights on the macromolecular building of rainbow trout (O. mykiss) intestine: FTIR Imaging and histological correlative study. Aquaculture 497: 1-9.https://doi.org/10.1016/j.aquaculture.2018.07.032
Giorgini, E., Sabbatini, S., Rocchetti, R., Notarstefano, V., Rubini, C., Conti, C., Orilisi, G., Mitri, E., Bedolla, D.E. and Vaccari, L., 2018b.In vitro FTIR microspectroscopy analysis of primary oral squamous carcinoma cells treated with cisplatin and 5-fluorouracil: a new spectroscopic approach for studying the drug-cell interaction. Analyst 143: 3317-3326.https://doi.org/10.1039/c8an00602d
Givens, C., Ransom, B., Bano, N. and Hollibaugh, J., 2015. Comparison of the gut microbiomes of 12 bony fish and 3 shark species. Marine Ecology Progress Series 518: 209-223.https://doi.org/10.3354/meps11034
Gobbi, P., Martínez-Sánchez, A. and Rojo, S., 2013. The effects of larval diet on adult life-history traits of the black soldier fly,Hermetia illucens (Diptera: Stratiomyidae). European Journal of Entomology 110(3): 461-468.https://doi.org/10.14411/eje.2013.061
Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M. and Toulmin, C., 2010. Food security: the challenge of feeding 9 billion people. Science 327(5967): 812-818.https://doi.org/10.1126/science.1185383
Groschwitz, K.R. and Hogan, S.P., 2009. Intestinal barrier function: molecular regulation and disease pathogenesis. Journal of Allergy and Clinical Immunology 124(1): 3-20.https://doi.org/10.1016/j.jaci.2009.05.038
Gu, X. and Li, D., 2004. Effect of dietary crude protein level on villous morphology, immune status and histochemistry parameters of digestive tract in weaning piglets. Animal Feed Science and Technology 114(1-4): 113-126.https://doi.org/10.1016/j.anifeedsci.2003.12.008
Gudiña, E.J., Fernandes, E.C., Rodrigues, A.I., Teixeira, J.A. and Rodrigues, L.R., 2015. Biosurfactant production byBacillus subtilis using corn steep liquor as culture medium. Frontiers in Microbiology 6: 59.https://doi.org/10.3389/fmicb.2015.00059
Gutiérrez, E., Lozano, S. and Guillén, J., 2020. Efficiency data analysis in EU aquaculture production. Aquaculture 520: 734962.https://doi.org/10.1016/j.aquaculture.2020.734962
Hardy, R.W., 2010. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquaculture Research 41(5): 770-776.https://doi.org/10.1111/j.1365-2109.2009.02349.x
Hasnain, S.Z., Gallagher, A.L., Grencis, R.K. and Thornton, D.J., 2013. A new role for mucins in immunity: insights from gastrointestinal nematode infection. The International Journal of Biochemistry & Cell Biology 45(2): 364-374.https://doi.org/10.1016/j.biocel.2012.10.011
Hatlen, B., Jakobsen, J. V., Crampton, V., Alm, M., Langmyhr, E., Espe, M., Hevrøy, E.M., Torstensen, B.E., Liland, N. and Waagbø, R., 2015. Growth, feed utilization and endocrine responses in Atlantic salmon (Salmo salar) fed diets added poultry by-product meal and blood meal in combination with poultry oil. Aquaculture Nutrition 21(5): 714-725.https://doi.org/10.1111/anu.12194
Heikkinen, J., Vielma, J., Kemiläinen, O., Tiirola, M., Eskelinen, P., Kiuru, T., Navia-Paldanius, D. and Von Wright, A., 2006. Effects of soybean meal based diet on growth performance, gut histopathology and intestinal microbiota of juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture 261(1): 259-268.https://doi.org/10.1016/j.aquaculture.2006.07.012
Henry, M., Gasco, L., Piccolo, G. and Fountoulaki, E., 2015. Review on the use of insects in the diet of farmed fish: past and future. Animal Feed Science and Technology 203: 1-22.https://doi.org/10.1016/j.anifeedsci.2015.03.001
Hua, K., Cobcroft, J.M., Cole, A., Condon, K., Jerry, D.R., Mangott, A., Praeger, C., Vucko, M.J., Zeng, C., Zenger, K. and Strugnell, J.M., 2019. The future of aquatic protein: implications for protein sources in aquaculuture diets. One Earth 1(3): 316-329.https://doi.org/10.1016/j.oneear.2019.10.018
Hultmann, L. and Rustad, T., 2002. Textural changes during iced storage of salmon (Salmo salar) and cod (Gadus morhua). Journal of Aquatic Food Product Technology 11(3-4): 105-123.https://doi.org/10.1300/J030v11n03_09
Huyben, D., Vidaković, A., Werner Hallgren, S. and Langeland, M., 2019. High-throughput sequencing of gut microbiota in rainbow trout (Oncorhynchus mykiss) fed larval and pre-pupae stages of black soldier fly (Hermetia illucens). Aquaculture 500: 485-491.https://doi.org/10.1016/j.aquaculture.2018.10.034
Iaconisi, V., Bonelli, A., Pupino, R., Gai, F. and Parisi, G., 2018. Mealworm as dietary protein source for rainbow trout: body and fillet quality traits. Aquaculture 484: 197-204.https://doi.org/10.1016/j.aquaculture.2017.11.034
Iaconisi, V., Marono, S., Parisi, G., Gasco, L., Genovese, L., Maricchiolo, G., Bovera, F. and Piccolo, G., 2017. Dietary inclusion ofTenebrio molitor larvae meal: effects on growth performance and final quality treats of blackspot sea bream (Pagellus bogaraveo). Aquaculture 476: 49-58.https://doi.org/10.1016/j.aquaculture.2017.04.007
Iglesias, J. and Medina, I., 2008. Solid-phase microextraction method for the determination of volatile compounds associated to oxidation of fish muscle. Journal of Chromatography A 1192(1): 9-16.https://doi.org/10.1016/j.chroma.2008.03.028
International Commission on Illumination (CIE), 2018. Colorimetry, 4th edition. Technical Report, International Commission on Illumination, Vienna, Austria, 111 pp.https://doi.org/10.25039/TR.015.2018
Józefiak, A., Nogales-Mérida, S., Mikołajczak, Z., Rawski, M., Kierończyk, B. and Mazurkiewicz, J., 2019a. The utilization of full-fat insect meal in rainbow trout (Oncorhynchus mykiss) nutrition: the effects on growth performance, intestinal microbiota and gastrointestinal tract histomorphology. Annals of Animal Science 19(3): 747-765.https://doi.org/10.2478/aoas-2019-0020
Józefiak, A., Nogales-Mérida, S., Rawski, M., Kierończyk, B. and Mazurkiewicz, J., 2019b. Effects of insect diets on the gastrointestinal tract health and growth performance of Siberian sturgeon (Acipenser baerii Brandt, 1869). BMC Veterinary Research 15: 384.https://doi.org/10.1186/s12917-019-2070-y
Kim, D.H., Brunt, J. and Austin, B., 2007. Microbial diversity of intestinal contents and mucus in rainbow trout (Oncorhynchus mykiss). Journal of Applied Microbiology 102(6): 1654-1664.https://doi.org/10.1111/j.1365-2672.2006.03185.x
Kinnebrew, M.A. and Pamer, E.G., 2012. Innate immune signaling in defense against intestinal microbes. Immunological Reviews 245(1): 113-131.https://doi.org/10.1111/j.1600-065X.2011.01081.x
Knudsen, D., Jutfelt, F., Sundh, H., Sundell, K., Koppe, W. and Frøkiær, H., 2008. Dietary soya saponins increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.). British Journal of Nutrition 100(1): 120-129.https://doi.org/10.1017/S0007114507886338
Kokou, F., Con, P., Barki, A., Nitzan, T., Slosman, T., Mizrahi, I. and Cnaani, A., 2019. Short- and long-term low-salinity acclimation effects on the branchial and intestinal gene expression in the European seabass (Dicentrarchus labrax). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 231: 11-18.https://doi.org/10.1016/j.cbpa.2019.01.018
Kroeckel, S., Harjes, A.G.E., Roth, I., Katz, H., Wuertz, S., Susenbeth, A. and Schulz, C., 2012. When a turbot catches a fly: evaluation of a pre-pupae meal of the black soldier fly (Hermetia illucens) as fish meal substitute – growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture 364-365: 345-352.https://doi.org/10.1016/j.aquaculture.2012.08.041
Krogdahl, Å., Bakke-McKellep, A.M. and Baeverfjord, G., 2003. Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salar L.). Aquaculture Nutrition 9(6): 361-371.https://doi.org/10.1046/j.1365-2095.2003.00264.x
Krogdahl, Å., Gajardo, K., Kortner, T.M., Penn, M., Gu, M., Berge, G.M. and Bakke, A.M., 2015. Soya saponins induce enteritis in Atlantic salmon (Salmo salar L.). Journal of Agricultural and Food Chemistry 63: 3887-3902.https://doi.org/10.1021/jf506242t
Krogdahl, Å., Penn, M., Thorsen, J., Refstie, S. and Bakke, A.M., 2010. Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquaculture Research 41(3): 333-344.https://doi.org/10.1111/j.1365-2109.2009.02426.x
Kumar, G., Cho, S., Sivagurunathan, P., Anburajan, P., Mahapatra, D.M., Park, J. and Pugazhendhi, A., 2018. Insights into evolutionary trends in molecular biology tool in microbial screening for biohydrogen production through dark fermentation. International Journal of Hydrogen Energy 43(43): 19885-19901.https://doi.org/10.1016/j.ijhydene.2018.09.040
Laporte, J. and Trushenski, J., 2012. Production performance, stress tolerance and intestinal integrity of sunshine bass fed increasing levels of soybean meal. Journal of Animal Physiology and Animal Nutrition 96(3): 513-526.https://doi.org/10.1111/j.1439-0396.2011.01174.x
Lazado, C.C. and Caipang, C.M.A., 2014. Mucosal immunity and probiotics in fish. Fish & Shellfish Immunology 39(1): 78-89.https://doi.org/10.1016/j.fsi.2014.04.015
Lee, H.J. and Hwang, J., 2016. The driving role of consumers’ perceived credence attributes in organic food purchase decisions: a comparison of two groups of consumers. Food Quality and Preference 54: 141-151.https://doi.org/10.1016/j.foodqual.2016.07.011
Li, J., Ni, J., Li, J., Wang, C., Li, X., Wu, S., Zhang, T., Yu, Y., Yan, Q., 2014. Comparative study on gastrointestinal microbiota of eight fish species with different feeding habits. Journal of Applied Microbiology 117(6): 1750-1760.https://doi.org/10.1111/jam.12663
Li, S., Ji, H., Zhang, B., Tian, J., Zhou, J. and Yu, H., 2016. Influence of black soldier fly (Hermetia illucens) larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture 465: 43-52.https://doi.org/10.1016/j.aquaculture.2016.08.020
Li, S., Ji, H., Zhang, B., Zhou, J. and Yu, H., 2017. Defatted black soldier fly (Hermetia illucens) larvae meal in diets for juvenile Jian carp (Cyprinus carpio var. Jian): growth performance, antioxidant enzyme activities, intestine and hepatopancreas histological structure. Aquaculture 477: 62-70.https://doi.org/10.1016/j.aquaculture.2017.04.015
Li, Y., Bruni, L., Jaramillo-Torres, A., Gajardo, K., Kortner, T.M. and Krogdahl, Å., 2020a. Differential response of digesta- and mucosa-associated intestinal microbiota to dietary black soldier fly (Hermetia illucens) larvae meal in seawater phase Atlantic salmon (Salmo salar). Animal Microbiome 3: 8.https://doi.org/10.1186/s42523-020-00071-3
Li, Y., Kortner, T.M., Chikwati, E.M., Belghit, I., Lock, E.J. and Krogdahl, Å., 2020b. Total replacement of fish meal with black soldier fly (Hermetia illucens) larvae meal does not compromise the gut health of Atlantic salmon (Salmo salar). Aquaculture 520: 734967.https://doi.org/10.1016/j.aquaculture.2020.734967
Li, Y., Kortner, T.M., Chikwati, E.M., Munang’andu, H.M., Lock, E.J. and Krogdahl, Å., 2019. Gut health and vaccination response in pre-smolt Atlantic salmon (Salmo salar) fed black soldier fly (Hermetia illucens) larvae meal. Fish & Shellfish Immunology 86: 1106-1113.https://doi.org/10.1016/j.fsi.2018.12.057
Liland, N.S., Biancarosa, I., Araujo, P., Biemans, D., Bruckner, C.G., Waagbø, B.E., Torstensen, E. and Lock, E.J., 2017. Modulation of nutrients composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PLoS ONE 12: e0183188.https://doi.org/10.1371/journal.pone.0183188
Lindholm-Lehto, P.C., Suurnäkki, S., Pulkkinen, J.T., Aalto, S.L., Tiirola, M. and Vielma, J., 2019. Effect of peracetic acid on levels of geosmin, 2-methylisoborneol, and their potential producers in a recirculating aquaculture system for rearing rainbow trout (Oncorhynchus mykiss). Aquaculture Engineering 85: 56-64.https://doi.org/10.1016/j.aquaeng.2019.02.002
Liu, H., Guo, X., Gooneratne, R., Lai, R., Zeng, C., Zhan, F. and Wang, W., 2016. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Scientific Reports 6: 24340.https://doi.org/10.1038/srep24340
Llewellyn, M.S., Boutin, S., Hoseinifar, S.H. and Derome, N., 2014. Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Frontiers in Microbiology 5: 207.https://doi.org/10.3389/fmicb.2014.00207
Lock, E.R., Arsiwalla, T. and Waagbø, R., 2016. Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquaculture Nutrition 22: 1202-1213.https://doi.org/10.1111/anu.12343
Lopes, I.G., Lalander, C., Vidotti, R.M. and Vinnerås, B., 2020. UsingHermetia illucens larvae to process biowaste from aquaculture production. Journal of Cleaner Production 251: 119753.https://doi.org/10.1016/j.jclepro.2019.119753
Luo, L., Wei, H., Ai, L., Liang, X., Wu, X., Xing, W., Chen, P. and Xue, M., 2019. Effects of early long-chain n-3HUFA programming on growth, antioxidant response and lipid metabolism of Siberian sturgeon (Acipenser baerii Brandt). Aquaculture 509: 96-103.https://doi.org/10.1016/j.aquaculture.2019.05.032
Mancini, S., Medina, I., Iaconisi, V., Gai, F., Basto, A. and Parisi, G., 2018. Impact of black soldier fly larvae meal on the chemical and nutritional characteristics of rainbow trout fillets. Animal 12(8): 1672-1681.https://doi.org/10.1017/S1751731117003421
Marjara, I.S., Chikwati, E.M., Valen, E.C., Krogdahl, Å. and Bakke, A.M., 2012. Transcriptional regulation of IL-17A and other inflammatory markers during the development of soybean meal-induced enteropathy in the distal intestine of Atlantic salmon (Salmo salar L.). Cytokine 60(1): 186-196.https://doi.org/10.1016/j.cyto.2012.05.027
Maslowski, K.M. and MacKay, C.R., 2011. Diet, gut microbiota and immune responses. Nature Immunology 12: 5-9.https://doi.org/10.1038/ni0111-5
McAdam, P.R., Richardson, E.J. and Fitzgerald, J.R., 2014. High-throughput sequencing for the study of bacterial pathogen biology. Current Opinion in Microbiology 19: 106-113.https://doi.org/10.1016/j.mib.2014.06.002
McFadzen, I.R.B., Coombs, S.H. and Halliday, N.C., 1997. Histological indices of the nutritional condition of sardine,Sardina pilchardus (Walbaum) larvae off the north coast of Spain. Journal of Experimental Marine Biology and Ecology 212(2): 239-258.https://doi.org/10.1016/S0022-0981(96)02755-4
Metzker, M.L., 2010. Sequencing technologies – the next generation. Nature Reviews Genetics 11: 31-46.https://doi.org/10.1038/nrg2626
Mokhtar, D.M., 2017. Fish histology: from cells to organs, 1st edition. Apple Academic Press, Boca Raton, FL, USA, 264 pp.https://doi.org/10.1201/9781315205779
Mokrzycki, W. and Tatol, M., 2011. Color difference Delta E – a survey. Machine Graphics and Vision 20(4): 383-411.
'Color difference Delta E – a survey ' () 20 Machine Graphics and Vision : 383 -411.
Morris, P.C., Gallimore, P., Handley, J., Hide, G., Haughton, P. and Black, A., 2005. Full-fat soya for rainbow trout (Oncorhynchus mykiss) in freshwater: effects on performance, composition and flesh fatty acid profile in absence of hind-gut enteritis. Aquaculture 248(1-4): 147-161.https://doi.org/10.1016/j.aquaculture.2005.04.021
Moutinho, S., Martínez-Llorens, S., Tomás-Vidal, A., Jover-Cerdá, M., Oliva-Teles, A. and Peres, H., 2017. Meat and bone meal as partial replacement for fish meal in diets for gilthead seabream (Sparus aurata) juveniles: growth, feed efficiency, amino acid utilization, and economic efficiency. Aquaculture 468(1): 271-277.https://doi.org/10.1016/j.aquaculture.2016.10.024
Müller, A., Wolf, D. and Gutzeit, H.O., 2017. The black soldier fly,Hermetia illucens – a promising source for sustainable production of proteins, lipids and bioactive substances. Zeitschrift für Naturforsch C 72(9-10): 351-363.https://doi.org/10.1515/znc-2017-0030
Muyzer, G., 1999. DGGE/TGGE a method for identifyng genes from natural ecosystems. Current Opinion in Microbiology 2(3): 317-322.https://doi.org/10.1016/S1369-5274(99)80055-1
Nawaz, A., Bakhsh Javaid, A., Irshad, S., Hoseinifar, S.H. and Xiong, H., 2018. The functionality of prebiotics as immunostimulant: evidences from trials on terrestrial and aquatic animals. Fish & Shellfish Immunology 76: 272-278.https://doi.org/10.1016/j.fsi.2018.03.004
Nayak, S.K., 2010. Probiotics and immunity: a fish perspective. Fish & Shellfish Immunology 29(1): 2-14.https://doi.org/10.1016/j.fsi.2010.02.017
Naylor, R., Hindar, K., Fleming, I.A., Goldburg, R., Williams, S., Volpe, J., Whoriskey, F., Eagle, J., Kelso, D., Mangel, M., 2005. Fugitive salmon: assessing the risks of escaped fish from net-pen aquaculture. Bioscience 55(5): 427-437.https://doi.org/10.1641/0006-3568(2005)055[0427:FSATRO]2.0.CO;2
Nieva-Echevarría, B., Goicoechea, E., Manzanos, M.J. and Guillén, M.D., 2018. Effects of different cooking methods on the lipids and volatile components of farmed and wild European sea bass (Dicentrarchus labrax). Food Research International 103: 48-58.https://doi.org/10.1016/j.foodres.2017.10.029
Nogales-Mérida, S., Gobbi, P., Józefiak, D., Mazurkiewicz, J., Dudek, K., Rawski, M., Kierończyk, B. and Józefiak, A., 2018. Insect meals in fish nutrition. Reviews in Aquaculture 11(4): 1080-1103.https://doi.org/10.1111/raq.12281
Notarstefano, V., Gioacchini, G., Byrne, H.J., Zacà, C., Sereni, E., Vaccari, L., Borini, A., Carnevali, O. and Giorgini, E., 2019. Vibrational characterization of granulosa cells from patients affected by unilateral ovarian endometriosis: new insights from infrared and Raman microspectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 212: 206-214.https://doi.org/10.1016/j.saa.2018.12.054
Notarstefano, V., Sabbatini, S., Conti, C., Pisani, M., Astolfi, P., Pro, C., Rubini, C., Vaccari, L. and Giorgini, E., 2020. Investigation of human pancreatic cancer tissues by Fourier transform infrared hyperspectral imaging. Journal of Biophotonics 13(4): e201960071.https://doi.org/10.1002/jbio.201960071
Novriadi, R., Rhodes, M., Powell, M., Hanson, T. and Davis, D.A., 2018. Effects of soybean meal replacement with fermented soybean meal on growth, serum biochemistry and morphological condition of liver and distal intestine of Florida pompanoTrachinotus carolinus. Aquaculture Nutrition 24(3): 1066-1075.https://doi.org/10.1111/anu.12645
O’Connell, C.P., 1976. Histological criteria for diagnosing the starving condition in early post yolk sac larvae of the northern anchovy,Engraulis mordax Girard. Journal of Experimental Marine Biology and Ecology 25(3): 285-312.https://doi.org/10.1016/0022-0981(76)90130-1
Oliva-Teles, A., Enes, P. and Peres, H., 2015. Replacing fishmeal and fish oil in industrial aquafeeds for carnivorous fish. Feed and feeding practices in aquaculture. Woodhead Publishing, Cambridge, UK, 432 pp.https://doi.org/10.1016/b978-0-08-100506-4.00008-8
Olivotto, I., Di Stefano, M., Rosetti, S., Cossignani, L., Pugnaloni, A., Giantomassi, F. and Carnevali, O., 2011. Live prey enrichment, with particular emphasis on HUFAs, as limiting factor in false percula clownfish (Amphiprion ocellaris, Pomacentridae) larval development and metamorphosis: molecular and biochemical implications. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 159(3): 207-218.https://doi.org/10.1016/j.cbpa.2011.02.004
Olivotto, I., Mosconi, G., Maradonna, F., Cardinali, M. and Carnevali, O., 2002.Diplodus sargus interrenal-pituitary response: chemical communication in stressed fish. General and Comparative Endocrinology 127(1): 66-70.https://doi.org/10.1016/S0016-6480(02)00024-2
Olsen, R.E., Suontama, J., Langmyhr, E., Mundheim, H., Ringo, E., Melle, W., Malde, M.K. and Hemre, G.I., 2006. The replacement of fish meal with Antarctic krill,Euphausia superba in diets for Atlantic salmon,Salmo salar. Aquaculture Nutrition 12: 280-290.https://doi.org/10.1111/j.1365-2095.2006.00400.x
Osimani, A., Milanović, V., Roncolini, A., Riolo, P., Ruschioni, S., Isidoro, N., Loreto, N., Franciosi, E., Tuohy, K., Olivotto, I., Zarantoniello, M., Cardinali, F., Garofalo, C., Aquilanti, L. and Clementi, F., 2019.Hermetia illucens in diets for zebrafish (Danio rerio): A study of bacterial diversity by using PCR-DGGE and metagenomic sequencing. PLoS ONE 14(12): e0225956.https://doi.org/10.1371/journal.pone.0225956
Panagiotaki, P. and Malandrakis, E.E., 2019. Aquatic environment and fish welfare in aquaculture. Reference module in earth systems and environmental sciences. Encyclopedia of Environmental Health, 2nd edition. Elsevier, New York, NY, USA, 4884 pp.https://doi.org/10.1016/B978-0-12-409548-9.10959-5
Papatryphon, E. and Soares, J.H., 2001. Optimizing the levels of feeding stimulants for use in high-fish meal and plant feedstuff-based diets for striped bass,Morone saxatilis. Aquaculture 202(3-4): 279-288.https://doi.org/10.1016/S0044-8486(01)00778-5
Parodi, A., De Boer, I.J.M., Gerrits, W.J.J., Van Loon, J.J.A., Heetkamp, M.J.W., Van Schelt, J., Bolhuis, J.E. and Van Zanten, H.H.E., 2020. Bioconversion efficiencies, greenhouse gas and ammonia emissions during black soldier fly rearing – a mass balance approach. Journal of Cleaner Production 271: 122488.https://doi.org/10.1016/j.jclepro.2020.122488
Penn, M.H., Bendiksen, E.A., Campbell, P. and Krogdahl, A.S., 2011. High level of dietary pea protein concentrate induces enteropathy in Atlantic salmon (Salmo salar L.). Aquaculture 310: 267-273.https://doi.org/10.1016/j.aquaculture.2010.10.040
Peterson, L.W. and Artis, D., 2014. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nature Reviews Immunology 14: 141-153.https://doi.org/10.1038/nri3608
Picard, B., Gagaoua, M. and Hollung, K., 2017. Gene and protein expression as a tool to explain/predict meat (and fish) quality. New aspects of meat quality: from genes to ethics. Woodhead Publishing, Cambridge, UK, 744 pp.https://doi.org/10.1016/b978-0-08-100593-4.00013-8
Piccinetti, C.C., Donati, M., Radaelli, G., Caporale, G., Mosconi, G., Palermo, F., Cossignani, L., Salvatori, R., Lopez, R.P. and Olivotto, I., 2015. The effects of starving and feeding on Dover sole (Solea solea, Soleidae, Linnaeus, 1758) stress response and early larval development. Aquaculture Research 46: 2512-2526.https://doi.org/10.1111/are.12410
Piccinetti, C.C., Grasso, L., Maradonna, F., Radaelli, G., Ballarin, C., Chemello, G., Evjemo, J.O., Carnevali, O. and Olivotto, I., 2017. Growth and stress factors in ballan wrasse (Labrus bergylta) larval development. Aquaculture Research 48(5): 2567-2580.https://doi.org/10.1111/are.13093
Pimentel, A.C., Montali, A., Bruno, D. and Tettamanti, G., 2017. Metabolic adjustment of the larval fat body inHermetia illucens to dietary conditions. Journal of Asia-Pacific Entomology 20(4): 1307-1313.https://doi.org/10.1016/j.aspen.2017.09.017
Psofakis, P., Karapanagiotidis, I.T., Malandrakis, E.E., Golomazou, E., Exadactylos, A. and Mente, E., 2020. Effect of fishmeal replacement by hydrolyzed feather meal on growth performance, proximate composition, digestive enzyme activity, haematological parameters and growth-related gene expression of gilthead seabream (Sparus aurata). Aquaculture 521: 735006.https://doi.org/10.1016/j.aquaculture.2020.735006
Purushothaman, K., Lau, D., Saju, J.M., Syed Musthaq, S.K., Lunny, D.P., Vij, S. and Orbán, L., 2016. Morpho-histological characterisation of the alimentary canal of an important food fish, Asian seabass (Lates calcarifer). PeerJ Life & Environment 4: e2377.https://doi.org/10.7717/peerj.2377
Qin, C., Zhang, Y., Liu, W., Xu, L., Yang, Y. and Zhou, Z., 2014. Effects of chito-oligosaccharides supplementation on growth performance, intestinal cytokine expression, autochthonous gut bacteria and disease resistance in hybrid tilapiaOreochromis niloticus ♀ ×Oreochromis aureus ♂. Fish & Shellfish Immunology 40(1): 267-274.https://doi.org/10.1016/j.fsi.2014.07.010
Randazzo, B., Zarantoniello, M., Cardinaletti, G., Cerri, R., Giorgini, E., Belloni, A., Contò, M., Tibaldi, E. and Olivotto, I., 2021a.Hermetia illucens and poultry by-product meals as alternatives to plant protein sources in gilthead seabream (Sparus aurata) diet: a multidisciplinary study on fish gut status. Animals 11: 677.https://doi.org/10.3390/ani11030677
Randazzo, B., Zarantoniello, M., Gioacchini, G., Cardinaletti, G., Belloni, A., Giorgini, E., Faccenda, F., Cerri, R., Tibaldi, E. and Olivotto, I., 2021b. Physiological response of rainbow trout (Oncorhynchus mykiss) to graded levels ofHermetia illucens or poultry by-product meals as single or combined substitute ingredients to dietary plant proteins. Aquaculture 538: 736550.https://doi.org/10.1016/j.aquaculture.2021.736550
Randazzo, B., Zarantoniello, M., Gioacchini, G., Giorgini, E., Truzzi, C., Notarstefano, V., Cardinaletti, G., Huyen, K.T., Carnevali, O. and Olivotto, I., 2020a. Can insect-based diets affect zebrafish (Danio rerio) reproduction? A multidisciplinary study. Zebrafish 17(5): 287-304.https://doi.org/10.1089/zeb.2020.1891
Randazzo, B., Zarantoniello, M., Tibaldi, E., Cardinaletti, G., Giorgini, E., Lunelli, F., Olivotto, I., 2020b. A multidisciplinary approach to investigate biological effects on intestine phisiology and appetite stimulus in rainbow troutOnchorhincus mykiss fed diets with graded levels of insect meal and poultry by-product meal. In: Aquaculture America 2020. February 9-12, 2020. World Aquaculture Society, Honolulu, HI, USA. Available at:https://www.was.org/Meeting/code/AA2020
Raskovic, B., Stankovic, M., Markovic, Z. and Poleksic, V., 2011. Histological methods in the assessment of different feed effects on liver and intestine of fish. Journal of Agricultural Science, Belgrade 56(11): 87-10.https://doi.org/10.2298/jas1101087r
Ray, A.K. and Ringø, E., 2014. The gastrointestinal tract of fish. Aquaculture nutrition: gut health, probiotics and prebiotics, 1st edition. John Wiley & Sons, Hoboken, NJ, USA, 465 pp.https://doi.org/10.1002/9781118897263.ch1
Razin, S., 2006. The genus mycoplasma and related genera (class mollicutes). The prokaryotes. Springer, New York, NY, USA, 1186 pp.https://doi.org/10.1007/0-387-30744-3_29
Renna, M., Schiavone, A., Gai, F., Dabbou, S., Lussiana, C., Malfatto, V., Prearo, M., Capucchio, M.T., Biasato, I., Biasibetti, E., De Marco, M., Brugiapaglia, A., Zoccarato, I. and Gasco, L., 2017. Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. Journal of Animal Science and Biotechnology 8: 57.https://doi.org/10.1186/s40104-017-0191-3
Ribas, L. and Piferrer, F., 2014. The zebrafish (Danio rerio) as a model organism, with emphasis on applications for finfish aquaculture research. Reviews in Aquaculture 6(4): 209-240.https://doi.org/10.1111/raq.12041
Rimoldi, S., Finzi, G., Ceccotti, C., Girardello, R., Grimaldi, A., Ascione, C. and Terova, G., 2016. Butyrate and taurine exert a mitigating effect on the inflamed distal intestine of European sea bass fed with a high percentage of soybean meal. Fisheries and Aquatic Sciences 19: 40.https://doi.org/10.1186/s41240-016-0041-9
Rimoldi, S., Gini, E., Iannini, F., Gasco, L. and Terova, G., 2019. The effects of dietary insect meal fromHermetia illucens prepupae on autochthonous gut microbiota of rainbow trout (Oncorhynchus mykiss). Animals 9(4): 143.https://doi.org/10.3390/ani9040143
Ringø, E., Zhou, Z., Olsen, R.E. and Song, S.K., 2012. Use of chitin and krill in aquaculture – the effect on gut microbiota and the immune system: a review. Aquaculture Nutrition 18(2): 117-131.https://doi.org/10.1111/j.1365-2095.2011.00919.x
Ringø, E., Zhou, Z., Vecino, J.L.G., Wadsworth, S., Romero, J., Krogdahl, Olsen, R.E., Dimitroglou, A., Foey, A., Davies, S., Owen, M., Lauzon, H.L., Martinsen, L.L., De Schryver, P., Bossier, P., Sperstad, S. and Merrifield, D.L., 2016. Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquaculture Nutrition 22(2): 219-282.https://doi.org/10.1111/anu.12346
Robaina, L., Izquierdo, M.S., Moyano, F.J., Socorro, J., Vergara, J.M., Montero, D. and Fernández-Palacios, H., 1995. Soybean and lupin seed meals as protein sources in diets for gilthead seabream (Sparus aurata): nutritional and histological implications. Aquaculture 130(2-3): 219-233.https://doi.org/10.1016/0044-8486(94)00225-D
Ruxton, C.H.S., Reed, S.C., Simpson, M.J.A. and Millington, K.J., 2004. The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. Journal of Human Nutrition and Dietetics 17(5): 449-459.https://doi.org/10.1111/j.1365-277X.2004.00552.x
Sabbagh, M., Schiavone, R., Brizzi, G., Sicuro, B., Zilli, L. and Vilella, S., 2019. Poultry by-product meal as an alternative to fish meal in the juvenile gilthead seabream (Sparus aurata) diet. Aquaculture 511: 734220.https://doi.org/10.1016/j.aquaculture.2019.734220
Sadoul, B. and Vijayan, M.M., 2016. Stress and growth. Fish Physiology 35: 167-205.https://doi.org/10.1016/B978-0-12-802728-8.00005-9
Salomone, R., Saija, G., Mondello, G., Giannetto, A., Fasulo, S. and Savastano, D., 2017. Environmental impact of food waste bioconversion by insects: application of life cycle assessment to process usingHermetia illucens. Journal of Cleaner Production 140(2): 890-905.https://doi.org/10.1016/j.jclepro.2016.06.154
Santigosa, E., García-Meilán, I., Valentin, J.M., Pérez-Sánchez, J., Médale, F., Kaushik, S. and Gallardo, M.A., 2011. Modifications of intestinal nutrient absorption in response to dietary fish meal replacement by plant protein sources in sea bream (Sparus aurata) and rainbow trout (Onchorynchus mykiss). Aquaculture 317: 146-154.https://doi.org/10.1016/j.aquaculture.2011.04.026
Sealey, W.M., Gaylord, T.G., Barrows, F.T., Tomberlin, J.K., McGuire, M.A., Ross, C., St-Hilaire, S., 2011. Sensory analysis of rainbow trout,Oncorhynchus mykiss, fed enriched black soldier fly prepupae,Hermetia illucens. Journal of the World Aquaculture Society 42(1): 34-45.https://doi.org/10.1111/j.1749-7345.2010.00441.x
Secci, G., Mancini, S., Iaconisi, V., Gasco, L., Basto, A. and Parisi, G., 2019. Can the inclusion of black soldier fly (Hermetia illucens) in diet affect the flesh quality/nutritional traits of rainbow trout (Oncorhynchus mykiss) after freezing and cooking? International Journal of Food Sciences and Nutrition 70(2): 161-171.https://doi.org/10.1080/09637486.2018.1489529
Seierstad, S.L., Haugland, Ø., Larsen, S., Waagbø, R. and Evensen, Ø., 2009. Pro-inflammatory cytokine expression and respiratory burst activity following replacement of fish oil with rapeseed oil in the feed for Atlantic salmon (Salmo salar L.). Aquaculture 289: 212-218.https://doi.org/10.1016/j.aquaculture.2008.12.004
Sekirov, I., Russell, S.L., Caetano M Antunes, L. and Finlay, B.B., 2010. Gut microbiota in health and disease. Physiological Reviews 90(3): 859-904.https://doi.org/10.1152/physrev.00045.2009
Sharma, G. and Bala, R., 2002. Digital color imaging handbook, 1st edition. CRC Press, London, UK, 840 pp.
'Digital color imaging handbook, 1st edition ', () 840.
Silva, P.F., McGurk, C., Knudsen, D.L., Adams, A., Thompson, K.D. and Bron, J.E., 2015. Histological evaluation of soya bean-induced enteritis in Atlantic salmon (Salmo salar L.): Quantitative image analysis vs. semi-quantitative visual scoring. Aquaculture 445: 42-56.https://doi.org/10.1016/j.aquaculture.2015.04.002
Skrivanová, E., Marounek, M., Benda, V. and Brezina, P., 2007. Susceptibility ofEscherichia coli, Salmonella sp. andClostridium perfringens to organic acids and monolaurin. Veterinarni Medicina 51: 81-88.https://doi.org/10.17221/5524-VETMED
Skřivanová, E., Marounek, M., Dlouhá, G. and Kaňka, J., 2005. Susceptibility ofClostridium perfringens to C2-C18 fatty acids. Letters in Applied Microbiology 41(1): 77-81.https://doi.org/10.1111/j.1472-765X.2005.01709.x
Smetana, S., Schmitt, E. and Mathys, A., 2019. Sustainable use ofHermetia illucens insect biomass for feed and food: attributional and consequential life cycle assessment. Resources, Conservation and Recycling 144: 285-296.https://doi.org/10.1016/j.resconrec.2019.01.042
Spranghers, T., Michiels, J., Vrancx, J., Ovyn, A., Eeckhout, M., De Clercq, P. and De Smet, S., 2018. Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Animal Feed Sciences and Technology 235: 33-42.https://doi.org/10.1016/j.anifeedsci.2017.08.012
Spranghers, T., Ottoboni, M., Klootwijk, C., Ovyn, A., Deboosere, S., De Meulenaer, B., Michiels, J., Eeckhout, M., De Clercq, P. and De Smet, S., 2017. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. Journal of the Science of Food and Agriculture 97(8): 2594-2600.https://doi.org/10.1002/jsfa.8081
Stadtlander, T., Stamer, A., Buser, A., Wohlfahrt, J., Leiber, F. and Sandrock, C., 2017.Hermetia illucens meal as fish meal replacement for rainbow trout on farm. Journal of Insects as Food and Feed 3: 165-175.https://doi.org/10.3920/JIFF2016.0056
St-Hilaire, S., Sheppard, C., Tomberlin, J.K., Irving, S., Newton, L., McGuire, M.A., Mosley, E.E., Hardy, R.W. and Sealey, W., 2007. Fly prepupae as a feedstuff for rainbow trout,Oncorhynchus mykiss. Journal of World Aquaculture Society 38(1): 59-67.https://doi.org/10.1111/j.1749-7345.2006.00073.x
Swatson, H.K., Gous, R., Iji, P.A. and Zarrinkalam, R., 2002. Effect of dietary protein level, amino acid balance and feeding level on growth, gastrointestinal tract, and mucosal structure of the small intestine in broiler chickens. Animal Research 51(6): 501-515.https://doi.org/10.1051/animres:2002038
Swinscoe, I., Oliver, D.M., Gilburn, A.S., Lunestad, B., Lock, E.J., Ørnsrud, R. and Quilliam, R.S., 2019. Seaweed-fed black soldier fly (Hermetia illucens) larvae as feed for salmon aquaculture: assessing the risks of pathogen transfer. Journal of Insects as Food Feed 5: 15-27.https://doi.org/10.3920/JIFF2017.0067
Tacon, A.G.J. and Metian, M., 2015. Feed matters: satisfying the feed demand of aquaculture. Reviews in Fisheries Science & Aquaculture 23(1): 1-10.https://doi.org/10.1080/23308249.2014.987209
Talari, A.C.S., Martinez, M.A.G., Movasaghi, Z., Rehman, S. and Rehman, I.U., 2017. Advances in Fourier transform infrared (FTIR) spectroscopy of biological tissues. Applied Spectroscopy Reviews 52(5): 456-506.https://doi.org/10.1080/05704928.2016.1230863
Terova, G., Díaz, N., Rimoldi, S., Ceccotti, C., Gliozheni, E., Piferrer, F., 2016. Effects of sodium butyrate treatment on histone modifications and the expression of genes related to epigenetic regulatory mechanisms and immune response in European sea bass (Dicentrarchus Labrax) fed a plant-based diet. PLoS ONE 11: e0160332.https://doi.org/10.1371/journal.pone.0160332
Terova, G., Rimoldi, S., Ascione, C., Gini, E., Ceccotti, C. and Gasco, L., 2019. Rainbow trout (Oncorhynchus mykiss) gut microbiota is modulated by insect meal fromHermetia illucens prepupae in the diet. Reviews in Fish Biology and Fisheries 29: 465-486.https://doi.org/10.1007/s11160-019-09558-y
Tocher, D.R., 2010. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquaculture Research 41: 717-732.https://doi.org/10.1111/j.1365-2109.2008.02150.x
Truzzi, C., Giorgini, E., Annibaldi, A., Antonucci, M., Illuminati, S., Scarponi, G., Riolo, P., Isidoro, N., Conti, C., Zarantoniello, M., Cipriani, R. and Olivotto, I., 2020. Fatty acids profile of black soldier fly (Hermetia illucens): influence of feeding substrate based on coffee-waste silverskin enriched with microalgae. Animal Feed Science and Technology 259: 114309.https://doi.org/10.1016/j.anifeedsci.2019.114309
Udayangani, R.M.C., Dananjaya, S.H.S., Nikapitiya, C., Heo, G.J., Lee, J. and De Zoysa, M., 2017. Metagenomics analysis of gut microbiota and immune modulation in zebrafish (Danio rerio) fed chitosan silver nanocomposites. Fish & Shellfish Immunology 66: 173-184.https://doi.org/10.1016/j.fsi.2017.05.018
Uran, P.A., Schrama, J.W., Rombout, J.H.W.M., Obach, A., Jensen, L., Koppe, W. and Verreth, J.A.J., 2008. Soybean meal-induced enteritis in Atlantic salmon (Salmo salar L.) at different temperatures. Aquaculture Nutrition 14(4): 324-330.https://doi.org/10.1111/j.1365-2095.2007.00534.x
Valasek, M.A. and Repa, J.J., 2005. The power of real-time PCR. American Journal of Physiology 29(3): 151-159.https://doi.org/10.1152/advan.00019.2005
Van Huis, C.L., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G. and Vantomme, P., 2013. Edible insects. Future prospects for food and feed security. FAO Forestry Paper 171. FAO, Rome, Italy, 18 pp. Available at:http://www.fao.org/3/i3253e/i3253e00.pdf
Vargas, A., Randazzo, B., Riolo, P., Truzzi, C., Gioacchini, G., Giorgini, E., Loreto, N., Ruschioni, S., Zarantoniello, M., Antonucci, M., Polverini, S., Cardinaletti, G., Sabbatini, S., Tulli, F. and Olivotto, I., 2018. Rearing zebrafish on black soldier fly (Hermetia illucens): biometric, histological, spectroscopic, biochemical, and molecular implications. Zebrafish 15: 404-419.https://doi.org/10.1089/zeb.2017.1559
Vargas-Abúndez, A.J., Randazzo, B., Foddai, M., Sanchini, L., Truzzi, C., Giorgini, E., Gasco, L. and Olivotto, I., 2019. Insect meal based diets for clownfish: biometric, histological, spectroscopic, biochemical and molecular implications. Aquaculture 498: 1-11.https://doi.org/10.1016/j.aquaculture.2018.08.018
Voorhees, J.M., Barnes, M.E., Chipps, S.R. and Brown, M.L., 2019. Bioprocessed soybean meal replacement of fish meal in rainbow trout (Oncorhynchus mykiss) diets. Cogent Food & Agriculture – Animal Husbandry & Veterinary Sciences 5(1): 1579482.https://doi.org/10.1080/23311932.2019.1579482
Wang, A.R., Ran, C., Ringø, E. and Zhou, Z.G., 2018. Progress in fish gastrointestinal microbiota research. Reviews in Aquaculture 10(3): 626-640.https://doi.org/10.1111/raq.12191
Wang, G., Peng, K., Hu, J., Yi, C., Chen, X., Wu, H. and Huang, Y., 2019. Evaluation of defatted black soldier fly (Hermetia illucens L.) larvae meal as an alternative protein ingredient for juvenile Japanese seabass (Lateolabrax japonicus) diets. Aquaculture 507: 144-154.https://doi.org/10.1016/j.aquaculture.2019.04.023
Winther, U., Skontorp Hognes, E., Jafarzadeh, S. and Ziegler, F., 2020. Greenhouse gas emissions of Norwegian seafood products in 2017. SINTEF Report, SINTEF Ocean AS, Trondheim, Norway, 116 pp. Available at:https://www.sintef.no/contentassets/25338e561f1a4270a59ce25bcbc926a2/report-carbon-footprint-norwegian-seafood-products-2017_final_040620.pdf/
Wong, M.L. and Medrano, J.F., 2005. Real-time PCR for mRNA quantitation. Biotechniques 39(1): 75-85.https://doi.org/10.2144/05391RV01
Wong, S., Waldrop, T., Summerfelt, S., Davidson, J., Barrows, F., Kenney, B.B., Welch, T., Wiens, G.D., Snekvi, K., Rawls, J.F. and Good, C., 2013. Aquacultured rainbow trout (Oncorhynchus mykiss) possess a large core intestinal microbiota that is resistant to variation in diet and rearing density. Applied Environmental Microbiology 79: 4974-4984.https://doi.org/10.1128/AEM.00924-13
Yasothai, R., 2016. Antinutritional factors in soybean meal and its deactivation. International Journal of Science, Environment & Technology 5(6): 3793-3797.
'Antinutritional factors in soybean meal and its deactivation ' () 5 International Journal of Science, Environment & Technology : 3793 -3797.
Zarantoniello, M., Bruni, L., Randazzo, B., Vargas, A., Gioacchini, G., Truzzi, C., Annibaldi, A., Riolo, P., Parisi, G., Cardinaletti, G., Tulli, F. and Olivotto, I., 2018. Partial dietary inclusion ofHermetia illucens (black soldier fly) full-fat prepupae in zebrafish feed: biometric, histological, biochemical, and molecular implications. Zebrafish 15: 519-532.https://doi.org/10.1089/zeb.2018.1596
Zarantoniello, M., Randazzo, B., Gioacchini, G., Truzzi, C., Giorgini, E., Riolo, P., Gioia, G., Bertolucci, C., Osimani, A., Cardinaletti, G., Lucon-Xiccato, T., Milanović, V., Annibaldi, A., Tulli, F., Notarstefano, V., Ruschioni, S., Clementi, F. and Olivotto, I., 2020a. Zebrafish (Danio rerio) physiological and behavioural responses to insect-based diets: a multidisciplinary approach. Scientific Reports 10: 10648.https://doi.org/10.1038/s41598-020-67740-w
Zarantoniello, M., Randazzo, B., Nozzi, V., Truzzi, C., Giorgini, E., Cardinaletti, G., Freddi, L., Ratti, S., Girolametti, F., Osimani, A., Notarstefano, V., Milanović, V., Riolo, P., Isidoro, N., Tulli, F., Gioacchini, G. and Olivotto, I., 2021. Physiological responses of Siberian sturgeon (Acipenser baerii) juveniles fed on full-fat insect-based diet in an aquaponic system. Scientific Reports 11: 1057.https://doi.org/10.1038/s41598-020-80379-x
Zarantoniello, M., Randazzo, B., Truzzi, C., Giorgini, E., Marcellucci, C., Vargas-Abúndez, J.A., Zimbelli, A., Annibaldi, A., Parisi, G., Tulli, F., Riolo, P. and Olivotto, I., 2019. A six-months study on black soldier fly (Hermetia illucens) based diets in zebrafish. Scientific Reports 9: 8598.https://doi.org/10.1038/s41598-019-45172-5
Zarantoniello, M., Zimbelli, A., Randazzo, B., Compagni, M.D., Truzzi, C., Antonucci, M., Riolo, P., Loreto, N., Osimani, A., Milanović, V., Giorgini, E., Cardinaletti, G., Tulli, F., Cipriani, R., Gioacchini, G. and Olivotto, I., 2020b. Black soldier fly (Hermetia illucens) reared on roasted coffee by-product andSchizochytrium sp. as a sustainable terrestrial ingredient for aquafeeds production. Aquaculture 518: 734659.https://doi.org/10.1016/j.aquaculture.2019.734659
Zhang, H., Ran, C., Teame, T., Ding, Q., Hoseinifar, S.H., Xie, M., Zhang, Z., Yang, Y., Olsen, R.E., Gatlin, D.M., Ringø, E., Duan, M. and Zhou, Z., 2020. Research progress on gut health of farmers teleost fish: a viewpoint concerning the intestinal mucosal barrier and the impact of its damage. Reviews in Fish Biology and Fisheries 30: 569-586.https://doi.org/10.1007/s11160-020-09614-y
Zhang, J.-X., Guo, L.-Y., Feng, L., Jiang, W.-D., Kuang, S.-Y., Liu, Y., Hu, K., Jiang, J., Li, S.-H., Tang, L. and Zhou, X.-Q., 2013. Soybean β-conglycinin induces inflammation and oxidation and causes dysfunction of intestinal digestion and absorption in fish. PLoS ONE 8: e58115.https://doi.org/10.1371/journal.pone.0058115
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 284 | 170 | 21 |
PDF Views & Downloads | 321 | 199 | 21 |
A major challenge for development of sustainable aquafeeds is its dependence on fish meal and fish oil. Replacement with more sustainable, nutritious and safe ingredients is now a priority. Over the last years, among several alternatives proposed, insects have received great attention as possible candidates. In particular, the black soldier fly (Hermetia illucens; BSF) represents a concrete example of how the circular economy concept can be applied to fish culture, providing a valuable biomass rich in fat and protein valorising organic by-products. In the last decade, several studies have been published about the use of different BSF dietary inclusion levels for various fish species including experimental models. Varying and encouraging results have been obtained in this research field using a plethora of laboratory methodological approaches that can be applied and coupled to obtain a comprehensive view of the BSF-based diets effects on fish physiology, health, and quality. The present review aims to explore some of the most promising laboratory approaches like histology, infrared spectroscopy, gut microbiome sequencing, molecular biology, fish fillets’ physico-chemical and sensory properties, essential for a better understanding of fish welfare and fillet quality, when BSF is used as aquafeed ingredient. In particular, great importance has been given to European finfish species and experimental models.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 284 | 170 | 21 |
PDF Views & Downloads | 321 | 199 | 21 |