The Mechanisms of Size Constancy

In: Multisensory Research
View More View Less
  • 1 School of Psychology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
  • | 2 School of Psychology and Public Health, La Trobe University, Bendigo Campus, Victoria, 3550, Australia

Purchase instant access (PDF download and unlimited online access):

€29.95$34.95

Size constancy is the result of cognitive scaling operations that enable us to perceive an object as having the same size when presented at different viewing distances. In this article, we review the literature on size and distance perception to form an overarching synthesis of how the brain might combine retinal images and distance cues of retinal and extra-retinal origin to produce a perceptual visual experience of a world where objects have a constant size. A convergence of evidence from visual psychophysics, neurophysiology, neuropsychology, electrophysiology and neuroimaging highlight the primary visual cortex (V1) as an important node in mediating size–distance scaling. It is now evident that this brain area is involved in the integration of multiple signals for the purposes of size perception and does much more than fulfil the role of an entry position in a series of hierarchical cortical events. We also discuss how information from other sensory modalities can also contribute to size–distance scaling and shape our perceptual visual experience.

  • Andrews D. P. (1964). Error-correcting perceptual mechanisms, Q. J. Exp. Psychol. 16, 105115.

  • Bannert M. M., Bartels A. (2013). Decoding the yellow of a gray banana, Curr. Biol. 23, 22682272.

  • Bar M., Kassam K. S., Ghuman A. S., Boshyan J., Schmid A. M., Dale A. M., Hämäläinen M. S., Marinkovic K., Schacter D. L., Rosen B. R., Halgren E. (2006). Top–down facilitation of visual recognition, Proc. Natl Acad. Sci. USA 103, 449454.

    • Search Google Scholar
    • Export Citation
  • Boyaci H., Fang F., Murray S. O., Kersten D. (2007). Responses to lightness variations in early human visual cortex, Curr. Biol. 17, 989993.

    • Search Google Scholar
    • Export Citation
  • Carey D. P., Allan K. (1996). A motor signal and “visual” size perception, Exp. Brain Res. 110, 482486.

  • Carey D. P., Dijkerman H. C., Milner A. D. (1998). Perception and action in depth, Conscious. Cogn. 7, 438453.

  • Carroll L. (1865). Alice’s Adventures in Wonderland. Macmilland and Co., London, UK.

  • Chouinard P. A., Ivanowich M. (2014). Is the primary visual cortex a center stage for the visual phenomenology of object size? J. Neurosci. 34, 20132014.

    • Search Google Scholar
    • Export Citation
  • Chouinard P. A., Morrissey B. F., Köhler S., Goodale M. A. (2008). Repetition suppression in occipital–temporal visual areas is modulated by physical rather than semantic features of objects, Neuroimage 41, 130144.

    • Search Google Scholar
    • Export Citation
  • Chouinard P. A., Noulty W. A., Sperandio I., Landry O. (2013). Global processing during the Muller–Lyer illusion is distinctively affected by the degree of autistic traits in the typical population, Exp. Brain Res. 230, 219231.

    • Search Google Scholar
    • Export Citation
  • Combe E., Wexler M. (2009). Observer movement and size constancy, Psychol. Sci. 21, 667675.

  • Cornsweet T. (1970). Visual Perception. Academic Press, New York, NY, USA.

  • DeAngelis G. C. (2000). Seeing in three dimensions: the neurophysiology of stereopsis, Trends Cogn. Sci. 4, 8090.

  • Dehaene S., Naccache L., Cohen L., Bihan D. L., Mangin J. F., Poline J. B., Riviere D. (2001). Cerebral mechanisms of word masking and unconscious repetition priming, Nat. Neurosci. 4, 752758.

    • Search Google Scholar
    • Export Citation
  • Dobbins A. C., Jeo R. M., Fiser J., Allman J. M. (1998). Distance modulation of neural activity in the visual cortex, Science 281, 552555.

    • Search Google Scholar
    • Export Citation
  • Drews F. A., Yazdani H., Godfrey C. N., Cooper J. M., Strayer D. L. (2009). Text messaging during simulated driving, Hum. Factors 51, 762770.

    • Search Google Scholar
    • Export Citation
  • Dutton G. N. (2003). Cognitive vision, its disorders and differential diagnosis in adults and children: knowing where and what things are, Eye (Lond.) 17, 289304.

    • Search Google Scholar
    • Export Citation
  • Dwyer J., Ashton R., Boerse J. (1990). Emmert’s law in the Ames room, Perception 19, 3541.

  • Emmert E. (1881). Grossenverhaltnisse der Nachbilder, Klin. Monatsbl. Augenheilk. 19, 443450.

  • Engel S. A., Glover G. H., Wandell B. A. (1997). Retinotopic organization in human visual cortex and the spatial precision of functional MRI, Cereb. Cortex 7, 181192.

    • Search Google Scholar
    • Export Citation
  • Fang F., Boyaci H., Kersten D., Murray S. O. (2008). Attention-dependent representation of a size illusion in human V1, Curr. Biol. 18, 17071712.

    • Search Google Scholar
    • Export Citation
  • Farah M. J. (2004). Visual Agnosia. MIT Press, Cambridge, MA, USA.

  • Frassinetti F., Nichelli P., Di Pellegrino G. (1999). Selective horizontal dysmetropsia following prestriate lesion, Brain 122, 339350.

  • Geisler W. S., Kersten D. (2002). Illusions, perception and Bayes, Nat. Neurosci. 5, 508510.

  • Goodale M. A., Milner A. D. (1992). Separate visual pathways for perception and action, Trends Neurosci. 15, 2025.

  • Goodale M. A., Milner A. D., Jakobson L. S., Carey D. P. (1991). A neurological dissociation between perceiving objects and grasping them, Nature 349, 154156.

    • Search Google Scholar
    • Export Citation
  • Gregory R. L. (1963). Distortion of visual space as inappropriate constancy scaling, Nature 199, 678680.

  • Gregory R. L. (1968). Perceptual illusions and brain models, Proc. R. Soc. Lond. B Biol. Sci. 171, 179296.

  • Gregory R. L. (1998). Eye and Brain: The Psychology of Seeing, 5th edn. Princeton University Press, Princeton, NJ, USA.

  • Gregory R. L. (2008). Emmert’s law and the moon illusion, Spat. Vis. 21, 407420.

  • Gregory R. L., Wallace J. G., Campbell F. W. (1959). Changes in size and shape of visual afterimages observed in complete darkness during changes of position in space, Q. J. Exp. Psychol. 11, 5455.

    • Search Google Scholar
    • Export Citation
  • Harris R. L., Mander C. (2014). Perceived distance depends on the orientation of both the body and the visual environment, J. Vis. 14(12), 17. DOI:10.1167/14.12.17.

    • Search Google Scholar
    • Export Citation
  • Haynes J. D., Rees G. (2005). Predicting the stream of consciousness from activity in human visual cortex, Curr. Biol. 15, 13011307.

  • Helmholtz H. (1867). Handbuch der Physiologischen Optik. Voss, Leipzig, Germany.

  • Higashiyama A., Adachi K. (2006). Perceived size and perceived distance of targets viewed from between the legs: evidence for proprioceptive theory, Vision Res. 46, 39613976.

    • Search Google Scholar
    • Export Citation
  • Holoway A. H., Boring E. G. (1941). Determinants of apparent visual size with distance variant, Am. J. Psychol. 54, 2137.

  • Humphrey N. K., Weiskrantz L. (1969). Size constancy in monkeys with inferotemporal lesions, Q. J. Exp. Psychol. 21, 225238.

  • Jaekl P., Soto-Faraco S., Harris L. R. (2012). Perceived size change induced by audiovisual temporal delays, Exp. Brain Res. 216, 457462.

    • Search Google Scholar
    • Export Citation
  • Kastner S., Schneider K. A., Wunderlich K. (2006). Beyond a relay nucleus: neuroimaging views on the human LGN, Prog. Brain Res. 155, 125143.

    • Search Google Scholar
    • Export Citation
  • Kaufman L., Kaufman J. K. (2000). Explaining the moon illusion, Proc. Natl Acad. Sci. USA 97, 500505.

  • Kaufman L., Rock I. (1962). The moon illusion, Science 136, 953961.

  • Kording K. P., Wolpert D. M. (2004). Bayesian integration in sensorimotor learning, Nature 427, 244247.

  • Leibowitz H., Brislin R., Perlmutter L., Hennessy R. (1969). Ponzo perspective illusion as a manifestation of space perception, Science 166, 11741176.

    • Search Google Scholar
    • Export Citation
  • Leopold D. A., Logothetis N. K. (1996). Activity changes in early visual cortex reflect monkeys’ percepts during binocular rivalry, Nature 379, 549553.

    • Search Google Scholar
    • Export Citation
  • Lerch J. P., Evans A. C. (2005). Cortical thickness analysis examined through power analysis and a population simulation, Neuroimage 24, 163173.

    • Search Google Scholar
    • Export Citation
  • Maguire E. A., Gadian D. G., Johnsrude I. S., Good C. D., Ashburner J., Frackowiak R. S., Frith C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers, Proc. Natl Acad. Sci. USA 97, 43984403.

    • Search Google Scholar
    • Export Citation
  • Maier A., Wilke M., Aura C., Zhu C., Ye F. Q., Leopold D. A. (2008). Divergence of fMRI and neural signals in V1 during perceptual suppression in the awake monkey, Nat. Neurosci. 11, 11931200.

    • Search Google Scholar
    • Export Citation
  • Marg E., Adams J. E. (1970). Evidence for a neurological zoom system in vision from angular changes in some receptive fields of single neurons with changes in fixation distance in the human visual cortex, Experientia 26, 270271.

    • Search Google Scholar
    • Export Citation
  • McCready D. (2004). The Moon Illusion Explained. Available from: http://facstaff.uww.edu/mccreadd/. (Accessed 05 March 2015).

  • Milner A. D., Goodale M. A. (2008). Two visual systems re-viewed, Neuropsychologia 46, 774785.

  • Mon-Williams M., Tresilian J. R., Plooy A., Wann J. P., Broerse J. (1997). Looking at the task in hand: vergence eye movements and perceived size, Exp. Brain Res. 117, 501506.

    • Search Google Scholar
    • Export Citation
  • Morgan M. J. (1992). On the scaling of size judgments orientational cues, Vision Res. 32, 14331445.

  • Murray S. O., Wojciulik E. (2004). Attention increases neural selectivity in the human lateral occipital complex, Nat. Neurosci. 7, 7074.

    • Search Google Scholar
    • Export Citation
  • Murray S. O., Boyaci H., Kersten D. (2006). The representation of perceived angular size in human primary visual cortex, Nat. Neurosci. 9, 429434.

    • Search Google Scholar
    • Export Citation
  • Naccache L. (2005). Visual phenomenal consciousness: a neurological guided tour, Prog. Brain Res. 150, 185195.

  • Ni A. M., Murray S. O., Horwitz G. D. (2014). Object-centered shifts of receptive field positions in monkey primary visual cortex, Curr. Biol. 24, 16531658.

    • Search Google Scholar
    • Export Citation
  • Petkova V. I., Ehrsson H. H. (2008). If I were you: perceptual illusion of body swapping, PLoS One 3, e3832.

  • Polonsky A., Blake R., Braun J., Heeger D. J. (2000). Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry, Nat. Neurosci. 3, 11531159.

    • Search Google Scholar
    • Export Citation
  • Pooresmaeili A., Arrighi R., Biagi L., Morrone M. C. (2013). Blood oxygen level-dependent activation of the primary visual cortex predicts size adaptation illusion, J. Neurosci. 33, 1599916008.

    • Search Google Scholar
    • Export Citation
  • Pylyshyn Z. (1999). Is vision continuous with cognition? The case for cognitive impenetrability of visual perception, Behav. Brain Sci. 22, 341365.

    • Search Google Scholar
    • Export Citation
  • Regan M. A., Strayer D. L. (2014). Towards an understanding of driver inattention: taxonomy and theory, Ann. Adv. Automot. Med. 58, 514.

    • Search Google Scholar
    • Export Citation
  • Ress D., Heeger D. J. (2003). Neuronal correlates of perception in early visual cortex, Nat. Neurosci. 6, 414420.

  • Riddoch G. (1917). On the relative perceptions of movement and a stationary object in certain visual disturbances due to occipital injuries, Proc. R. Soc. Med. 10, 1334.

    • Search Google Scholar
    • Export Citation
  • Rock I., Kaufman L. (1962). The moon illusion, II: the moon’s apparent size is a function of the presence or absence of terrain, Science 22, 10231031.

    • Search Google Scholar
    • Export Citation
  • Ross H. E., Plug C. (2002). The Mystery of the Moon Illusion: Exploring Size Perception. Oxford University Press, Oxford, UK.

  • Sasaki Y., Watanabe T. (2004). The primary visual cortex fills in color, Proc. Natl Acad. Sci. USA 101, 1825118256.

  • Scholz J., Klein M. C., Behrens T. E., Johansen-Berg H. (2009). Training induces changes in white-matter architecture, Nat. Neurosci. 12, 13701371.

    • Search Google Scholar
    • Export Citation
  • Schwarzkopf D. S., Song C., Rees G. (2011). The surface area of human V1 predicts the subjective experience of object size, Nat. Neurosci. 14, 2830.

    • Search Google Scholar
    • Export Citation
  • Sereno M. I., Dale A. M., Reppas J. B., Kwong K. K., Belliveau J. W., Brady T. J., Rosen B. R., Tootell R. B. (1995). Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging, Science 268, 889893.

    • Search Google Scholar
    • Export Citation
  • Sergent C., Baillet S., Dehaene S. (2005). Timing of the brain events underlying access to consciousness during the attentional blink, Nat. Neurosci. 8, 13911400.

    • Search Google Scholar
    • Export Citation
  • Serino A., Alsmith A., Costantini M., Mandrigin A., Tajadura-Jimenez A., Lopez C. (2013). Bodily ownership and self-location: components of bodily self-consciousness, Conscious. Cogn. 22, 12391252.

    • Search Google Scholar
    • Export Citation
  • Servos P. (2006). Preservation of Emmert’s law in a visual form agnosic, Neurocase 12, 122126.

  • Sheinberg D. L., Logothetis N. K. (1997). The role of temporal cortical areas in perceptual organization, Proc. Natl Acad. Sci. USA 94, 34083413.

    • Search Google Scholar
    • Export Citation
  • Sherrington C. S. (1918). Observations on the sensual role of the proprioceptive nerve-supply of the extrinsic ocular muscles, Brain 41, 332343.

    • Search Google Scholar
    • Export Citation
  • Smith J. D., Marg E. (1975). Zoom neurons in visual cortex: receptive field enlargements with near fixation in monkeys, Experientia 31, 323326.

    • Search Google Scholar
    • Export Citation
  • Sperandio I., Savazzi S., Gregory R. L., Marzi C. A. (2009). Visual reaction time and size constancy, Perception 38, 16011609.

  • Sperandio I., Savazzi S., Marzi C. A. (2010). Is simple reaction time affected by visual illusions? Exp. Brain Res. 201, 345350.

  • Sperandio I., Lak A., Goodale M. A. (2012a). Afterimage size is modulated by size-contrast illusions, J. Vis. 12(2), 18. DOI:10.1167/12.2.18.

    • Search Google Scholar
    • Export Citation
  • Sperandio I., Whitwell R. L., Chouinard P. A., Goodale M. A. (2012b). Preservation of size constancy for action, but not perception, in a patient with bilateral occipital lesions, J. Vis. 12(9), 837. DOI:10.1167/12.9.837.

    • Search Google Scholar
    • Export Citation
  • Sperandio I., Chouinard P. A., Goodale M. A. (2012c). Retinotopic activity in V1 reflects the perceived not the retinal size of an afterimage, Nat. Neurosci. 15, 540542.

    • Search Google Scholar
    • Export Citation
  • Sperandio I., Kaderali S., Chouinard P. A., Frey J., Goodale M. A. (2013a). Perceived size change induced by non-visual signals in darkness: the relative contribution of vergence and proprioception, J. Neurosci. 33, 1691516923.

    • Search Google Scholar
    • Export Citation
  • Sperandio I., Whitwell R. L., Chouinard P. A., Goodale M. A. (2013b). Dissociation between size constancy for perception and action in a patient with bilateral occipital lesions, Perception 42(Supplement), 93.

    • Search Google Scholar
    • Export Citation
  • Taylor F. V. (1941). Change in size of the afterimage induced in total darkness, J. Exp. Psychol. 29, 7580.

  • Trotter Y., Celebrini S. (1999). Gaze direction controls response gain in primary visual-cortex neurons, Nature 398, 239242.

  • Trotter Y., Celebrini S., Stricanne B., Thorpe S., Imbert M. (1992). Modulation of neural stereoscopic processing in primate area V1 by the viewing distance, Science 257, 12791281.

    • Search Google Scholar
    • Export Citation
  • Trotter Y., Celebrini S., Durand J. B. (2004). Evidence for implication of primate area V1 in neural 3-D spatial location processing, J. Physiol. 98, 125134.

    • Search Google Scholar
    • Export Citation
  • Ungerleider L., Ganz L., Pribram K. H. (1977). Size constancy in rhesus monkeys: effects of pulvinar, prestriate, and inferotemporal lesions, Exp. Brain Res. 27, 251269.

    • Search Google Scholar
    • Export Citation
  • Van der Hoort B., Ehrsson H. H. (2014). Body ownership affects visual perception of object size by rescaling the visual representation of external space, Atten. Percept. Psychophys. 76, 14141428.

    • Search Google Scholar
    • Export Citation
  • Van der Hoort B., Guterstam A., Ehrsson H. H. (2011). Being barbie: the size of one’s own body determines the perceived size of the world, PLoS One 6(5), e20195.

    • Search Google Scholar
    • Export Citation
  • Wandell B. A., Winawer J. (2011). Imaging retinotopic maps in the human brain, Vision Res. 51, 718737.

  • Weidner R., Plewan T., Chen Q., Buchner A., Weiss P. H., Fink G. R. (2014). The moon illusion and size–distance scaling — evidence for shared neural patterns, J. Cogn. Neurosci. 26, 18711882.

    • Search Google Scholar
    • Export Citation
  • Weiskrantz L. (1996). Blindsight revisited, Curr. Opin. Neurobiol. 6, 215220.

  • Whitney D., Goltz H. C., Thomas C. G., Gati J. S., Menon R. S., Goodale M. A. (2003). Flexible retinotopy: motion-dependent position coding in the visual cortex, Science 302, 878881.

    • Search Google Scholar
    • Export Citation
  • Wilke M., Logothetis N. K., Leopold D. A. (2006). Local field potential reflects perceptual suppression in monkey visual cortex, Proc. Natl Acad. Sci. USA 103, 1750717512.

    • Search Google Scholar
    • Export Citation
  • Zeki S., Ffytche D. H. (1998). The Riddoch syndrome: insights into the neurobiology of conscious vision, Brain 121, 2545.

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 1939 1075 136
Full Text Views 491 112 31
PDF Views & Downloads 284 118 40