A survey investigating the diversity and distribution of entomopathogenic nematodes in the UK and the first confirmed UK record of Steinernema carpocapsae

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Summary

Entomopathogenic nematodes (EPN) of the families Steinernematidae and Heterorhabditidae are lethal insect parasites that have been commercialised as biological control agents. EPN have been isolated from across the world but it has been more than 20 years since the last survey of the UK, and species like Steinernema carpocapsae have never been found here and positively identified through molecular biology. We collected 518 soil samples from a diverse range of habitats across the UK and baited them with Galleria mellonella to isolate EPN. Dead G. mellonella were placed in White traps and emergent EPN underwent DNA barcoding analyses. From the 518 samples, 3.5% were positive for EPN. No Heterorhabditis species were found, but seven isolates of S. glaseri, one isolate of S. feltiae, eight isolates of S. affine and two isolates of S. carpocapsae were found. This was the first confirmed record of S. carpocapsae in the UK.

A survey investigating the diversity and distribution of entomopathogenic nematodes in the UK and the first confirmed UK record of Steinernema carpocapsae

in Nematology

Sections

References

  • AliF. & WhartonD.A. (2017). A survey of entomopathogenic nematodes from Otago, New Zealand, with the first record of Steinernema kraussei (Steiner, 1923) (Rhabditida: Steinernematidae) from the Southern Hemisphere. New Zealand Journal of Zoology 161-11. DOI: 10.1080/03014223.2017.1322620

    • Search Google Scholar
    • Export Citation
  • Al-OwnF. (2013). Population structure of insect pathogenic bacteria in UK soil and their associated nematodes. Ph.D. dissertation University of Bath UK.

  • AltschulS.F.GishW.MillerW.MyersE.W. & LipmanD.J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215403-410. DOI: 10.1016/S0022-2836(05)80360-2

    • Search Google Scholar
    • Export Citation
  • AnsariM.A.ShahF.A. & ButtT. (2008). First report of Heterorhabditis bacteriophora (Nematoda: Heterorhabditidae) from UK. Nematology 10289-291. DOI: 10.1163/156854108783476313

    • Search Google Scholar
    • Export Citation
  • BlackshawR.P. (1988). A survey of insect parasitic nematodes in northern Ireland. Annals of Applied Biology 113561-565. DOI: 10.1111/j.1744-7348.1988.tb03333.x

    • Search Google Scholar
    • Export Citation
  • BlaxterM.L.De LeyP.GareyJ.R.LiuL.X.ScheldemanP.VierstraeteA.VanfleterenJ.R.MackeyL.Y.DorrisM.FrisseL.M. et al. (1998). A molecular evolutionary framework for the phylum Nematoda. Nature 39271-75. DOI: 10.1038/32160

    • Search Google Scholar
    • Export Citation
  • BoagB.NeilsonR. & GordonS.C. (1992). Distribution and prevalence of the entomopathogenic nematode Steinernema feltiae in Scotland. Annals of Applied Biology 121355-360. DOI: 10.1111/j.1744-7348.1992.tb03448.x

    • Search Google Scholar
    • Export Citation
  • Campos-HerreraR. (2015). Nematode pathogenesis of insects and other pests. Basel, SwitzerlandSpringer International Publishing.

  • ChandlerD.HayD. & ReidA.P. (1997). Sampling and occurrence of entomopathogenic fungi and nematodes in U.K. soils. Applied Soil Ecology 5133-141. DOI: 10.1016/S0929-1393(96)00144-8

    • Search Google Scholar
    • Export Citation
  • ChastonJ.M.SuenG.TuckerS.L.AndersenA.W.BhasinA.BodeE.BodeH.B.BrachmannA.O.CowlesC.E.CowlesK.N. et al. (2011). The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: convergent lifestyles from divergent genomes. PLoS ONE 6e27909. DOI: 10.1371/journal.pone.0027909

    • Search Google Scholar
    • Export Citation
  • DillmanA.R.GuillerminM.L.LeeJ.H.KimB.SternbergP.W. & HallemE.A. (2012). Olfaction shapes host-parasite interactions in parasitic nematodes. Proceedings of the National Academy of Sciences of the United States of America 109E2324-E2333. DOI: 10.1073/pnas.1211436109

    • Search Google Scholar
    • Export Citation
  • DowdsB.C.A. & PetersA. (2002). Virulence mechanisms. In: GauglerR. (Ed.). Entomopathogenic nematology. Wallingford, UKCAB International pp. 79-98.

    • Search Google Scholar
    • Export Citation
  • FERA-DEFRA (2017). UK plant health risk register. Available at: https://secure.fera.defra.gov.uk/phiw/riskRegister/plant-health/non-native-biocontrol-agents.cfm (Accessed 19 Jul. 2017).

  • ForstS.DowdsB.BoemareN. & StackebrandtE. (1997). Xenorhabdus and Photorhabdus sp.: bugs that kill bugs. Annual Review of Microbiology 5147-72. DOI: 10.1146/annurev.micro.51.1.47

    • Search Google Scholar
    • Export Citation
  • GauglerR. (Ed.) (2002). Entomopathogenic nematology. Wallingford, UKCAB International.

  • GeorgisR. & HagueN.G.M. (1981). A Neoaplectanid nematode in the larch sawfly Cephalcia lariciphila (Hymenoptera: Pamphiliidae). Annals of Applied Biology 99171-177. DOI: 10.1111/j.1744-7348.1981.tb05144.x

    • Search Google Scholar
    • Export Citation
  • GeorgisR.KoppenhöferA.M.LaceyL.A.BélairG.DuncanL.W.GrewalP.S.SamishM.TanL.TorrP. & van TolR.W.H.M. (2006). Successes and failures in the use of parasitic nematodes for pest control. Biological Control 38103-123. DOI: 10.1016/j.biocontrol.2005.11.005

    • Search Google Scholar
    • Export Citation
  • GlazerI. & LewisE.E. (2000). Bioassays of entomopathogenic microbes and nematodes. In: NavonA. & AscherK.R.S. (Eds). Bioassays of entomopathogenic microbes and nematodes. Wallingford, UKCAB International pp. 229-248.

    • Search Google Scholar
    • Export Citation
  • GrewalP.S.GauglerR. & SelvanS. (1993). Host recognition of entomopathogenic nematodes: behavioural responses to contact with host faeces. Journal of Chemical Ecology 191219-1231.

    • Search Google Scholar
    • Export Citation
  • GrewalP.S.SelvanS. & GauglerR. (1994). Thermal adaptation of entomopathogenic nematodes: niche breadth for infection, establishment, and reproduction. Journal of Thermal Biology 19245-253. DOI: 10.1016/0306-4565(94)90047-7

    • Search Google Scholar
    • Export Citation
  • GriffinC.T.MooreJ.F. & DownesM.J. (1991). Occurrence of insect-parasitic nematodes (Steinernematidae, Heterorhabditidae) in the Republic of Ireland. Nematologica 3792-100. DOI: 10.1163/187529291X00097

    • Search Google Scholar
    • Export Citation
  • GriffinC.T.O’CallaghanK.M. & DixI. (2001). A self-fertile species of Steinernema from Indonesia: further evidence of convergent evolution amongst entomopathogenic nematodes? Parasitology 122181-186. DOI: 10.1017/S003118200100717

    • Search Google Scholar
    • Export Citation
  • GwynnR.L. & RichardsonP.N. (1996). Incidence of entomopathogenic nematodes in soil samples collected from Scotland, England and Wales. Fundamental and Applied Nematology 19427-431.

    • Search Google Scholar
    • Export Citation
  • HallemE.A.DillmanA.R.HongA.V.ZhangY.YanoJ.M.DeMarcoS.F. & SternbergP.W. (2011). A sensory code for host seeking in parasitic nematodes. Current Biology 21377-383. DOI: 10.1016/j.cub.2011.01048

    • Search Google Scholar
    • Export Citation
  • HominickW.M. & BriscoeB.R. (1990a). Occurrence of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) in British soils. Parasitology 100295-302. DOI: 10.1017/S0031182000061308

    • Search Google Scholar
    • Export Citation
  • HominickW.M. & BriscoeB.R. (1990b). Survey of 15 sites over 28 months for entomopathogenic nematodes (Rhabditida: Steinernematidae). Parasitology 100289-294. DOI: 10.1017/S0031182000061291

    • Search Google Scholar
    • Export Citation
  • HominickW.M.ReidA.P. & BriscoeB.R. (1995). Prevalence and habitat specificity of steinernematid and heterorhabditid nematodes isolated during soil surveys of the UK and the Netherlands. Journal of Helminthology 6927-32. DOI: 10.1017/S0022149X00013791

    • Search Google Scholar
    • Export Citation
  • HominickW.M.ReidA.P.BohanD.A. & BriscoeB.R. (1996). Entomopathogenic nematodes: biodiversity, geographical distribution and the convention on biological diversity. Biocontrol Science and Technology 6317-332. DOI: 10.1080/09583159631307

    • Search Google Scholar
    • Export Citation
  • HuntD.J. & NguyenK.B. (2016). Advances in entomopathogenic nematode taxonomy and phylogeny. Nematology Monographs and Perspectives 12 (Series Editors: HuntD.J. & PerryR.N.). Leiden, The NetherlandsBrill.

    • Search Google Scholar
    • Export Citation
  • HuntD.J. & SubbotinS.A. (2016). Taxonomy and systematics. In: HuntD.J. & NguyenK.B. (Eds). HuntD.J. & PerryR.N.). Advances in entomopathogenic nematode taxonomy and phylogeny. Nematology Monographs and Perspectives 12 (Series Editors: Leiden, The NetherlandsBrill pp. 13-58.

    • Search Google Scholar
    • Export Citation
  • JNCC (2010). Handbook for phase 1 habitat survey – a technique for environmental audit. Peterborough UK Joint Nature Conservation Committee (JNCC).

  • KaryN.E.NiknamG.GriffinC.T.MohammadiS.A. & MoghaddamM. (2009). A survey of entomopathogenic nematodes of the families Steinernematidae and Heterorhabditidae (Nematoda: Rhabditida) in the north-west of Iran. Nematology 11107-116. DOI: 10.1163/156854108X398453

    • Search Google Scholar
    • Export Citation
  • KimH.H.K.ChooH.Y.KayaH.K.LeeD.W.LeeS.M. & JeonH.Y. (2003). Steinernema carpocapsae (Rhabditida: Steinernematidae) as a biological control agent against the fungus gnat Bradysia agrestis (Diptera: Sciaridae) in propagation houses. Biocontrol Science and Technology 14171-183. DOI: 10.1080/09583150310001655693

    • Search Google Scholar
    • Export Citation
  • KoppenhöferA.M. & FuzyE.M. (2006). Effect of soil type on infectivity and persistence of the entomopathogenic nematodes Steinernema scarabaei, Steinernema glaseri, Heterorhabditis zealandica, and Heterorhabditis bacteriophora. Journal of Invertebrate Pathology 9211-22. DOI: 10.1016/j.jip.2006.02.003

    • Search Google Scholar
    • Export Citation
  • LaumondC.MauleonH. & KermarrecA. (1979). New data on the host spectrum and the parasitism of the entomophagous nematode, Neoaplectana carpocapsae. Entomophaga 2413-27.

    • Search Google Scholar
    • Export Citation
  • LinacreA. & TobeS.S. (2009). Species identification using DNA loci. In: LinacreA. (Ed.). Forensic science in wildlife investigations. Florida, USACRC Press pp. 61-94.

    • Search Google Scholar
    • Export Citation
  • MráčekZ. (1980). The use of ‘Galleria traps’ for obtaining nematode parasites of insects in Czechoslovakia (Lepidoptera: Nematoda, Steinernematidae). Acta Entomologica Bohemoslovaca 77378-382.

    • Search Google Scholar
    • Export Citation
  • MráčekZ.BečvářS.KindlmannP. & JersákováJ. (2005). Habitat preference for entomopathogenic nematodes, their insect hosts and new faunistic records for the Czech Republic. Biological Control 3427-37. DOI: 10.1016/j.biocontrol.2005.03.023

    • Search Google Scholar
    • Export Citation
  • NERC (2017). UK soil observatory map viewer Natural Environment Research Council. Available at: http://www.ukso.org/mapViewer.html (Accessed: 19 July 2017).

  • PetersA. (1996). The natural host range of Steinernema and Heterorhabditis spp. and their impact on insect populations. Biocontrol Science and Technology 6389-402. DOI: 10.1080/09583159631361

    • Search Google Scholar
    • Export Citation
  • Poinar JrG.O. (1979). Nematodes for biological control of insects. Boca Raton, FL, USACRC Press.

  • PowersT.O.ToddT.C.BurnellA.MurrayP.C.B.FlemingC.C.SzalanskiA.L.AdamsB.A. & HarrisT.S. (1997). The rDNA internal transcribed spacer region as a taxonomic marker for nematodes. Journal of Nematology 29441-450.

    • Search Google Scholar
    • Export Citation
  • RolstenA.GriffenC.T. & DownesM.J. (2005). Distribution of entomopathogenic nematodes in an Irish dune system. Nematology 7259-266. DOI: 10.1163/1568541054879485

    • Search Google Scholar
    • Export Citation
  • Shapiro-IlanD.I. & GauglerR. (2002). Production technology for entomopathogenic nematodes and their bacterial symbionts. Journal of Industrial Microbiology & Biotechnology 28137-146.

    • Search Google Scholar
    • Export Citation
  • SpiridonovS.E. & MoensM. (1999). Two previously unreported species of Steinernematids from woodlands in Belgium. Russian Journal of Nematology 739-42.

    • Search Google Scholar
    • Export Citation
  • SpiridonovS.E.ReidA.P.PodruckaK.SubbotinS.A. & MoensM. (2004). Phylogenetic relationships within the genus Steinernema (Nematoda: Rhabditida) as inferred from analyses of sequences of the ITS1-5.8S-ITS2 region of rDNA and morphological features. Nematology 6547-566. DOI: 10.1163/1568541042665304

    • Search Google Scholar
    • Export Citation
  • StockS.P. (2002). New trends in entomopathogenic nematode systematics: impact of molecular biology and phylogenetic reconstruction. In: Proceedings of the Tenth International Conference on Parasitology Vancouver Canada August 4-9 2002. Monduzzi Editore S.p.A. – Medimond Inc pp. 1-8.

    • Search Google Scholar
    • Export Citation
  • SturhanD. (1999). Prevalence and habitat specificity of entomopathogenic nematodes in Germany. In: Proceedings of COST meeting Italy 1995. BrusselsEU COST 819 pp. 123-132.

    • Search Google Scholar
    • Export Citation
  • SturhanD. & LiškováM. (1999). Occurrence and distribution of entomopathogenic nematodes in the Slovak Republic. Nematology 1273-277. DOI: 10.1163/156854199508261

    • Search Google Scholar
    • Export Citation
  • SzalanskiA.L.TaylorD.B. & MullinP.G. (2000). Assessing nuclear and mitochondrial DNA sequence variation within Steinernema (Rhabditida: Steinernematidae). Journal of Nematology 32229-233.

    • Search Google Scholar
    • Export Citation
  • ThanwisaiA.TandhavanantS.SaipromN.WaterfieldN.R.LongP.K.BodeH.B.PeacockS.J. & ChantratitaN. (2012). Diversity of Xenorhabdus and Photorhabdus spp. and their symbiotic entomopathogenic nematodes from Thailand. PLoS ONE 7e43835. DOI: 10.1371/journal.pone.0043835

    • Search Google Scholar
    • Export Citation
  • TorrP.HeritageS. & WilsonM.J. (2007a). Steinernema kraussei, an indigenous nematode found in coniferous forests: efficacy and field persistence against Hylobius abietis. Agricultural and Forest Entomology 9181-188. DOI: 10.1111/j.1461-9563.2007.00333.x

    • Search Google Scholar
    • Export Citation
  • TorrP.SpiridonovS.E.HeritageS. & WilsonM.J. (2007b). Habitat associations of two entomopathogenic nematodes: a quantitative study using real-time quantitative polymerase chain reactions. Journal of Animal Ecology 76238-245. DOI: 10.1111/j.1365-2656.2006.01196.x

    • Search Google Scholar
    • Export Citation
  • WhiteG.F. (1927). A method for obtaining infective nematode larvae from cultures. Science 66(1709). DOI: 10.1126/science.66.1709.302-a

    • Search Google Scholar
    • Export Citation
  • Wildlife and Countryside Act (1981). Available online at: http://www.legislation.gov.uk/ukpga/1981/69/section/14/enacted (accessed 17 July 2017).

Figures

  • View in gallery

    A: Location of soil samples collected throughout the UK; B: Soil samples that were positive for EPN, including Steinernema affine (white circle), S. feltiae (grey circle), S. carpocapsae (black circle) and S. glaseri (black star). Each dot represents a location where at least one soil sample was taken. (Scale bar = 100 km.)

  • View in gallery

    Date of collection, collection location, land use and soil type of samples collected throughout the UK that contained entomopathogenic nematodes.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 153 153 11
Full Text Views 226 226 0
PDF Downloads 12 12 0
EPUB Downloads 0 0 0