How does an invasive Heracleum sosnowskyi affect soil nematode communities in natural conditions?

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Summary

We analysed the effect of the invasive perennial plant Heracleum sosnowskyi on soil nematode communities and diversity, and plant species composition, by comparing invaded and non-invaded (control) areas in natural conditions. Invasion of H. sosnowskyi caused significant shifts in plant species composition, which subsequently modified nematode assemblages. Stress-sensitive omnivores, fungivores and root-biomass-dependent obligate plant parasites best reflected changes in soil nematode communities under the influence of H. sosnowskyi invasion. The negative effect of H. sosnowskyi was most evident on Aphelenchus, Tylencholaimus, Geocenamus, Helicotylenchus, Pratylenchus, Tylenchorhynchus and Aporcelaimellus. Our results indicate that significant changes in the herbaceous layer after H. sosnowskyi invasion in ecosystems where H. sosnowskyi eventually became dominant impacted soil nematode communities but did not affect nematode diversity. This was in contrast to the habitats where a solitary plant of H. sosnowskyi grew and no significant changes in nematode communities were observed.

How does an invasive Heracleum sosnowskyi affect soil nematode communities in natural conditions?

in Nematology

Sections

References

AbadollahiA. (2013). Plant essential oils from Apiaceae family as alternatives to conventional insecticides. Ekologia Balkanica 5149-172.

AndrássyI. (2005). Free-living nematodes of Hungary I (Nematoda errantia). Pedozoologica Hungarica No. 3 (Series Editors: CsuzdiC. & MahunkaS.). Budapest, HungaryHungarian Natural History Museum and Systematic Zoology Research Group of the Hungarian Academy of Sciences.

AndrássyI. (2007). Free-living nematodes of Hungary II (Nematoda errantia). Pedozoologica Hungarica No. 4 (Series Editors: CsuzdiC. & MahunkaS.). Budapest, HungaryHungarian Natural History Museum and Systematic Zoology Research Group of the Hungarian Academy of Sciences.

AndrássyI. (2009). Free-living nematodes of Hungary III (Nematoda errantia). Pedozoologica Hungarica No. 5 (Series Editors: CsuzdiC. & MahunkaS.). Budapest, HungaryHungarian Natural History Museum and Systematic Zoology Research Group of the Hungarian Academy of Sciences.

BaležentienéL. (2012). Inhibitory effects of Heracleum sosnowskyi on rapeseed and ryegrass germination. Allelopathy Journal 30197-208.

BaležentienėL. & BartkevičiusE. (2013). Invasion of Heracleum sosnowskyi (Apiaceae) at habitat scale in Lithuania. Journal of Food Agriculture & Environment 111370-1375.

BaležentienėL. & RenčoM. (2014). Phytotoxicity and accumulation of secondary metabolites in Heracleum mantegazzianum (Apiaceae). Allelopathy Journal 33267-272.

BelnapJ.PhillipsS.L.SherrodS.K. & MoldenkeA. (2005). Soil biota can change after exotic plant invasion: does this affect ecosystem processes? Ecology 863007-3017. DOI: 10.1890/05-0333

BiedermanL.A. & BouttonT.W. (2009). Biodiversity and trophic structure of soil nematode communities are altered following woody plant invasion of grassland. Soil Biology and Biochemistry 411943-1950. DOI: 10.1016/j.soilbio.2009.06.019

BongersT. (1990). The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 8314-19. DOI: 10.1007/BF00324627

BongersT. & BongersM. (1998). Functional diversity of nematodes. Applied Soil Ecology 10239-251. DOI: 10.1016/S0929-1393(98)00123-1

Braun-BlanquetJ. (1968). L’école phytosociologique Zuricho-Montpelliéraine et la S.I.G.M.A. Vegetatio 162-78.

BrzeskiM.W. (1998). Nematodes of Tylenchina in Poland and temperate Europe. Warsaw, PolandMuzeum I Instytut Zoologii PAN.

BurgielS.W. & MuirA.A. (2010). Invasive species climate change and ecosystem-based adaptation: addressing multiple drivers of global change. Washington, DC, USA, and Nairobi, KenyaGlobal Invasive Species Programme (GISP).

CesarzS.ReichP.B.ScheuS.RuessL.SchaeferM. & EisenhauerN. (2015). Nematode functional guilds, not trophic groups, reflect shifts in soil food webs and processes in response to interacting global change factors. Pedobiologia 5823-32. DOI: 10.1016/j.pedobi.2015.01.001

ChenH.LiB.FangCh.ChenJ. & WuJ. (2007). Exotic plant influences soil nematode communities through litter input. Soil Biology and Biochemistry 391782-1793. DOI: 10.1016/j.soilbio.2007.02.011

CobbN.A. (1918). Estimating the nematode population of the soil. Agricultural Technology Circular 1 Bureau of Plant Industry Washington DC USA United States Department of Agriculture.

CoyleD.R.NagendraU.J.TaylorM.K.CampbellJ.H.CunardC.E.JoslinA.H. & CallahamM.A. (2017). Soil fauna responses to natural disturbances, invasive species, and global climate change: current state of the science and a call to action. Soil Biology and Biochemistry 110116-133. DOI: 10.1016j.soilbio.2017.03.008

DalkeI.V.ChadinI.F.ZakhozhiyI.G.MalyshevR.V.MaslovaS.P.TabalenkovaG.N. & GolovkoT.K. (2015). Traits of Heracleum sosnowskyi plants in monostand on invaded area. PloS ONE 10e0142833. DOI: 10.1371/journal.pone.0142833

De DeynG.B.RaaijmakersC.E.Van RuijvenJ.BerendseF. & Van Der PuttenW.H. (2004). Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web. Oikos 106576-586. DOI: 10.1111/j.0030-1299.2004.13265.x

EPPO Bulletin (2009). Heracleum mantegazzianumHeracleum sosnowskyi and Heracleum persicum; EPPO data sheet on invasive alien plants. Bulletin OEPP/EPPO Bulletin 39 pp. 489-499.

FerrisH. & BongersT. (2006). Nematode indicators of organic enrichment. Journal of Nematology 383-12.

FerrisH.BongersT. & de GoedeR.G.M. (2001). A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology 1813-29. DOI: 10.1016/S0929-1393(01)00152-4

GalléR.ErdélyiN.SzpisjakN.TölgyesiC. & MaákI. (2015). The effect of the invasive Asclepias syriaca on the ground-dwelling arthropod fauna. Biologia 70104-112. DOI: 10.1515/biolog-2015-0011

GeraertE. (2008). The Tylenchidae of the world. Identification of the family Tylenchidae (Nematoda). Ghent, BelgiumAcademia Press.

GeraertE. (2010). The Criconematidae of the world. Identification of the family Criconematidae (Nematoda). Ghent, BelgiumAcademia Press.

GuptaV.V.R. & YeatesG.W. (1997). Soil microfauna as bioindicators of soil health. In: DoubleB.M. & GuptaV.V.R. (Eds). Biological indicators of soil health. Wallingford, UKCABI International pp. 201-234.

HawkesC.V.BelnapJ.D’AntonioC. & FirestoneM.K. (2006). Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses. Plant and Soil 281369-380. DOI: 10.1007/s11104-005-4826-3

HeinkU. & KowarikI. (2010). What are indicators? On the definition of indicators in ecology and environmental planning. Ecological Indicators 10584-593. DOI: 10.1016/j.ecolind.2009.09.009

JaccardP. (1908). Nouvelles recherches sur la distribution florale. Bulletin de la Société Vaudoise des Sciences Naturalles 44223-270.

Jakubska-BusseA.SliwinskiM. & KobylkaM. (2013). Identification of bioactive components of essential oils in Heracleum sosnowskyi and Heracleum mantegazzianum (Apiaceae). Archives of Biological Sciences 65877-883.

JandováK.KlinerováT.MüllerováJ.PyšekP.PerglJ.CajthamlT. & DostálP. (2014). Long-term impact of Heracleum mantegazzianum invasion on soil chemical and biological characteristics. Soil Biology and Biochemistry 68270-278. DOI: 10.1016/j.soilbio.2013.10.014

JoseS.SinghH.P.BatishD.R. & KohliR.K. (2013). Invasive plant ecology. Boca Raton, FL, USACRC Press.

KabuceN. & PriedeN. (2010). NOBANIS – Invasive Alien Species Fact Sheet – Heracleum sosnowskyi. Database of the European network on invasive alien species (NOBANIS) available online at http://www.nobanis.org.

KeithA.M.Van der WallR.BrookerR.W.OslerG.H.ChapmanS.J. & BurslemD.F. (2006). Birch invasion of heather moorland increases nematode diversity and trophic complexity. Soil Biology and Biochemistry 383421-3430. DOI: 10.1016/j.soilbio.2006.05.013

KostenkoO.DuytsH.GrootemaatS.De DeynG.B. & BezemerT.M. (2015). Plant diversity and identity effects on predatory nematodes and their prey. Ecology & Evolution 5836-847. DOI: 10.1002/ece3.1337

KroesH.W. (1983). Achtergronden van milieuhygiënische normstelling voor oppervlaktewater. H2O 16281-284.

LiangW.J.LiF.P.LiQ. & ZhangW.D. (2007). Temporal dynamics of soil nematode community structure under invasive Ambrosia trifida and native Chenopodium serotinum. Helminthologia 4429-33. DOI: 102.478/s11687-006-0053-6

LiškováM.ČerevkováA. & HánělL. (2008). Nematode communities of forest ecosystems in association with various soil orders. Russian Journal of Nematology 16129-142.

LittA.R.CordE.E.FulbrightT.E. & SchusterG.L. (2014). Effects of invasive plants on arthropods. Conservation Biology 281532-1549. DOI: 10.1111/cobi.12350

LososB.GuličkaJ.LellákJ. & PelikánJ. (1984). Animal ecology. Prague, Czech RepublicStátní pedagogické nakladatelství.

MacDougalA.S. & TurkingtonR. (2005). Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 8642-55. DOI: 10.1890/04-0669

MeyersonL.A.CroninJ.T. & PyšekP. (2016). Phragmites australis as a model organism for studying plant invasions. Biological Invasions 182421-2431. DOI: 10.1007/s1053

MummeyD.L. & RillingM.C. (2006). The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant and Soil 28881-90. DOI: 10.1007/s11104-006-9091-6

NeherD.A.WuJ.BarbercheckM.E. & AnasO. (2005). Ecosystem type affects interpretation of soil nematode community measures. Applied Soil Ecology 3047-64. DOI: 10.1016/j.apsoil.2005.01.002

NeherD.A.WilliamsK.M. & LovellS.T. (2017). Environmental indicators reflective of road design in a forested landscape. Ecosphere 8e01734. DOI: 10.1002/ecs2.1734

RenčoM. & BaležentienéL. (2015). An analysis of soil free-living and plant-parasitic nematode communities in three habitats invaded by Heracleum sosnowskyi in central Lithuania. Biological Invasions 171025-1039. DOI: 10.1007/s10530-014-0773-3

RenčoM. & ČerevkováA. (2015). Long-term effects of a wildfire on the soil nematode communities in the spruce forest ecosystem of High Tatra National Park. International Journal of Wildland Fire 24702-711. DOI: 10.1071/WF14138

RenčoM.ČerevkováA.HomolováZ. & GömöryováE. (2015). Long-term effects on soil nematode community structure in spruce forests of removing or not removing fallen trees after a windstorm. Forest Ecology and Management 356243-252. DOI: 10.1016/j.foreco.2015.07.008

RichardsC.L.BossdorfO.MuthN.Z.GurevitchJ. & PigliucciM. (2006). Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecological Letters 9981-993. DOI: 10.1111/j.1461-0248.2006.00950.x

RuessL. (2003). Nematode soil faunal analysis of decomposition pathways in different ecosystems. Nematology 5179-181. DOI: 10.1163/156854103767139662

SeebensH.BlackburnT.M. & DyerE.E. (2017). No saturation in the accumulation of alien species worldwide. Nature Communication 814435. DOI: 10.1038/ncomms14435

SeinhorstJ.W. (1962). On the killing, fixation and transferring to glycerin of nematodes. Nematologica 829-32. DOI: 10.1163/187529262X00981

ShannonC.E. & WeaverW. (1949). The mathematical theory of communication. Urbana, IL, USAUniversity of Illinois Press.

SohleniusB. (1980). Abundance, biomass and contribution to energy flow by soil nematodes in terrestrial ecosystems. Oikos 78186-194. DOI: 10.2307/3544181

ter BraakC.J.F. & SchaffersA.P. (2004). Co-correspondence analysis: a new ordination method to relate two community compositions. Ecology 85834-846. DOI: 10.1890/03-0021

ter BraakC.J.F. & ŠmilauerP. (2012). Canoco reference manual and user’s guide: software for ordination Version 5.0. Ithaca NY USA Microcomputer Power.

van BezooijenJ. (2006). Methods and techniques for nematology. Wageningen, The NetherlandsWageningen University.

ViketoftM.PalmborgC.SohleniusB.Huss-DanellK. & BengtssonJ. (2005). Plant species effects on soil nematode communities in experimental grasslands. Applied Soil Ecology 3090-103. DOI: 10.1016/j.apsoil.2005.02.007

WardleD.A.YeatesG.W.WilliamsonW. & BonnerK.I. (2003). The response of a three trophic level soil food web to the identity and diversity of plant species and functional groups. Oikos 10245-56. DOI: 10.1034/j.1600-0706.2003.12481.x

WasilewskaL. (1997). Soil invertebrates as bioindicators with special reference to soil-inhabiting nematodes. Russian Journal of Nematology 5113-126.

WilsonM.J. & Kakouli-DuarteT. (eds) (2009). Nematodes as environmental indicators. Wallingford, UKCAB International. DOI: 10.1079/9781845933852.0000

YeatesG.W. (2003). Nematodes as soil indicators: functional and biodiversity aspects. Biology and Fertility of Soils 37199-210. DOI: 10.1007/s00374-003-0586-5

YeatesG.W. & WilliamsP.A. (2001). Influence of three invasive weeds and site factors on soil microfauna in New Zealand. Pedobiologia 45367-383. DOI: 10.1078/0031-4056-00093

YeatesG.W.BongersT.de GoedeR.G.M.FreckmanD.W. & GeorgievaS.S. (1993). Feeding habits in soil nematode families and genera – an outline for soil ecologist. Journal of Nematology 25315-331.

YuQ.YeW. & PowersT. (2016). Morphological and molecular characterization of Gracilacus wuae n. sp. (Nematoda: Criconematoidea) associated with cow parsnip (Heracleum maximum) in Ontario, Canada. Journal of Nematology 48203-213.

ZhangP.NeherD.A.LiB. & WuJ. (2018). The impacts of above-and belowground plant input on soil microbiota: invasive Spartina alterniflora versus native Phragmites australis. Ecosystems 21469-481. DOI: 10.1007/s10021-017-0162-8

Figures

  • View in gallery

    Habitat type, location, area code and vegetation characteristic of study areas.

  • View in gallery

    Mean total nematode abundance, number of genera, nematode feeding groups and functional guilds abundance associated with Heracleum sosnowskyi (Hs) invaded and control areas in four different habitats (non-cultivated line between agricultural fields, alluvial meadow, route edge, wet dump ground depression) in Poland.

  • View in gallery

    Mean abundance (A) and dominance (D%) (n=4) of nematode genera associated with Heracleum sosnowskyi invaded and control areas in four different habitats.

  • View in gallery

    (Continued.)

  • View in gallery

    (Continued.)

  • View in gallery

    Biplot based on symmetric co-correspondence analysis illustrating the nematode functional guilds (A) and main plant species (B) common on line between two fields and route edge habitats on Heracleum sosnowskyi invaded (INV) and non-invaded (CONT) areas, 26.44 and 32.05%, respectively, of the total variance of each data set. Correlation coefficients between nematode-derived and plant-derived site scores of the first three axes of symmetric correspondence canonical analysis (axis 1: 0.9124, λ1=0.264, P=0.00400, axis 2: 0.7888) and (axis 1: 0.9848, λ1=0.0318, P=0.00220, axis 2: 0.8154), respectively. Abbreviations used in panels B: ArhnElat = Arhenatherum elatius; ArtmCamp = Artemisia campestris; BromErec = Bromus erectus; DactGlom = Dactylis glomerata; ElymRepn = Elymus repens; EquiArvn = Equisetum arvense; ErigCand = Erigeon canadensis; HercSosn = Heracleum sosnowskyi; LamiPurp = Lamium purpureum; PotnRept = Potentilla reptans; SysmOfic – Sysimbrium officinale; TarxOffc – Taraxacum officinale; UrticDioi = Urtica dioica.

  • View in gallery

    Biplot based on symmetric co-correspondence analysis illustrating the nematode functional guilds (A) and main plant species (B) common on alluvial meadow and ground depression habitats on Heracleum sosnowskyi invaded (INV) and non-invaded (CONT) areas, 39.85 and 5.5%, respectively, of the total variance of each data set. Correlation coefficients between nematode-derived and plant-derived site scores of the first three axes of symmetric correspondence canonical analysis (axis 1: 0.9478, λ1=0.397, P=0.03800, axis 2: 0.9212) and (axis 1: 0.9136, λ1=0.0004, P=0.89200, axis 2: 0.8396), respectively. Abbreviations used in panels B: ArtVulg = Artemisia vulgaris; EchnCrs = Echinachloa crus-galli; ErigAnns =Erigeon annus; HercSosno = Heracleum sosnowskyi; MatrIndr = Matricaria indora; SetrVird = Setaria viridis; UrtcDioi – Urtica dioica; GaliVerm = Galium verum; GalsSepi = Galystegia sepium; HercSosn = Heracleum sosnowskyi; IpomCarn = Ipomea carnea; LoliPern = Lolium perenne; PhrgAust = Phragmites australis; SoliSp = Solidago sp.; SysmOffc = Symphytum officinale; UrtcDioi = Urtica dioica.

  • View in gallery

    Ordination of soil samples on the biplot resulting from the Redundancy analyses based on the nematode genera composition of the soil samples from plots invaded (circles) by Heracleum sosnowskyi (HS) and non-invaded (squares) plots (CO). (Wet dump ground depression 1-8; Line between agricultural fields 9-16; Route edge 17-24; Alluvial meadow 25-32.)

  • View in gallery

    Nematode community structure and functional indices associated with Heracleum sosnowskyi-invaded and control areas in four different habitats.

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 111 111 88
Full Text Views 60 60 49
PDF Downloads 11 11 9
EPUB Downloads 0 0 0