Biological and chemical dependent systemic resistance and their significance for the control of root-knot nematodes

In: Nematology
View More View Less
  • 1 Agricultural Botany Department, Faculty of Agriculture, Menoufia University, Shibin El-Kom, Egypt
  • | 2 The International Maize and Wheat Improvement Centre (CIMMT), Ankara, Turkey
  • | 3 Bonn University, INRES-Plant Protection, Germany

Purchase instant access (PDF download and unlimited online access):

€29.95$34.95

Inducing host plant-based systemic resistance is one of the modes of action involved in tri-trophic interactions between host plants, pests and mutualistic microorganisms. Two different types of systemic resistance – systemic acquired resistance (SAR) and induced systemic resistance (ISR) – were found to be functional against pathogens and plant-parasitic nematodes. In this study, the ability of Trichoderma harzianum isolate T10 and insecticidal active neem powder (NP) to induce systemic resistance in tomato against the root-knot nematode Meloidogyne javanica was compared with salicylic acid (SA) and jasmonic acid (JA) as standard elicitors for SAR and ISR, respectively. Results showed that, when the biotic and abiotic elicitors were applied to the inducer side of a split root plant system, a significant reduction in nematode infection was observed on the responder side. Physiological changes in the tomato plant due to the induction of SAR or ISA by these biotic and abiotic elicitors were further investigated using HPLC. Results demonstrated that T10 significantly increased the accumulation of different metabolites in the shoot of the tomato over the NP, JA and SA elicitors. Furthermore, the results demonstrated that several metabolic, physical and biochemical changes occurred in the shoots of the treated plants with both the biotic and abiotic elicitors. The percentage of membrane leakage (Ml) at nematode-infected tomato roots was significantly high, but the differences in percentage leakage were not significant in other treatments compared to the non-infested control. The best results were recorded with SA, T10 and NP, which gave the lowest MI% compared to the infested plants.

  • Agbenin N.O., Emechebe A.M., Marley P.S., Akpa A.D. (2005). Evaluation of nematicidal action of some botanicals on Meloidogyne incognitain vivo and in vitro. Journal of Agriculture and Rural Development in the Tropics and Subtropics 106, 29-39.

    • Search Google Scholar
    • Export Citation
  • Alabouvette C., Lemanceau P., Steinberg C. (1993). Recent advances in the biological control of Fusarium wilts. Pesticide Science 37, 365-373.

    • Search Google Scholar
    • Export Citation
  • Bates L.R., Waldren R.P., Teare I.D. (1973). A rapid determination of free proline in water stress studies. Plant and Soil 39, 205-207.

  • Benítez T., Rincón A.M., Limón M.C., Codón A.C. (2004). Biocontrol mechanisms of Trichoderma strains. International Journal of Microbiology 7, 249-260.

    • Search Google Scholar
    • Export Citation
  • Bharadwaj A., Satyawanti S. (2006). Biocontrol of Meloidogyne incognita in Lycopersicon esculentum with AM fungi and oil cakes. Journal of Plant Pathology 5, 166-172.

    • Search Google Scholar
    • Export Citation
  • Chen L.-L., Liu L.-J., Shi M., Song X.-Y., Zheng C.-Y., Chen X.-L., Zhang Y.-Z. (2009). Characterization and gene cloning of a novel serine protease with nematicidal activity from Trichoderma pseudokoningii SMF2. FEMS Microbiology Letters 2, 135-142.

    • Search Google Scholar
    • Export Citation
  • Cooper W.R., Jia L., Goggin L. (2005). Effects of jasmonate-induced defenses on root-knot nematode infection of resistant and susceptible tomato cultivars. Journal of Chemical Ecology 31, 1953-1967.

    • Search Google Scholar
    • Export Citation
  • Dababat A.A., Sikora R.A. (2007a). Induced resistance by the mutualistic endophyte, Fusarium oxysporum 162, toward Meloidogyne incognita on tomato. Biocontrol Science and Technology 17, 969-975.

    • Search Google Scholar
    • Export Citation
  • Dababat A.A., Sikora R.A. (2007b). Influence of the mutualistic endophyte Fusarium oxysporum 162 on Meloidogyne incognita attraction and invasion. Nematology 9, 771-776.

    • Search Google Scholar
    • Export Citation
  • Dababat A.A., Selim M.E., Saleh A.A., Sikora R.A. (2008). Influence of Fusarium wilt resistant tomato cultivars on root colonization of the mutualistic endophyte Fusarium oxysporum strain 162 and its biological control efficacy toward the root-knot nematode Meloidogyne incognita. Journal of Plant Disease and Protection 115, 273-278.

    • Search Google Scholar
    • Export Citation
  • Davies K., Spiegel Y. (2011). Root patho-systems nematology and biological control. In: Davies K., Spiegel Y. (Eds). Biological control of plant parasitic nematodes: building coherence between microbial ecology and molecular mechanisms. Dordrecht, The Netherlands, Springer, pp.  291-303.

    • Search Google Scholar
    • Export Citation
  • Daykin M.E., Hussey R.S. (1985). Staining and histopathological techniques in nematology. In: Barker K.R., Carter C.C., Sasser J.N. (Eds). An advanced treatise on Meloidogyne, Vol. II: methodology. Raleigh, NC, USA, North Carolina State University Graphics, pp.  39-48.

    • Search Google Scholar
    • Export Citation
  • DuBois M., Gilles A., Hamiton S., Rebers P.R., Smith P.A. (1956). Colorimetric method for determination of sugar and related substances. Analytical Chemistry 28, 350-356.

    • Search Google Scholar
    • Export Citation
  • Duncan B. (1955). Multiple range and multiple F tests. Biometrics 11, 1-42.

  • Glazebrook J. (2005). Contrasting mechanisms of defense against biotrophic and nectrotrophic pathogens. Annual Review of Phytopathology 43, 205-227.

    • Search Google Scholar
    • Export Citation
  • Haggag W.M., Amin A.W. (2001). Efficiency of Trichoderma species on contol of Fusarium-rot, root-knot and reniform nematodes disease complex on sunflower. Pakistan Journal of Biological Sciences 4, 314-318.

    • Search Google Scholar
    • Export Citation
  • Hussain M.A., Mukhtar T., Kayani M.Z. (2011). Efficacy evaluation of Azadirachta indica, Calotropis procera, Datura stramonium and Tagetes erecta against root-knot nematodes Meloidogyneincognita. Pakistan Journal of Botany 43, 197-204.

    • Search Google Scholar
    • Export Citation
  • Hussey R.S., Barker K.R. (1973). A comparison of methods collecting inocula of Meloidogyne spp. including a new technique. Plant Disease Reporter 57, 1025-1028.

    • Search Google Scholar
    • Export Citation
  • Javed N., Gowen S.R., Inam-Ul-Haq M., Abdullah K., Shahina F. (2007). Systemic and persistent effect of neem (Azadirachta indica) formulations against root-knot nematodes, Meloidogyne javanica and their storage life. Crop Protection 26, 911-916.

    • Search Google Scholar
    • Export Citation
  • Javed N., Gowen S.R., El-Hassan S.A., Inam-Ul-Haq M., Shahina F., Pembroke B. (2008). Efficacy of neem (Azadirachtaindica) formulations on biology of root-knot nematodes (Meloidogyne javanica) on tomato. Crop Protection 27, 36-43.

    • Search Google Scholar
    • Export Citation
  • Kalapos T. (1994). Leaf water potential, leaf water deficit relationship for ten species of semiarid grassland community. Plant and Soil 160, 105-112.

    • Search Google Scholar
    • Export Citation
  • Leopold A.C., Musgrave M.E., Williams K.M. (1981). Solute leakage resulting from leaf desiccation. Plant Physiology 68, 1222-1225.

  • Mahdy M.E., El-Shennawy R.Z., Khalifa E.Z. (2006). Biological control of Meloidogyne javanica and Rhizoctonia solani on soybean by formulation of Bacillus thuringiensis and Trichoderma harzianum. Journal of Agriculture Sciences, Ain Shams University 14, 411-423.

    • Search Google Scholar
    • Export Citation
  • Mahdy M.E., Mousa E.M., El-Lehleh A.A. (2013). Effect of green and dry neem leaves application on root-knot nematodes Meloidogyne spp. on tomato. Egyptian Journal of Plant Protection 2, 14-28.

    • Search Google Scholar
    • Export Citation
  • Malamy J., Klessig D.F. (1992). Salicylic acid and plant disease resistance. Plant Journal 2, 643-654.

  • Mandeel Q., Baker R. (1991). Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of non-pathogenic Fusarium oxysporum. Phytopathology 81, 462-469.

    • Search Google Scholar
    • Export Citation
  • Martinuz A., Shouten A., Menjivar R.D., Sikora R.A. (2012). Effectiveness of systemic resistance toward Aphis gossypii (Hom., Aphididae) as induced by combined applications of the endophytes Fusarium oxysporum Fo162 and Rhizobium etli G12. Biological Control 62, 206-212.

    • Search Google Scholar
    • Export Citation
  • Martinuz A., Shouten A., Sikora R.A. (2013). Post-infection development of Meloidogyne incognita on tomato treated with the endophytes Fusarium oxysporum strain Fo162 and Rhizobium etli strain G12. BioControl 58, 95-104.

    • Search Google Scholar
    • Export Citation
  • Menjivar R.D., Hagemann M.H., Kranz J., Cabrera J.A., Dababat A.A., Sikora R.A. (2011). Biological control of Meloidogyne incognita on cucurbitaceous crops by the non-pathogenic endophytic fungus Fusarium oxysporum strain 162. International Journal of Pest Management 57, 249-253.

    • Search Google Scholar
    • Export Citation
  • Meyer J., Ebssa L., Poehling H.-M. (2012). Effects of NeemAzal-U on survival, host infestation and reproduction of entomopathogenic and plant-parasitic nematodes: Heterorhabditis bacteriophora and Meloidogyne incognita. Journal of Plant Diseases and Protection 119, 142-151.

    • Search Google Scholar
    • Export Citation
  • Molinari S., Loffredo E. (2006). The role of salicylic acid in defense response of tomato to root-knot nematodes. Physiological and Molecular Plant Pathology 68, 69-78.

    • Search Google Scholar
    • Export Citation
  • Mordue (Luntz) A.J., Morgan E.D., Nisbet A.J. (2005). Azadirachtin, a natural product in insect control. In: Gilbert L.I., Iatrou K., Gill S.S. (Eds). Comprehensive molecular insect science. Oxford, UK, Elsevier, pp.  117-135.

    • Search Google Scholar
    • Export Citation
  • Ntalli N.G., Menkissoglu-Spiroudi U., Giannakou I.O., Prophetou-Athanasiadou D.A. (2009). Efficacy evaluation of a neem (Azadirachta indica A. Juss) formulation against root-knot nematodes Meloidogyne incognita. Crop Protection 28, 489-494.

    • Search Google Scholar
    • Export Citation
  • Oka Y. (2010). Mechanism of nematode suppression by organic soil amendments – a review. Applied Soil Ecology 44, 101-115.

  • Oka Y., Tkachi N., Shuker S., Yerumiyahu U. (2007). Enhanced nematicidal activity of organic and inorganic ammonia-releasing amendments by Azadirachta indica extracts. Journal of Nematology 39, 9-16.

    • Search Google Scholar
    • Export Citation
  • Olivain C., Alabouvette C. (1997). Colonization of tomato root by a non-pathogenic strain of Fusarium oxysporum. New Phytologist 137, 481-494.

    • Search Google Scholar
    • Export Citation
  • Paleg L.C., Aspinall D. (1981). The physiology and biochemistry of drought resistance in plants. New York, NY, USA, Academic Press.

  • Perry R.N., Moens M. (Eds) (2013). Plant nematology, 2nd edition. Wallingford, UK, CAB International.

  • Prasad B.N., Kumar M.R. (2011). Effect of non-volatile compounds produced by Trichoderma spp. on growth and sclerotial viability of Rhizoctonia solani, incitant of sheath blight of rice. Indian Journal of Fundamental and Applied Life Sciences 1, 37-42.

    • Search Google Scholar
    • Export Citation
  • Radwan M.A., El-Maadawy E.K., Abu-Elamayem M.M. (2007). Comparison of the nematicidal potentials of dried leaves of five plant species against Meloidogyne incognita infecting tomato. Nematologia Mediterranea 35, 81-84.

    • Search Google Scholar
    • Export Citation
  • Rosen H. (1957). A modified ninhydrin colorimetric analysis for amino acids. Archives of Biochemistry and Biophysics 67, 10-15.

  • Selim M.E. (2010). Biological, chemical and molecular studies on the systemic induced resistance in tomato against Meloidogyne incognita caused by the endophytic Fusarium oxysporum, Fo162. Ph.D. Thesis, University of Bonn, Bonn, Germany.

  • Sharon E., Chet H., Spiegel Y. (2011). Trichoderma as a biological control agent. In: Davies K., Spiegel Y. (Eds). Biological control of plant-parasitic nematodes: building coherence between microbial ecology and molecular mechanism. Dordrecht, The Netherlands, Springer, pp.  183-201.

    • Search Google Scholar
    • Export Citation
  • Siddiqui I.A., Shaukat S.S. (2004). Systemic resistance in tomato induced by biocontrol bacteria against the root-knot nematode, Meloidogyne javanica, is independent of salicylic acid production. Journal of Phytopathology 152, 48-54.

    • Search Google Scholar
    • Export Citation
  • Sikora R.A., Fernandez E. (2005). Nematode parasites of vegetables. In: Luc M., Sikora R.A., Bridge J. (Eds). Plant parasitic nematodes in subtropical and tropical agriculture, 2nd edition. Wallingford, UK, CAB International, pp.  319-392.

    • Search Google Scholar
    • Export Citation
  • Sikora R.A., Schäfer K., Dababat A.A. (2007). Modes of action associated with microbially induced in planta suppression of plant-parasitic nematodes. Australasian Plant Pathology 36, 124-134.

    • Search Google Scholar
    • Export Citation
  • Soriano I.R., Riley I.T., Potter M.J., Bowers W.S. (2004a). Phytoecdysteroids: a novel defense against plant-parasitic nematodes. Journal of Chemical Ecology 30, 1885-1899.

    • Search Google Scholar
    • Export Citation
  • Soriano I.R., Asenstorfer R.E., Schmidt O., Riley I.T. (2004b). Inducible flavone in oats (Avena sativa) is a novel defense against plant-parasitic nematodes. Phytopathology 94, 1207-1214.

    • Search Google Scholar
    • Export Citation
  • Taketo U.S., Matsuura H., Arie T., Masuta C. (2010). Resistant and susceptible responses in tomato to cyst nematode are differentially regulated by salicylic acid. Plant Cell Physiology 51, 1524-1536.

    • Search Google Scholar
    • Export Citation
  • Taylor A.L., Sasser J.N. (1978). Biology, identification and control of root-knot nematodes, Meloidogyne spp. Raleigh, NC, USA, North Carolina State University Graphics.

    • Search Google Scholar
    • Export Citation
  • Thaler J.S., Owen B., Higgins V.J. (2004). The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiology 135, 530-538.

    • Search Google Scholar
    • Export Citation
  • Van Loon L.C., Bakker P.A.H.M., Pieterse C.M.J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology 36, 453-483.

    • Search Google Scholar
    • Export Citation
  • Van Wees S.C.M., De Swart E.A.M., Van Pelt J.A., Van Loon L.C., Pieterse C.M.J. (2000). Enhancement of induced disease resistance by simultaneous activation of salicylate and jasmonate-dependent defense pathway in Arabidopsis thaliana. Proceedings of the National Academy of Science of the United States of America 97, 8711-8716.

    • Search Google Scholar
    • Export Citation
  • Vijayan P., Shockey J., Levesque C.A., Cook R.J., Browse J. (1998). Role for jasmonate in pathogen defense of Arabidopsis. Proceedings of the National Academy of Science of the United States of America 95, 7209-7214.

    • Search Google Scholar
    • Export Citation
  • Wettstein D.V.C. (1957). Clatale und der Sumbmikro Skopisne Formwechsel de Plastids. Experimental Cell Research 12, 427.

  • Yang Z., Yu Z., Lei L., Xia Z., Shao L., Zhang K., Li G. (2012). Nematicidal effect of volatiles produced by Trichoderma sp. Journal of Asia-Pacific Entomology 15, 647-650.

    • Search Google Scholar
    • Export Citation
  • Zacares L., Lopez-Gresa M.P., Fayos J., Primo J., Belles J.M., Conejero V. (2007). Induction of p-Coumaroyldopamine and Feruloyldopamine, two novel metabolites, in tomato by the bacterial pathogen Pseudomonas syringae. Molecular Plant-Microbe Interactions 20, 1439-1448.

    • Search Google Scholar
    • Export Citation
  • Zinovieva S.V., Vasyukova N.I., Udalova Zh.V., Gerasimova N.G., Ozeretskovskaya O.L. (2011). Involvement of salicylic acid in induction of nematode resistance in plants. Biology Bulletin 38, 453-458.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 424 194 16
Full Text Views 163 3 0
PDF Views & Downloads 7 3 0