Intraspecific variability of morphological characters in the species-rich deep-sea genus Acantholaimus Allgén, 1933 (Nematoda: Chromadoridae)

In: Nematology
View More View Less
  • 1 Senckenberg Nature Research Society, Senckenberg am Meer, German Centre for Marine Biodiversity Research, Südstrand 44, 26382 Wilhelmshaven, Germany

Purchase instant access (PDF download and unlimited online access):

€25.00$30.00

Acantholaimus is a species-rich genus of deep-sea nematodes, often with dozens of species found at the same locality but each represented by single or few individuals. Species discrimination by morphological characters in this genus is therefore often difficult due to transitional forms that may be referred to several species because of lack of data on intraspecific variability. The aim of this study was to evaluate the intraspecific variability of morphological characters that are most often used in Acantholaimus taxonomy, in order to distinguish those which are most informative for species differentiation. A reverse taxonomic approach was applied for initial species discrimination. Two loci, one each from small and large subunits of rRNA, were sequenced for 59 Acantholaimus specimens from two deep-sea locations. Twenty-seven Molecular Operational Taxonomic Units (MOTU) were identified, of which 12 were represented by more than one individual. These were then analysed for intraspecific variability in morphological characters. Some of the examined characters showed high intraspecific variability; specifically: length of cephalic setae; distance from anterior end to amphid; shape of anterior setae; position and arrangement of cervical setae. In the absence of genetic data, these characters should be used with caution for differential diagnoses or species discrimination. Other characters were more conservative within the same MOTU: body proportions; length of outer labial setae; amphidial diam.; appearance of lateral field; general arrangement of cervical setae; and shape of tail. These characters may be successfully used for species discrimination in the absence of molecular data.

  • Allgén C.A. (1933). Freilebende Nematoden aus dem Trondhjemsfjord. Capita Zoologica 4, 1-162.

  • Bhadury P., Austen M.C. (2010). Barcoding marine nematodes: an improved set of nematode 18S rRNA primers to overcome eukaryotic co-interference. Hydrobiologia 641, 245-251.

    • Search Google Scholar
    • Export Citation
  • Bhadury P., Austen M.C., Bilton D.T., Lambshead P.J.D., Rogers A.D., Smerdon G.R. (2006). Development and evaluation of a DNA barcoding approach for the rapid identification of nematodes. Marine Ecology Progress Series 320, 1-9.

    • Search Google Scholar
    • Export Citation
  • Blaxter M.L., De Ley P., Garey J.R., Liu L.X., Scheldeman P., Vierstraete A., Vanfleteren J.R., Mackey L.Y., Dorris M., Frisse L.M. (1998). A molecular evolutionary framework for the phylum Nematoda. Nature 392, 71-75.

    • Search Google Scholar
    • Export Citation
  • Bussau C. (1993). Taxonomische und ökologische Untersuchungen an Nematoden des Peru-Beckens. Ph.D. Thesis, Christian-Albrechts-Universität, Kiel, Germany.

  • Coomans A. (1979). The anterior sensilla of nematodes. Revue de Nématologie 2, 259-283.

  • Creer S., Fonseca V.G., Porazinska D.L., Giblin-Davis R.M., Sung W., Power D.M., Packer M., Carvalho G.R., Blaxter M.L., Lambshead P.J.D. (2010). Ultrasequencing of the meiofaunal biosphere: practice, pitfalls, and promises. Molecular Ecology 19, 4-20.

    • Search Google Scholar
    • Export Citation
  • De Ley P., Felix M.-A., Frisse L.M., Nadler S.A., Sternberg P.W., Thomas W.K. (1999). Molecular and morphological characterization of two reproductively isolated species with mirror-image anatomy (Nematoda: Cephalobidae). Nematology 1, 591-612.

    • Search Google Scholar
    • Export Citation
  • De Ley P., De Ley I.T., Morris K., Abebe E., Mundo-Ocampo M., Yoder M., Heras J., Waumann D., Rocha-Olivares A., Jay Burr A.H. (2005). An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 1945-1958.

    • Search Google Scholar
    • Export Citation
  • De Mesel I.D., Lee H.J., Vanhove S., Vincx M., Vanreusel A. (2006). Species diversity and distribution within the deep-sea nematode genus Acantholaimus on the continental shelf and slope in Antarctica. Polar Biology 29, 860-871.

    • Search Google Scholar
    • Export Citation
  • Decraemer W., Coomans A., Baldwin J. (2014). Morphology of Nematoda. In: Schmidt-Rhaesa A. (Ed.). Handbook of zoology. Gastrotricha, Cycloneuralia, Gnathifera, Vol. 2: Nematoda. Berlin, Germany, De Gruyter, pp.  1-59.

    • Search Google Scholar
    • Export Citation
  • Derycke S., Fonseca G., Vierstraete A., Vanfleteren J., Vincx M., Moens T. (2008). Disentangling taxonomy within the Rhabditis (Pellioditis) marina (Nematoda, Rhabditidae) species complex using molecular and morphological tools. Zoological Journal of the Linnean Society 152, 1-15.

    • Search Google Scholar
    • Export Citation
  • Ferri E., Barbuto M., Bain O., Galimberti A., Uni S., Guerrero R., Ferté H., Bandi C., Martin C., Casiraghi M. (2009). Integrated taxonomy: traditional approach and DNA barcoding for the identification of filarioid worms and related parasites (Nematoda). Frontiers in Zoology 6, 1. DOI:10.1186/1742-9994-6-1.

    • Search Google Scholar
    • Export Citation
  • Fonseca G., Derycke S., Moens T. (2008). Integrative taxonomy in two free-living nematode species complexes. Biological Journal of the Linnean Society 94, 737-753.

    • Search Google Scholar
    • Export Citation
  • Janssen A., Kaiser S., Meißner K., Brenke N., Menot L., Martínez Arbizu P. (2015). A reverse taxonomic approach to assess macrofaunal distribution patterns in abyssal Pacific polymetallic nodule fields. PloS ONE 10, e0117790.

    • Search Google Scholar
    • Export Citation
  • Kanzaki N., Giblin-Davis R.M., Scheffrahn R., Taki H., Esquivel A., Davies K.A., Herre E.A. (2012). Reverse taxonomy for elucidating diversity of insect-associated nematodes: a case study with termites. PloS ONE 7, e43865.

    • Search Google Scholar
    • Export Citation
  • Kimura M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111-120.

    • Search Google Scholar
    • Export Citation
  • Lambshead P.J.D., Brown B.J., Ferrero T., Hawkins L.E., Smith C.R., Mitchell N.J. (2003). Biodiversity of nematode assemblages from the region of the Clarion-Clipperton Fracture Zone, an area of commercial mining interest. BMC Ecology 3, http://www.biomedcentral.com/1472-6785/3/1.

    • Search Google Scholar
    • Export Citation
  • Lorenzen S. (2000). The role of the biogenetic convergence rule in polarizing transformation series – arguments from nematology, chaos science, and phylogenetic systematics. Annales Zoologici 50, 267-275.

    • Search Google Scholar
    • Export Citation
  • Malakhov V.V. (1994). Nematodes: structure, development, classification and phylogeny. Washington, DC and London, Smithsonian Institution Press. (English translation by W.D. Hope.)

    • Search Google Scholar
    • Export Citation
  • Markmann M., Tautz D. (2005). Reverse taxonomy: an approach towards determining the diversity of meiobenthic organisms based on ribosomal RNA signature sequences. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 1917-1924.

    • Search Google Scholar
    • Export Citation
  • Miljutina M.A., Miljutin D.M. (2012). Seven new and four known species of the genus Acantholaimus (Nematoda: Chromadoridae) from the abyssal manganese nodule field (Clarion-Clipperton Fracture Zone, north-eastern tropical Pacific). Helgoland Marine Research 66, 413-462.

    • Search Google Scholar
    • Export Citation
  • Miljutina M.A., Miljutin D.M., Mahatma R., Galéron J. (2010). Deep-sea nematode assemblages of the Clarion-Clipperton Nodule Province (tropical north-eastern Pacific). Marine Biodiversity 40, 1-15.

    • Search Google Scholar
    • Export Citation
  • Miljutina M.A., Miljutin D.M., Tchesunov A.V. (2013). Seven Acantholaimus (Chromadoridae, Nematoda) species from one deep-sea sediment sample (Angola Basin, south-east Atlantic). Journal of the Marine Biological Association of the United Kingdom 93, 935-953.

    • Search Google Scholar
    • Export Citation
  • Muthumbi A.W., Vincx M. (1997). Acantholaimus (Chromadoridae: Nematoda) from the Indian Ocean: description of seven species. Hydrobiology 346, 59-76.

    • Search Google Scholar
    • Export Citation
  • Randrianiaina R., Strauß A., Glos J., Glaw F., Vences M. (2011). Diversity, external morphology and ‘reverse taxonomy’ in the specialized tadpoles of Malagasy river bank frogs of the subgenus Ochthornantis (genus Mantidactylus). Contributions to Zoology 80, 17-65.

    • Search Google Scholar
    • Export Citation
  • Seinhorst J.W. (1959). A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4, 67-69.

  • Silva de Oliveira D.A., Decraemer W., Holovachov O., Burr J., Tandingan De Ley I., De Ley P., Moens T., Derycke S. (2012). An integrative approach to characterize cryptic species in the Thoracostoma trachygaster Hope, 1967 complex (Nematoda: Leptosomatidae). Zoological Journal of the Linnean Society 164, 18-35.

    • Search Google Scholar
    • Export Citation
  • Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 2725-2729.

    • Search Google Scholar
    • Export Citation
  • Tchesunov A.V., Portnova D.A., Van Campenhout J. (2015). Description of two free-living nematode species of Halomonhystera disjuncta complex (Nematoda: Monhysterida) from two peculiar habitats in the sea. Helgoland Marine Research 69, 57-85.

    • Search Google Scholar
    • Export Citation
  • Tietjen J.H. (1989). Ecology of deep-sea nematodes from the Puerto Rico Trench area and Hatteras Abyssal Plain. Deep-Sea Research 36, 1579-1594.

    • Search Google Scholar
    • Export Citation
  • Van Campenhout J., Derycke S., Tchesunov A., Portnova D., Vanreusel A. (2014). The Halomonhystera disjuncta population is homogeneous across the Håkon Mosby mud volcano (Barents Sea) but is genetically differentiated from its shallow-water relatives. Journal of Zoological Systematics and Evolutionary Research 52, 203-216.

    • Search Google Scholar
    • Export Citation
  • Vanaverbeke J., Bezerra T.N., Braeckman U., De Groote A., De Meester N., Deprez T., Derycke S., Gilarte P., Guilini K., Hauquier F. (2015). NeMys: world database of free-living marine nematodes. Accessed at http://nemys.ugent.be on 10 October 2015.

  • Vogt F., Miljutina M., Raupach M. (2014). The application of DNA sequence data for the identification of benthic nematodes from the North Sea. Helgoland Marine Research 68, 549-558.

    • Search Google Scholar
    • Export Citation
  • Yoder M., Tandingan De Ley I., King I.W., Mundo-Ocampo M., Mann J., Blaxter M., Poiras L., De Ley P. (2006). DESS: a versatile solution for preserving morphology and DNA of nematodes. Nematology 8, 367-376.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 134 56 6
Full Text Views 197 1 1
PDF Views & Downloads 9 2 2