The Atlantic salmon (Salmo salar) aquaculture industry is growing, and with it, the need to source and optimise sustainable ingredients for aquafeeds. Black soldier fly (BSF) larvae (Hermetia illucens) have received increasing research attention since they are a good source of protein that can efficiently convert a wide range of low-value organic material into valuable resources. This study investigated the impact of three differently processed BSF meals, an untreated BSF diet (BSFC+), a dechitinated BSF diet (BSFC-) and a fermented BSF diet (BSFC+P+) at a 10% inclusion level replacing fish meal in a fish meal control (FM) and a marine and soy protein concentrate based control diet (SPC). Growth performance, gut microbiome and gut histology of salmon fry was assessed. The inclusion and processing methods of BSF showed no adverse impacts on either growth performance or gut histology. However, the gut microbiome of fish was significantly altered by both the protein source and the processing method of the BSF larvae. Fish fed BSFC+, had an increased diversity and evenness of the community compared with conventional protein sources alone, and compared with the other BSF processing methods. However, control diets had a greater presence of lactic acid bacteria and genera associated with faster growing hosts. Fish fed BSF had a high relative abundance of the genus,Exiguobacterium, a chitin-degrading bacterium and in BSFC+P+ fed fish this bacterium completely dominated the community, indicating the presence of dysbiosis. Future studies should determine, whyExiguobacterium has dominated the community for the BSFC+P+ diet, and if it provides a digestive function to the host and identify bacteria that are indicators of optimal host performance and resilience. The results confirmed that BSF is a promising fish meal replacement for salmon, and it demonstrated that BSFC+ has a potential prebiotic impact on the gut microbiome of Atlantic salmon.
Aas, T.S., Ytrestøyl, T. and Åsgård, T., 2019. Utilization of feed resources in the production of Atlantic salmon (Salmo salar) in Norway: an update for 2016. Aquaculture Reports 15: 100216.https://doi.org/10.1016/j.aqrep.2019.100216
Anuradha, V. and Revathi, K., 2013. Purification and characterization of bacterial chitinase isolated from crustacean shells. International Journal of Pure and Applied Bioscience 1(4): 1-11.
'Purification and characterization of bacterial chitinase isolated from crustacean shells ' () 1 International Journal of Pure and Applied Bioscience : 1 -11.
Apper, E., Weissman, D., Respondek, F., Guyonvarch, A., Baron, F., Boisot, P., Rodiles, A. and Merrifield, D.L., 2016. Hydrolysed wheat gluten as part of a diet based on animal and plant proteins supports good growth performance of Asian seabass (Lates calcarifer), without impairing intestinal morphology or microbiota. Aquaculture 453: 40-48.https://doi.org/10.1016/j.aquaculture.2015.11.018
Ashley, P., 2007. Fish welfare: current issues in aquaculture. Applied Animal Behaviour Science 104(3-4): 199-235.https://doi.org/10.1016/j.applanim.2006.09.001
Askarian, F., Zhou, Z., Olsen, R.E., Sperstad, S. and Ringø, E., 2012. Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes andin vitro growth inhibition of four fish pathogens. Aquaculture 326: 1-8.https://doi.org/10.1016/j.aquaculture.2011.10.016
Barnes, M.E., Brown, M.L., Bruce, T., Sindelar, S. and Neiger, R., 2014. Rainbow trout rearing performance, intestinal morphology, and immune response after long-term feeding of high levels of fermented soybean meal. North American Journal of Aquaculture 76(4): 333-345.https://doi.org/10.1080/15222055.2014.920748
Barragan-Fonseca, K.B., Dicke, M. and Van Loon, J.J.A., 2017. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed – a review. Journal of Insects as Food and Feed 3(2): 105-120.https://doi.org/10.3920/JIFF2016.0055
Barroso, F.G., De Haro, C., Sánchez-Muros, M.J., Venegas, E., Martínez-Sánchez, A. and Pérez-Bañón, C., 2014. The potential of various insect species for use as food for fish. Aquaculture 422: 193-201.https://doi.org/10.1016/j.aquaculture.2013.12.024
Bates, D., Mächler, M., Bolker, B.M. and Walker, S.C., 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1): 1-48.https://doi.org/10.18637/jss.v067.i01
Belghit, I., Liland, N.S., Gjesdal, P., Biancarosa, I., Menchetti, E., Li, Y., Waagbø, R., Krogdahl, Å. and Lock, E.J., 2019. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture 503: 609-619.https://doi.org/10.1016/j.aquaculture.2018.12.032
Belghit, I., Liland, N.S., Waagbø, R., Biancarosa, I., Pelusio, N., Li, Y., Krogdahl, Å. and Lock, E.J., 2018. Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture 491: 72-81.https://doi.org/10.1016/j.aquaculture.2018.03.016
Bonaldo, A., Marco, P., Petochi, T., Marino, G., Parma, L., Fontanillas, R., Koppe, W., Mongile, F., Finoia, M.G. and Gatta, P.P., 2015. Feeding turbot juvenilesPsetta maxima L. with increasing dietary plant protein levels affects growth performance and fish welfare. Aquaculture Nutrition 21(4): 401-413.https://doi.org/10.1111/anu.12170
Booman, M., Forster, I., Vederas, J.C., Groman, D.B. and Jones, S.R.M., 2018. Soybean meal-induced enteritis in Atlantic salmon (Salmo salar) and Chinook salmon (Oncorhynchus tshawytscha) but not in pink salmon (O. gorbuscha). Aquaculture 483: 238-243.https://doi.org/10.1016/j.aquaculture.2017.10.025
Borrelli, L., Aceto, S., Agnisola, C., De Paolo, S., Dipineto, L., Stilling, M,R., Dinan, G,T., Cryan, F,J., Menna, F.L. and Fioretti, A., 2016. Probiotic modulation of the microbiota-gut-brain axis and behavior in zebrafish. Scientific Reports 15(6): 30046.https://doi.org/10.1038/srep30046
Bruni, L., Belghit, I., Lock, E.J., Secci, G., Taiti, C. and Parisi, G., 2020. Total replacement of dietary fish meal with black soldier fly (Hermetia illucens) larvae does not impair physical, chemical or volatile composition of farmed Atlantic salmon (Salmo salar L.). Journal of the Science of Food and Agriculture 100(3): 1038-1047.https://doi.org/10.1002/jsfa.10108
Bruni, L., Pastorelli, R., Viti, C., Gasco, L. and Parisi, G., 2018. Characterisation of the intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) fed withHermetia illucens (black soldier fly) partially defatted larva meal as partial dietary protein source. Aquaculture 487: 56-63.https://doi.org/10.1016/j.aquaculture.2018.01.006
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A. and Holmes, S.P., 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods 13(7): 581-583.https://doi.org/10.1038/nmeth.3869
Castro-López, C., Santiago-López, L., Vallejo-Cordoba, B., González-Córdova, A.F., Liceaga, A.M., García, H.S. and Hernández-Mendoza, A., 2020. An insight to fermented edible insects: a global perspective and prospective. Food Research International 137: 109750.https://doi.org/10.1016/j.foodres.2020.109750
Catalán, N., Villasante, A., Wacyk, J., Ramírez, C. and Romero, J., 2018. Fermented soybean meal increases lactic acid bacteria in gut microbiota of Atlantic salmon (Salmo salar). Probiotics and Antimicrobial Proteins 10(3): 566-576.https://doi.org/10.1007/s12602-017-9366-7
Chapagain, P., Arivett, B., Cleveland, B.M., Walker, D.M. and Salem, M., 2019. Analysis of the fecal microbiota of fast-and slow-growing Rainbow trout (Oncorhynchus mykiss). BMC Genomics 20(1): 1-11.https://doi.org/10.1186/s12864-019-6175-2
Colburn, H.R., Walker, A.B., Breton, T.S., Stilwell, J.M., Sidor, I.F., Gannam, A.L. and Berlinsky, D.L., 2012. Partial replacement of fishmeal with soybean meal and soy protein concentrate in diets of Atlantic cod. North American Journal of Aquaculture 74(3): 330-337.https://doi.org/10.1080/15222055.2012.676008
Davis, N., Proctor, D., Holmes, S., Relman, D. and Callahan, B., 2017. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6(1): 1-14.https://doi.org/10.1101/221499
Dawood, M.A.O. and Koshio, S., 2020. Application of fermentation strategy in aquafeed for sustainable aquaculture. Reviews in Aquaculture 12(2): 987-1002.https://doi.org/10.1111/raq.12368
Dehler, C.E., Secombes, C.J. and Martin, S.A.M., 2017. Environmental and physiological factors shape the gut microbiota of Atlantic salmon parr (Salmo salar L.). Aquaculture 467: 149-157.https://doi.org/10.1016/j.aquaculture.2016.07.017
Dvergedal, H., Sandve, S.R., Angell, I.L., Klemetsdal, G. and Rudi, K., 2020. Association of gut microbiota with metabolism in juvenile Atlantic salmon. Microbiome 8(1): 160.https://doi.org/10.1186/s40168-020-00938-2
Elia, A.C., Capucchio, M.T., Caldaroni, B., Magara, G., Dörr, A.J.M., Biasato, I., Biasibetti, E., Righetti, M., Pastorino, P., Prearo, M., Gai, F., Schiavone, A. and Gasco, L., 2018. Influence ofHermetia illucens meal dietary inclusion on the histological traits, gut mucin composition and the oxidative stress biomarkers in rainbow trout (Oncorhynchus mykiss). Aquaculture 496: 50-57.https://doi.org/10.1016/j.aquaculture.2018.07.009
English, G., Wanger, G. and Colombo, S.M., 2021. A review of advancements in black soldier fly (Hermetia illucens) production for dietary inclusion in salmonid feeds. Journal of Agriculture and Food Research 5: 100164.https://doi.org/10.1016/j.jafr.2021.100164
Fisher, H.J., Collins, S.A., Hanson, C., Mason, B., Colombo, S.M. and Anderson, D.M., 2020. Black soldier fly larvae meal as a protein source in low fish meal diets for Atlantic salmon (Salmo salar). Aquaculture 521: 734978.https://doi.org/10.1016/j.aquaculture.2020.734978
Fox, J., Weisberg, S., Adler, D., Bates, D., Baud-Bovy, G. and Ellison, S., 2011. An R companion to applied regression, 2nd edition. SAGE publications, Inc., Thousand Oaks, CA, USA.
'An R companion to applied regression, 2nd edition', ().
Foysal, M.J., Fotedar, R., Siddik, M.A.B., Chaklader, M.R. and Tay, A., 2021.Lactobacillus plantarum in black soldier fly (Hermetica illucens) meal modulates gut health and immunity of freshwater crayfish (Cherax cainii). Fish and Shellfish Immunology 108: 42-52.https://doi.org/10.1016/j.fsi.2020.11.020
Gajardo, K., Jaramillo-Torres, A., Kortner, T.M., Merrifield, D.L., Tinsley, J., Bakke, A.M and Krogdahl, Å., 2017. Alternative protein sources in the diet modulate microbiota and functionality in the distal intestine of Atlantic salmon (Salmo salar). Applied and Environmental Microbiology 83(5): e02615-16.https://doi.org/10.1128/AEM.02615-16
Gajardo, K., Rodiles, A., Kortner, T.M., Krogdahl, Å., Bakke, A.M., Merrifield, D.L. and Sørum, H., 2016. A high-resolution map of the gut microbiota in Atlantic salmon (Salmo salar): a basis for comparative gut microbial research. Scientific Reports 6(1): 30893.https://doi.org/10.1038/srep30893
Gaudioso, G., Marzorati, G., Faccenda, F., Weil, T., Lunelli, F., Cardinaletti, G., Marino, G., Olivotto, I., Parisi, G., Tibaldi, E., Tuohy, K.M. and Fava, F., 2021. Processed animal proteins from insect and poultry by-products in a fish meal-free diet for rainbow trout: impact on intestinal microbiota and inflammatory markers. International Journal of Molecular Sciences 22: 5454.https://doi.org/10.3390/ijms22115454
Ghanbari, M., Kneifel, W. and Domig, K.J., 2015. A new view of the fish gut microbiome: advances from next-generation sequencing. Aquaculture 448: 464-475.https://doi.org/10.1016/j.aquaculture.2015.06.033
Henry, M., Gasco, L., Piccolo, G. and Fountoulaki, E., 2015. Review on the use of insects in the diet of farmed fish: past and future. Animal Feed Science and Technology 203: 1-22.https://doi.org/10.1016/j.anifeedsci.2015.03.001
Huyben, D., Vidaković, A., Werner Hallgren, S. and Langeland, M., 2019. High-throughput sequencing of gut microbiota in Rainbow trout (Oncorhynchus mykiss) fed larval and pre-pupae stages of black soldier fly (Hermetia illucens). Aquaculture 500: 485-491.https://doi.org/10.1016/j.aquaculture.2018.10.034
Infante-Villamil, S., Huerlimann, R. and Jerry, D.R., 2021. Microbiome diversity and dysbiosis in aquaculture. Reviews in Aquaculture 13(2): 1077-1096.https://doi.org/10.1111/raq.12513
Jinendiran, S., Boopathi, S., Sivakumar, N. and Selvakumar, G., 2019a. Functional characterization of probiotic potential of novel pigmented bacterial strains for aquaculture applications. Probiotics and Antimicrobial Proteins 11(1): 186-197.https://doi.org/10.1007/s12602-017-9353-z
Jinendiran, S., Nathan, A.A., Ramesh, D., Vaseeharan, B. and Sivakumar, N., 2019b. Modulation of innate immunity, expression of cytokine genes and disease resistance againstAeromonas hydrophila infection in goldfish (Carassius auratus) by dietary supplementation withExiguobacterium acetylicum S01. Fish and Shellfish Immunology 84: 458-469.https://doi.org/10.1016/j.fsi.2018.10.026
Kewuyemi, Y.O., Kesa, H., Chinma, C.E. and Adebo, O.A., 2020. Fermented edible insects for promoting food security in Africa. Insects 11(5): 283.https://doi.org/10.3390/insects11050283
Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M. and Glöckner, F.O., 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencingbased diversity studies. Nucleic Acids Research 41(1): e1.https://doi.org/10.1093/nar/gks808
Klunder, H.C., Wolkers-Rooijackers, J., Korpela, J.M. and Nout, M.J.R., 2012. Microbiological aspects of processing and storage of edible insects. Food Control 26(2): 628-631.https://doi.org/10.1016/j.foodcont.2012.02.013
Knudsen, D., Urán, P., Arnous, A., Koppe, W. and Frøkiær, H., 2007. Saponin-containing subfractions of soybean molasses induce enteritis in the distal intestine of Atlantic salmon. Journal of Agricultural and Food Chemistry 55(6): 2261-2267.https://doi.org/10.1021/jf0626967
Kroeckel, S., Harjes, A.G.E., Roth, I., Katz, H., Wuertz, S., Susenbeth, A. and Schulz, C., 2012. When a turbot catches a fly: evaluation of a pre-pupae meal of the black soldier fly (Hermetia illucens) as fish meal substitute – growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture 364-365(5): 345-352.https://doi.org/10.1016/j.aquaculture.2012.08.041
Krogdahl, Å., Kortner, T.M., Jaramillo-Torres, A., Gamil, A.A.A., Chikwati, E., Li, Y., Schmidt, M., Herman, E., Hymowitz, T., Teimouri, S. and Storebakken, T., 2020. Removal of three proteinaceous antinutrients from soybean does not mitigate soybean-induced enteritis in Atlantic salmon (Salmo salar, L). Aquaculture 514: 734495.https://doi.org/10.1016/j.aquaculture.2019.734495
Kumar, V., Fawole, F.J., Romano, N., Hossain, M.S., Labh, S.N., Overturf, K. and Small, B.C., 2021. Insect (black soldier fly,Hermetia illucens) meal supplementation prevents the soybean meal-induced intestinal enteritis in rainbow trout and health benefits of using insect oil. Fish and Shellfish Immunology 109: 116-124.https://doi.org/10.1016/j.fsi.2020.12.008
Lahti, L. and Shetty, S., 2017. Microbiome R package. Bioconductor.https://doi.org/10.18129/B9.bioc.microbiome
Li, Y., Bruni, L., Jaramillo-Torres, A., Gajardo, K., Kortner, T.M. and Krogdahl, Å., 2021. Differential response of digesta- and mucosaassociated intestinal microbiota to dietary insect meal during the seawater phase of Atlantic salmon. Animal Microbiome 3(1): 8.https://doi.org/10.1186/s42523-020-00071-3
Li, Y., Kortner, T.M., Chikwati, E.M., Belghit, I., Lock, E.J. and Krogdahl, Å., 2020. Total replacement of fish meal with black soldier fly (Hermetia illucens) larvae meal does not compromise the gut health of Atlantic salmon (Salmo salar). Aquaculture 520: 734967.https://doi.org/10.1016/j.aquaculture.2020.734967
Li, Y., Kortner, T.M., Chikwati, E.M., Munang’andu, H.M., Lock, E.J. and Krogdahl, Å., 2019. Gut health and vaccination response in presmolt Atlantic salmon (Salmo salar) fed black soldier fly (Hermetia illucens) larvae meal. Fish and Shellfish Immunology 86: 1106-1113.https://doi.org/10.1016/j.fsi.2018.12.057
Llewellyn, M.S., Boutin, S., Hoseinifar, S.H. and Derome, N., 2014. Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Frontiers in Microbiology 5: 207.https://doi.org/10.3389/fmicb.2014.00207
Lock, E.J., Biancarosa, I. and Gasco, L., 2018. Insects as raw materials in compound feed for aquaculture. In: Halloran, A., Flore, R., Vantomme, P. and Roos, N. (eds.) Edible insects in sustainable food systems. Springer, Cham, Switzerland, pp. 263-276.https://doi.org/10.1007/978-3-319-74011-9_16
Lock, E.R., Arsiwalla, T. and Waagbø, R., 2016. Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquaculture Nutrition 22(6): 1202-1213.https://doi.org/10.1111/anu.12343
López Nadal, A., Ikeda-Ohtsubo, W., Sipkema, D., Peggs, D., McGurk, C., Forlenza, M., Wiegertjes, G.F. and Brugman, S., 2020. Feed, microbiota, and gut immunity: using the zebrafish model to understand fish health. Frontiers in Immunology 11: 114.https://doi.org/10.3389/fimmu.2020.00114
Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., Jansson, J.K. and Knight, R., 2012. Diversity, stability and resilience of the human gut microbiota. Nature 489(7415): 220-230.https://doi.org/10.1038/nature11550
McMurdie, P.J. and Holmes, S., 2013. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4): e61217.https://doi.org/10.1371/journal.pone.0061217
Michl, S.C., Beyer, M., Ratten, J.-M., Hasler, M., LaRoche, J. and Schulz, C., 2019. A diet-change modulates the previously established bacterial gut community in juvenile Brown trout (Salmo trutta). Scientific Reports 9(1): 2339.https://doi.org/10.1038/s41598-019-38800-7
Michl, S.C., Ratten, J.-M., Beyer, M., Hasler, M., LaRoche, J. and Schulz, C., 2017. The malleable gut microbiome of juvenile Rainbow trout (Oncorhynchus mykiss): diet-dependent shifts of bacterial community structures. PLoS ONE 12(5): e0177735.https://doi.org/10.1371/journal.pone.0177735
Nathanailides, C., Lopez-Albors, O. and Stickland, N.C., 1995. Influence of prehatch temperature on the development of muscle cellularity in posthatch Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 52(4): 675-680.https://doi.org/10.1139/f95-068
National Research Council (NRC), 2011. Nutrient requirements of fish and shrimp. National Academies Press, Washington, DC, USA.
Naylor, R.L., Hardy, R.W., Bureau, D.P., Chiu, A., Elliott, M., Farrell, A.P., Forster, I., Gatlin, D.M., Goldburg, R.J., Hua, K. and Nichols, P.D., 2009. Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences of the USA 106(36): 15103-15110.https://doi.org/10.1073/pnas.0905235106
Ojha, S., Buβler, S. and Schlüter, O.K., 2020. Food waste valorisation and circular economy concepts in insect production and processing. Waste Management 118: 600-609.https://doi.org/10.1016/j.wasman.2020.09.010
Oksanen, J., Blanchet, G.F., Friendly, M., Kint, R., Legendre, P., McGlinn, D., Minchin, R, P., O´Hara, B.R., Simpson, L.G., Solymos, P., Stevens, H.H.M., Szoecs, E. and Wagner, H., 2020. Vegan: community ecology package. R package version 2.5-5. Available at:https://CRAN.R-project.org/package=vegan
Oliva-Tele, A., 2012. Nutrition and health of aquaculture fish. Journal of Fish Diseases 35(2): 83-108.https://doi.org/10.1111/j.1365-2761.2011.01333.x
Olsen, R.E., Suontama, J., Langmyhr, E., Mundheim, H., Ringø, E., Melle, W., Malde, M.K. and Hemre, G.I., 2006. The replacement of fish meal with Antarctic krill,Euphausia superba in diets for Atlantic salmon,Salmo salar. Aquaculture Nutrition 12(4): 280-290.https://doi.org/10.1111/j.1365-2095.2006.00400.x
Ørnsrud, R., Graff, I.E., Høie, S., Totland, G.K. and Hemre, G.-I., 2002. Hypervitaminosis A in first-feeding fry of the Atlantic salmon (Salmo salar L.). Aquaculture Nutrition 8(1): 7-13.https://doi.org/10.1046/j.1365-2095.2002.00185.x
Osimani, A., Milanović, V., Roncolini, A., Riolo, P., Ruschioni, S., Isidoro, N., Loreto, N., Franciosi, E., Tuohy, K., Olivotto, I., Zarantoniello, M., Cardinali, F., Garofalo, C., Aquilanti, L. and Clementi, F., 2019.Hermetia illucens in diets for zebrafish (Danio rerio): a study of bacterial diversity by using PCR-DGGE and metagenomic sequencing. PLoS ONE 14(12): e0225956.https://doi.org/10.1371/journal.pone.0225956
Park, B.K. and Kim, M.M., 2010. Applications of chitin and its derivatives in biological medicine. International Journal of Molecular Sciences 11(12): 5152-5164.https://doi.org/10.3390/ijms11125152
Perry, W.B., Lindsay, E., Payne, C.J., Brodie, C. and Kazlauskaite, R., 2020. The role of the gut microbiome in sustainable teleost aquaculture. Proceedings of the Royal Society B: Biological Sciences 13(287): 20200184.https://doi.org/10.1098/rspb.2020.0184
Pinheiro, J., Bates, D., DebRoy, S. and Sarkar, D.R.C.T., 2020. nlme: linear and nonlinear mixed effects models. Available at:https://cran.r-project.org/web/packages/nlme/nlme.pdf
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J. and Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41(D1): D590-D596.https://doi.org/10.1093/nar/gks1219
Randazzo, B., Zarantoniello, M., Gioacchini, G., Cardinaletti, G., Belloni, A., Giorgini, E., Faccenda, F., Cerri, R., Tibaldi, E. and Olivotto, I., 2021. Physiological response of rainbow trout (Oncorhynchus mykiss) to graded levels ofHermetia illucens or poultry by-product meals as single or combined substitute ingredients to dietary plant proteins. Aquaculture 538: 736550.https://doi.org/10.1016/j.aquaculture.2021.736550
Rangacharyulu, P.V., Giri, S.S., Paul, B.N., Yashoda, K.P., Rao, R., Mahendrakar, N.S., Mohanty, S.N. and Mukhopadhyay, P.K., 2003. Utilization of fermented silkworm pupae silage in feed for carps. Bioresource Technology 86(1): 29-32.https://doi.org/10.1016/S0960-8524(02)00113-X
Rao, R.J., Yashoda, K.P. and Mahendrakar, N.S., 2011. Utilization of fermented silkworm pupae in feed for broiler chicks. Bulletin of Indian Academy of Sericulture 15(1): 1-9.
'Utilization of fermented silkworm pupae in feed for broiler chicks ' () 15 Bulletin of Indian Academy of Sericulture : 1 -9.
Refstie, S., Korsøen, Ø.J., Storebakken, T., Baeverfjord, G., Lein, I. and Roem, A.J., 2000. Differing nutritional responses to dietary soybean meal in Rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Aquaculture 190(1-2): 49-63.https://doi.org/10.1016/S0044-8486(00)00382-3
Refstie, S., Sahlström, S., Bråthen, E., Baeverfjord, G. and Krogedal, P., 2005. Lactic acid fermentation eliminates indigestible carbohydrates and antinutritional factors in soybean meal for Atlantic salmon (Salmo salar). Aquaculture 246(1-4): 331-345.https://doi.org/10.1016/j.aquaculture.2005.01.001
Ringø, E., Hoseinifar, S.H., Ghosh, K., Van Doan, H., Beck, B.R. and Song, S.K., 2018. Lactic acid bacteria in finfish – an update. Frontiers in Microbiology 9: 1818.https://doi.org/10.3389/fmicb.2018.01818
Ringø, E., Sperstad, S., Myklebust, R., Mayhew, T.M., Mjelde, A., Melle, W. and Olsen, R.E., 2006. The effect of dietary krill supplementation on epithelium-associated bacteria in the hindgut of Atlantic salmon (Salmo salar L.): a microbial and electron microscopical study. Aquaculture Research 37(16): 1644-1653.https://doi.org/10.1111/j.1365-2109.2006.01611.x
Ringø, E., Van Doan, H., Lee, S.H., Soltani, M., Hoseinifar, S.H., Harikrishnan, R. and Song, S.K., 2020. Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture. Journal of Applied Microbiology 129(1): 116-136.https://doi.org/10.1111/jam.14628
Ringø, E., Zhou, Z., Olsen, R.E. and Song, S.K., 2012. Use of chitin and krill in aquaculture – the effect on gut microbiota and the immune system: a review. Aquaculture Nutrition 18(2): 117-131.https://doi.org/10.1111/j.1365-2095.2011.00919.x
Rodríguez, J.M., Murphy, K., Stanton, C., Ross, R.P., Kober, O.I., Juge, N., Avershina, E., Rudi, K., Narbad, A., Jenmalm, M.C., Marchesi, J.R. and Collado, M.C., 2015. The composition of the gut microbiota throughout life, with an emphasis on early life. Microbial Ecology in Health and Disease 26(1): 26050.https://doi.org/10.3402/mehd.v26.26050
Rumpold, B.A. and Schlüter, O.K., 2013. Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science and Emerging Technologies 17: 1-11.https://doi.org/10.1016/j.ifset.2012.11.005
Sahlmann, C., Gu, J., Kortner, T.M., Lein, I., Krogdahl, Å. and Bakke, A.M., 2015. Ontogeny of the digestive system of Atlantic salmon (Salmo salar L.) and effects of soybean meal from start-feeding. PLoS ONE 10(4): e0124179.https://doi.org/10.1371/journal.pone.0124179
Salas-Leiva, J., Opazo, R., Remond, C., Uribe, E., Velez, A. and Romero, J., 2017. Characterization of the intestinal microbiota of wild-caught and farmed fine flounder (Paralichthys adspersus). Latin American Journal of Aquatic Research 45(2): 370-378.https://doi.org/10.3856/vol45-issue2-fulltext-12
Sjofjan, O. and Adli, D.N., 2021. The effect of replacing fish meal with fermented sago larvae (FSL) on broiler performance. Livestock Research for Rural Development 33:2-7.
'The effect of replacing fish meal with fermented sago larvae (FSL) on broiler performance ' () 33 Livestock Research for Rural Development : 2 -7.
Tacon, A.G.J. and Metian, M., 2009. Fishing for aquaculture: non-food use of small pelagic forage fish-a global perspective. Reviews in Fisheries Science 17(3): 305-317.https://doi.org/10.1080/10641260802677074
Tacon, A.G.J., Hasan, M.R. and Metian, M., 2011. Demand and supply of feed ingredients for farmed fish and crustaceans: trends and prospects. FAO Fisheries and Aquaculture Technical Paper 564. FAO, Rome, Italy.
'Demand and supply of feed ingredients for farmed fish and crustaceans: trends and prospects', ().
Team, Rs., 2020. RStudio: integrated development for R. RStudio, PBC, Boston, MA, USA.
Tomberlin, J.K. and Van Huis, A., 2020. Black soldier fly from pest to ‘crown jewel’ of the insects as feed industry: an historical perspective. Journal of Insects as Food and Feed 6(1): 1-4.https://doi.org/10.3920/JIFF2020.0003
Turchini, G.M., Trushenski, J.T. and Glencross, B.D., 2019. Thoughts for the future of aquaculture nutrition: realigning perspectives to reflect contemporary issues related to judicious use of marine resources in aquafeeds. North American Journal of Aquaculture 81(1): 13-39.https://doi.org/10.1002/naaq.10067
Van Huis, A. and Dunkel, F.V., 2017. Edible insects: a neglected and promising food source. In: Sudarshan R., N., Wanasundara, J.P.D. and Scanlin, L. (eds.) Sustainable protein sources. Academic Press, Cambridge, MA, USA, pp. 341-355.https://doi.org/10.1016/B978-0-12-802778-3.00021-4
Webster, T.M.U., Consuegra, S. and De Leaniz, C.G., 2020. Early life stress causes persistent impacts on the microbiome of Atlantic salmon. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 40: 100888.https://doi.org/10.1016/j.cbd.2021.100888
Weththasinghe, P., Hansen, J., Nøkland, D., Lagos, L., Rawski, M. and Øverland, M., 2021a. Full-fat black soldier fly larvae (Hermetia illucens) meal and paste in extruded diets for Atlantic salmon (Salmo salar): effect on physical pellet quality, nutrient digestibility, nutrient utilization and growth performances. Aquaculture 530(15): 735785.https://doi.org/10.1016/j.aquaculture.2020.735785
Weththasinghe, P., Lagos, L., Cortés, M., Hansen, J.Ø. and Øverland, M., 2021b. Dietary inclusion of black soldier fly (Hermetia illucens) larvae meal and paste improved gut health but had minor effects on skin mucus proteome and immune response in Atlantic Salmon (Salmo salar). Frontiers in Immunology 12: 599530.https://doi.org/10.3389/fimmu.2021.599530
Wickham., H., 2016. ggplot2: elegant graphics for data analysis. Springer International Publishing, Cham, Switzerland.
'ggplot2: elegant graphics for data analysis', ().
Xiao, X., Jin, P., Zheng, L., Cai, M., Yu, Z., Yu, J. and Zhang, J., 2018. Effects of black soldier fly (Hermetia illucens) larvae meal protein as a fishmeal replacement on the growth and immune index of yellow catfish (Pelteobagrus fulvidraco). Aquaculture Research 49(4): 1569-1577.https://doi.org/10.1111/are.13611
Ytrestøyl, T., Aas, T.S. and Åsgård, T., 2015. Utilisation of feed resources in production of Atlantic salmon (Salmo salar) in Norway. Aquaculture 448: 365-374.https://doi.org/10.1016/j.aquaculture.2015.06.023
Yukgehnaish, K., Kumar, P., Sivachandran, P., Marimuthu, K., Arshad, A., Paray, B.A. and Arockiaraj, J., 2020. Gut microbiota metagenomics in aquaculture: factors influencing gut microbiome and its physiological role in fish. Reviews in Aquaculture 12(3): 1903-1927.https://doi.org/10.1111/raq.12416
Zarantoniello, M., Randazzo, B., Gioacchini, G., Truzzi, C., Giorgini, E., Riolo, P., Gioia, G., Bertolucci, C., Osimani, A., Cardinaletti, G., Lucon-Xiccato, T., Milanović, V., Annibaldi, A., Tulli, F., Notarstefano, V., Ruschioni, S., Clementi, F. and Olivotto, I. 2020b. Zebrafish (Danio rerio) physiological and behavioural responses to insect-based diets: a multidisciplinary approach. Scientific Reports 10(1): 10648.https://doi.org/10.1038/s41598-020-67740-w
Zarantoniello, M., Zimbelli, A., Randazzo, B., Compagni, M.D., Truzzi, C., Antonucci, M., Riolo, P., Loreto, N., Osimani, A., Milanović, V., Giorgini, E., Cardinaletti, G., Tulli, F., Cipriani, R., Gioacchini, G. and Olivotto, I., 2020a. Black soldier fly (Hermetia illucens) reared on roasted coffee by-product andSchizochytrium sp. as a sustainable terrestrial ingredient for aquafeeds production. Aquaculture 518: 734659.https://doi.org/10.1016/j.aquaculture.2019.734659
Zhang, Y., Feng, S., Chen, J., Qin, C., Lin, H. and Li, W., 2012. Stimulatory effects of chitinase on growth and immune defense of orange-spotted grouper (Epinephelus coioides). Fish and Shellfish Immunology 32(5): 844-854.https://doi.org/10.1016/j.fsi.2012.02.009
Zhou, Z., Karlsen, Ø., He, S., Olsen, R.E., Yao, B. and Ringø, E., 2013. The effect of dietary chitin on the autochthonous gut bacteria of Atlantic cod (Gadus morhua L.). Aquaculture Research 44(12): 1889-1900.https://doi.org/10.1111/j.1365-2109.2012.03194.x
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 765 | 502 | 74 |
PDF Views & Downloads | 632 | 348 | 30 |
The Atlantic salmon (Salmo salar) aquaculture industry is growing, and with it, the need to source and optimise sustainable ingredients for aquafeeds. Black soldier fly (BSF) larvae (Hermetia illucens) have received increasing research attention since they are a good source of protein that can efficiently convert a wide range of low-value organic material into valuable resources. This study investigated the impact of three differently processed BSF meals, an untreated BSF diet (BSFC+), a dechitinated BSF diet (BSFC-) and a fermented BSF diet (BSFC+P+) at a 10% inclusion level replacing fish meal in a fish meal control (FM) and a marine and soy protein concentrate based control diet (SPC). Growth performance, gut microbiome and gut histology of salmon fry was assessed. The inclusion and processing methods of BSF showed no adverse impacts on either growth performance or gut histology. However, the gut microbiome of fish was significantly altered by both the protein source and the processing method of the BSF larvae. Fish fed BSFC+, had an increased diversity and evenness of the community compared with conventional protein sources alone, and compared with the other BSF processing methods. However, control diets had a greater presence of lactic acid bacteria and genera associated with faster growing hosts. Fish fed BSF had a high relative abundance of the genus,Exiguobacterium, a chitin-degrading bacterium and in BSFC+P+ fed fish this bacterium completely dominated the community, indicating the presence of dysbiosis. Future studies should determine, whyExiguobacterium has dominated the community for the BSFC+P+ diet, and if it provides a digestive function to the host and identify bacteria that are indicators of optimal host performance and resilience. The results confirmed that BSF is a promising fish meal replacement for salmon, and it demonstrated that BSFC+ has a potential prebiotic impact on the gut microbiome of Atlantic salmon.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 765 | 502 | 74 |
PDF Views & Downloads | 632 | 348 | 30 |