The Influence of the Encoding Modality on Spatial Navigation for Sighted and Late-Blind People

In: Multisensory Research
View More View Less
  • 1 Department of Life Sciences, University of Trieste, Trieste, Italy

Purchase instant access (PDF download and unlimited online access):

€25.00$30.00

Abstract

People usually rely on sight to encode spatial information, becoming aware of other sensory cues when deprived of vision. In the absence of vision, it has been demonstrated that physical movements and spatial descriptions can effectively provide the spatial information that is necessary for the construction of an adequate spatial mental model. However, no study has previously compared the influence of these encoding modalities on complex movements such as human spatial navigation within real room-size environments. Thus, we investigated whether the encoding of a spatial layout through verbal cues — that is, spatial description — and motor cues — that is, physical exploration of the environment — differently affect spatial navigation within a real room-size environment, by testing blindfolded sighted (Experiment 1) and late-blind (Experiment 2) participants. Our results reveal that encoding the environment through physical movement is more effective than through verbal descriptions in supporting active navigation. Thus, our findings are in line with the studies claiming that the physical exploration of an environment enhances the development of a global spatial representation and improves spatial updating. From an applied perspective, the present results suggest that it might be possible to improve the experience for visually impaired people within a new environment by allowing them to explore it.

  • Afonso, A., Blum, A., Katz, B. F. G., Tarroux, P., Borst, G. and Denis, M. (2010). Structural properties of spatial representations in blind people: scanning images constructed from haptic exploration or from locomotion in a 3-D audio virtual environment, Mem. Cogn. 38, 591604.

    • Search Google Scholar
    • Export Citation
  • Avraamides, M. N., Galati, A., Pazzaglia, F., Meneghetti, C. and Denis, M. (2013). Encoding and updating spatial information presented in narratives, Q. J. Exp. Psychol. 66, 642670.

    • Search Google Scholar
    • Export Citation
  • Barhorst-Cates, E. M., Rand, K. M. and Creem-Regehr, S. H. (2016). The effects of restricted peripheral field-of-view on spatial learning while navigating, PloS One 11, e0163785. DOI:10.1371/journal.pone.0163785.

    • Search Google Scholar
    • Export Citation
  • Bestgen, Y. and Dupont, V. (2003). The construction of spatial situation models during reading, Psychol. Res. 67, 209218.

  • Chrastil, E. R. and Warren, W. H. (2013). Active and passive spatial learning in human navigation: acquisition of survey knowledge, J. Exp. Psychol. Learn. Mem. Cogn. 39, 15201537.

    • Search Google Scholar
    • Export Citation
  • Cocude, M., Mellet, E. and Denis, M. (1999). Visual and mental exploration of visuo-spatial configurations: behavioral and neuroimaging approaches, Psychol. Res. 62, 93106.

    • Search Google Scholar
    • Export Citation
  • Denis, M. and Cocude, M. (1992). Structural properties of visual images constructed from poorly or well-structured verbal descriptions, Mem. Cogn. 20, 497506.

    • Search Google Scholar
    • Export Citation
  • Denis, M., Goncalves, M.-R. and Memmi, D. (1995). Mental scanning of visual images generated from verbal descriptions: towards a model of image accuracy, Neuropsychologia 33, 15111530.

    • Search Google Scholar
    • Export Citation
  • Fortenbaugh, F. C., Hicks, J. C. and Turano, K. A. (2008). The effect of peripheral visual field loss on representations of space: evidence for distortion and adaptation, Invest. Ophthalmol. Vis. Sci. 49, 27652772.

    • Search Google Scholar
    • Export Citation
  • Frissen, I., Campos, J. L., Souman, J. L. and Ernst, M. O. (2011). Integration of vestibular and proprioceptive signals for spatial updating, Exp. Brain Res. 212, 163176.

    • Search Google Scholar
    • Export Citation
  • Giudice, N. A., Bakdash, J. Z. and Legge, G. E. (2007). Wayfinding with words: spatial learning and navigation using dynamically updated verbal descriptions, Psychol. Res. 71, 347358.

    • Search Google Scholar
    • Export Citation
  • Giudice, N. A., Bakdash, J. Z., Legge, G. E. and Roy, R. (2010). Spatial learning and navigation using a virtual verbal display, ACM Trans. Appl. Percept. 7, 3. DOI:10.1145/1658349.1658352.

    • Search Google Scholar
    • Export Citation
  • Iachini, T. and Giusberti, F. (2004). Metric properties of spatial images generated from locomotion: the effect of absolute size on mental scanning, Eur. J. Cogn. Psychol. 16, 573596.

    • Search Google Scholar
    • Export Citation
  • Iachini, T. and Ruggiero, G. (2010). The role of visual experience in mental scanning of actual pathways: evidence from blind and sighted people, Perception 39, 953969.

    • Search Google Scholar
    • Export Citation
  • Iosa, M., Fusco, A., Morone, G. and Paolucci, S. (2012). Walking there: environmental influence on walking-distance estimation, Behav. Brain Res. 226, 124132.

    • Search Google Scholar
    • Export Citation
  • Jürgens, R. and Becker, W. (2006). Perception of angular displacement without landmarks: evidence for Bayesian fusion of vestibular, optokinetic, podokinesthetic, and cognitive information, Exp. Brain Res. 174, 528543.

    • Search Google Scholar
    • Export Citation
  • Klatzky, R. L., Marston, J. R., Giudice, N. A., Golledge, R. G. and Loomis, J. M. (2006). Cognitive load of navigating without vision when guided by virtual sound versus spatial language, J. Exp. Psychol. Appl. 12, 223232.

    • Search Google Scholar
    • Export Citation
  • Lafon, M., Vidal, M. and Berthoz, A. (2009). Selective influence of prior allocentric knowledge on the kinesthetic learning of a path, Exp. Brain Res. 194, 541552.

    • Search Google Scholar
    • Export Citation
  • Lessels, S. and Ruddle, R. A. (2005). Movement around real and virtual cluttered environments, Presence (Camb.) 14, 580596.

  • Loomis, J. M., Lippa, Y., Klatzky, R. L. and Golledge, R. G. (2002). Spatial updating of locations specified by 3-D sound and spatial language, J. Exp. Psychol. Learn. Mem. Cogn. 28, 335345.

    • Search Google Scholar
    • Export Citation
  • Noordzij, M. L. and Postma, A. (2005). Categorical and metric distance information in mental representations derived from route and survey descriptions, Psychol. Res. 69, 221232.

    • Search Google Scholar
    • Export Citation
  • Noordzij, M. L., Zuidhoek, S. and Postma, A. (2006). The influence of visual experience on the ability to form spatial mental models based on route and survey descriptions, Cognition 100, 321342.

    • Search Google Scholar
    • Export Citation
  • Picinali, L., Afonso, A., Denis, M. and Katz, B. F. G. (2014). Exploration of architectural spaces by blind people using auditory virtual reality for the construction of spatial knowledge, Int. J. Hum. Comput. Stud. 72, 393407.

    • Search Google Scholar
    • Export Citation
  • Rand, K. M., Creem-Regehr, S. H. and Thompson, W. B. (2015). Spatial learning while navigating with severely degraded viewing: the role of attention and mobility monitoring, J. Exp. Psychol. Hum. Percept. Perform. 41(3), 649664.

    • Search Google Scholar
    • Export Citation
  • Rinck, M., Williams, P., Bower, G. H. and Becker, E. S. (1996). Spatial situation models and narrative understanding: some generalizations and extensions, Discourse Process. 21, 2355.

    • Search Google Scholar
    • Export Citation
  • Ruddle, R. A. and Lessels, S. (2009). The benefits of using a walking interface to navigate virtual environments, ACM Trans. Comput. Hum. Interact. 16, 5. DOI:10.1145/1502800.1502805.

    • Search Google Scholar
    • Export Citation
  • Ruotolo, F., Ruggiero, G., Vinciguerra, M. and Iachini, T. (2012). Sequential vs simultaneous encoding of spatial information: a comparison between the blind and the sighted, Acta Psychol. 139, 382389.

    • Search Google Scholar
    • Export Citation
  • Santoro, I., Murgia, M., Sors, F. and Agostini, T. (2017a). Walking reduces the gap between encoding and sensorimotor alignment effects in spatial updating of described environments, Q. J. Exp. Psychol. 70, 750760.

    • Search Google Scholar
    • Export Citation
  • Santoro, I., Murgia, M., Sors, F., Prpic, V. and Agostini, T. (2017b). Walking during the encoding of described environments enhances a heading-independent spatial representation, Acta Psychol. 180, 1622.

    • Search Google Scholar
    • Export Citation
  • Schmidt, S., Tinti, C., Fantino, M., Mammarella, I. C. and Cornoldi, C. (2013). Spatial representations in blind people: the role of strategies and mobility skills, Acta Psychol. 142, 4350.

    • Search Google Scholar
    • Export Citation
  • Ungar, S., Blades, M. and Spencer, S. (1996). The construction of cognitive maps by children with visual impairments, in: The Construction of Cognitive Maps, J. Portugali (Ed.), pp. 247273. Kluwer Academic Publishers, Dordrecht, Netherlands.

    • Search Google Scholar
    • Export Citation
  • Waller, D. and Greenauer, N. (2007). The role of body-based sensory information in the acquisition of enduring spatial representations, Psychol. Res. 71, 322332.

    • Search Google Scholar
    • Export Citation
  • Waller, D., Loomis, J. M. and Haun, D. B. M. (2004). Body-based senses enhance knowledge of directions in large-scale environments, Psychon. Bull. Rev. 11, 157163.

    • Search Google Scholar
    • Export Citation
  • Zwaan, R. A. (2004). The immersed experiencer: toward an embodied theory of language comprehension, in: The Psychology of Learning and Motivation, Vol. 44, B. H. Ross (Ed.), pp. 3562. Academic Press, Amsterdam, Netherlands.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 234 234 23
Full Text Views 8 8 1
PDF Views & Downloads 9 9 2