Long-term changes (1979-2015) in the nematode fauna in Sivash Bay (Sea of Azov), Russia, worldwide the largest hypersaline lagoon, during salinity transformations

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.

Help

 

Have Institutional Access?

Login with your institution. Any other coaching guidance?

Connect

Summary

Sivash Bay is the largest hypersaline lagoon in the world. In 1963-1975 the North Crimean Canal was constructed, with water from the River Dnieper and discharge of drainage water collected from agricultural lands into Sivash Bay. Salinity in Sivash Bay began to drop, resulting in a new brackish water ecosystem. The political decision to stop supplying water from the River Dnieper to the Canal was made in 2014, and the discharge of fresh water into the lagoon ended, resulting in an increase in salinity up to 60-75 g l−1. This study showed that the abundance of meiobenthos increased, with Nematoda dominating. The composition of nematode species in the lagoon has not previously been studied. Using samples from 1979, 2013 and 2015, 50 nematode species and forms were identified in 1979, 32 in 2013 and 21 in 2015. The species composition of nematodes at different periods was significantly different. The average abundance of nematodes was 134 198 ind. m−2 in 2013 and 606 660 ind. m−2 in 2015.

Sections
References
  • Al-ThaniR.Al-NajjarM.A.Al-RaeiA.M.FerdelmanT.ThangN.M.Al ShaikhI.Al-AnsiM. & de BeerD. (2014). Community structure and activity of a highly dynamic and nutrient-limited hypersaline microbial mat in Um Alhool Sabkha, Qatar. PLoS ONE 9e92405. DOI: 10.1371/journal.pone.0092405

    • Search Google Scholar
    • Export Citation
  • AnufriievaE.V.VdodovichI.V. & ShadrinN.V. (2018). First data on predation of Eucypris mareotica (Crustacea, Ostracoda) in hypersaline waters. Food Webs 16e00090. DOI: 10.1016/j.fooweb.2018.e00090

    • Search Google Scholar
    • Export Citation
  • BernhardJ.M.MorrisonC.R.PapeE.BeaudoinD.J.TodaroM.A.PachiadakiM.G.KormasK.Ar. & EdgcombV.P. (2015). Metazoans of redoxcline sediments in Mediterranean deep-sea hypersaline anoxic basins. BMC Biology 13105. DOI: 10.1186/s12915-015-0213-6

    • Search Google Scholar
    • Export Citation
  • BorgonieG.García-MoyanoA.LitthauerD.BertW.BesterA.van HeerdenE.MöllerC.ErasmusM. & OnstottT.C. (2011). Nematoda from the terrestrial deep subsurface of South Africa. Nature 47479-82. DOI: 10.1038/nature09974

    • Search Google Scholar
    • Export Citation
  • BrennanM.L.DavisD.RomanC.BuynevichI.CatsambisA.KofahlM.ÜrkmezD.VaughnI.MerriganM. & DumanM. (2013). Ocean dynamics and anthropogenic impacts along the southern Black Sea shelf examined through the preservation of pre-modern shipwrecks. Continental Shelf Research 5389-101. DOI: 10.1016/j.csr.2012.12.010

    • Search Google Scholar
    • Export Citation
  • DandoP.R. & HovlandM. (1992). Environmental effects of submarine seeping natural gas. Continental Shelf Research 121197-1207. DOI: 10.1016/0278-4343(92)90079-Y

    • Search Google Scholar
    • Export Citation
  • DanovaroR.GambiC.Dell’AnnoA.CorinaldesiC.FraschettiS.VanreuselA.VincxM. & GoodayA.J. (2008). Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Current Biology 181-8. DOI: 10.1016/j.cub.2007.11.056

    • Search Google Scholar
    • Export Citation
  • DrapunI.AnufriievaE.ShadrinN. & ZagorodnyayaY. (2017). Ostracods in the plankton of the Sivash Bay (the sea of Azov) during its transformation from brackish to hypersaline state. Ecologica Montenegrina 14102-108. https://www.biotaxa.org/em/article/view/34073.

    • Search Google Scholar
    • Export Citation
  • DyakovN.N.BelogudovA.A. & TimoshenkoT.Yu. (2013). [Evaluation of components of the Gulf Siwash water balance.] Journal of Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources: Collected Scientific Papers 27439-445.

    • Search Google Scholar
    • Export Citation
  • El-ShabrawyG.M.AnufriievaE.V.GermoushM.O.GoherM.E. & ShadrinN.V. (2015). Does salinity change determine zooplankton variability in the saline Qarun Lake (Egypt)? Chinese Journal of Oceanology and Limnology 331368-1377. DOI: 10.1007/s00343-015-4361-x

    • Search Google Scholar
    • Export Citation
  • El-ShabrawyG.M.AnufriievaE.V. & ShadrinN.V. (2018). Tintinnina (Ciliophora) and Foraminifera in plankton of hypersaline Lagoon Bardawil (Egypt): spatial and temporal variability. Turkish Journal of Zoology 42218-229. DOI: 10.3906/zoo-1705-37

    • Search Google Scholar
    • Export Citation
  • FabriM.-C.BargainA.BriandP.GebrukA.FouquetY.MorineauxM. & DesbruyeresD. (2011). The hydrothermal vent community of a new deep-sea field, Ashadze-1, 12°58′ N on the Mid-Atlantic Ridge. Journal of the Marine Biological Association of the United Kingdom 911-13. DOI: 10.1017/S0025315410000731

    • Search Google Scholar
    • Export Citation
  • FeazelL.M.SpearJ.R.BergerA.B.HarrisJ.K.FrankD.N.LeyR.E. & PaceN.R. (2008). Eucaryotic diversity in a hypersaline microbial mat. Applied and Environmental Microbiology 74329-332. DOI: 10.1128/AEM.01448-07

    • Search Google Scholar
    • Export Citation
  • GrantW.D. (2004). Life at low water activity. Philosophical transactions of the Royal Society of London. Series B Biological sciences 3591249-1267. DOI: 10.1098/rstb.2004.1502

    • Search Google Scholar
    • Export Citation
  • GrinchenkoA.B. (2004). [History and dynamics of colonial settlements of Ciconiidae in the Eastern Crimea under the influence of anthropogenic succession at the Eastern Sivash and near Sivash area.] Branta: Transactions of the Azov-Black Sea Ornithological Station 761-81.

    • Search Google Scholar
    • Export Citation
  • JensenP. (1995). Life history of the nematode Theristus anoxibioticus from sublittoral muddy sediment at methane seepages in the northern Kattegat, Denmark. Marine Biology 123131-136. DOI: 10.1007/BF00350331

    • Search Google Scholar
    • Export Citation
  • KhlebovichV.V. (1974). [Critical salinity of biological processes.] Leningrad, RussiaNauka.

  • KinneO. (1971). Marine ecology. London, UKWiley Interscience.

  • KiselevaM.I. & SergeevaN.G. (1986). [Species composition and distribution of nematodes in some biotopes of the Black Sea sublittoral.] Ecologiya Morya 2338-42.

    • Search Google Scholar
    • Export Citation
  • KolesnikovaE.A.MazlumyanS.A. & ShadrinN.V. (2008). Seasonal dynamics of meiobenthos fauna from a salt lake of the Crimea (Ukraine). In: Environmental micropaleontology microbiology and meiobenthology EMMM’2008: first international conference (Feb. 17 2008). Chennai, IndiaUniversity of Madras pp. 155-158.

    • Search Google Scholar
    • Export Citation
  • KolesnikovaE.A.AnufriievaE.V.LatushkinA.A. & ShadrinN.V. (2017). Mesochra rostrata Gurney, 1927 (Copepoda, Harpacticoida) in Sivash Bay (Sea of Azov): is it a new alien species or a relict of Tethys? Russian Journal of Biological Invasions 8244-250. DOI: 10.1134/S2075111717030079

    • Search Google Scholar
    • Export Citation
  • KulakovaA.I. (1989). [Free-living nematodes on the western shelf of the Black Sea.] Ecologiya Morya 3142-46.

  • LevinL.A.EkauW.GoodayA.J.JorissenF.MiddelburgJ.J.NaqviS.W.A. & ZhangJ. (2009). Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 62063-2098. DOI: 10.5194/bg-6-2063-2009

    • Search Google Scholar
    • Export Citation
  • MengistouS. (2016). Invertebrates of East African Soda lakes. In: SchagerlM. (Ed.). Soda lakes of East Africa. Cham, GermanySpringer pp. 205-226.

    • Search Google Scholar
    • Export Citation
  • NicholasW.L.GoodchildD.J. & StewartA. (1987). The mineral composition of intracellular inclusions in nematodes from thiobiotic mangrove mud flats. Nematologica 33167-179. DOI: 10.1163/187529287X00308

    • Search Google Scholar
    • Export Citation
  • ÓlafssonE.CarlstromS. & NdaroS.G.M. (2000). Meiobenthos of hypersaline tropical mangrove sediment in relation to spring tide inundation. Hydrobiologia 42657-64. DOI: 10.1007/978-94-011-4148-2_5

    • Search Google Scholar
    • Export Citation
  • PesenkoYu.A. (1982). [Principles and methods of quantitative analysis in faunal studies.] Moscow, RussiaNauka.

  • RemaneA. & SchlieperC. (1971). Biology of brackish water. New York, USAWiley Interscience Division, John Wiley & Sons.

  • SemkinB.I. (2009). [On the relation between mean values of two measures of inclusion and measures of similarity.] Biulleten Botanicheskogo Sada-Instituta DVO RAN 391-101.

    • Search Google Scholar
    • Export Citation
  • SergeevaN.G. (1974). [Qualitative composition and quantitative distribution of free-living nematodes near the southern coast of Crimea.] Biologiya Morya 3222-42.

    • Search Google Scholar
    • Export Citation
  • SergeevaN.G. (1981). [New species of the genus Campylaimus (Nematoda, Araeolaimida) from the Black Sea and Sivash Lake.] Zoologichesky Zhurnal 601717-1719.

    • Search Google Scholar
    • Export Citation
  • SergeevaN.G. (2003). [Meiobenthos in the region with the methane gas seeps.] In: EremeevV.N. & GaevskayaA.V. (Eds). [Present time conditions of biological diversity in the near-shore zone of Crimea peninsula (the Black Sea sector).] Sevastopol, RussiaEKOSI-Gidrofizika pp. 258-267.

    • Search Google Scholar
    • Export Citation
  • SergeevaN.G. & GulinM.B. (2007). Meiobenthos from an active methane seepage area in the NW Black Sea. Marine Ecology 28152-159. DOI: 10.1111/j.1439-0485.2006.00143.x

    • Search Google Scholar
    • Export Citation
  • SergeevaN.G.KolesnikovaE.A.LatushkinA.A. & ChepyzhenkoA.A. (2014). [A variety of soft bottom meiobenthos of Sivash Lake.] In: [Proceedings the 3rd international conference ‘Biodiversity and sustainable development’.] Simferopol, Russia pp. 323-325.

    • Search Google Scholar
    • Export Citation
  • SergeevaN.G.ÜrkmezD. & RevkovaT.N. (2016). Abnormalities in the amphids of free-living nematodes in the Black Sea: is it atavism or result of a modern morpho-functional adaptation to environmental changes and the nascent process of microevolution? In: MillsA. (Ed.). Baltic and Black Sea. Ecological perspectives biodiversity and management. New York, NY, USANova Science Publishers pp. 47-110.

    • Search Google Scholar
    • Export Citation
  • ShadrinN.V. & AnufriievaE.V. (2013). Climate change impact on the marine lakes and their Crustaceans: the case of marine hypersaline Lake Bakalskoye (Ukraine). Turkish Journal of Fisheries and Aquatic Sciences 13603-611. DOI: 10.4194/1303-2712-v13_4_05

    • Search Google Scholar
    • Export Citation
  • ShadrinN.V.El-ShabrawyG.M.AnufriievaE.V.GoherM.E. & RagabE. (2016). Long-term changes of physicochemical parameters and benthos in Lake Qarun (Egypt): can we make a correct forecast of ecosystem future? Knowledge and Management of Aquatic Ecosystems 41718. DOI: 10.1051/kmae/2016005

    • Search Google Scholar
    • Export Citation
  • ShadrinN.V.AnufriievaE.V.KipriyanovaL.M.KolesnikovaE.A.LatushkinA.A.RomanovR.E. & SergeevaN.G. (2018). The political decision caused the drastic ecosystem shift of the Sivash Bay (the Sea of Azov). Quaternary International 4754-10. DOI: 10.1016/j.quaint.2017.12.009

    • Search Google Scholar
    • Export Citation
  • TahseenQ. (2012). Nematodes in aquatic environments: adaptations and survival strategies. Biodiversity Journal 313-40.

  • TeleshI.SchubertH. & SkarlatoS. (2013). Life in the salinity gradient: discovering mechanisms behind a new biodiversity pattern. Estuarine Coastal and Shelf Science 135317-327. DOI: 10.1016/j.ecss.2013.10.013

    • Search Google Scholar
    • Export Citation
  • TsalolikhinS.Ya. (2007). [A review of the genus Geomonhystera (Nematoda, Monhysterida, Monhysteridae) with a description of the new species, G. taurica.] Zoologichesky Zhurnal 861283-1289.

    • Search Google Scholar
    • Export Citation
  • ÜrkmezD.SergeevaN.G. & SezginM. (2011). Seasonal changes of nematodes from Sinop coasts of the Black Sea. In: Proceedings of the 6th international conference ‘Environmental micropaleontology microbiology and meiobenthology’. Borissiak, RussiaBorissiak Paleontological Museum pp. 279-282.

    • Search Google Scholar
    • Export Citation
  • VorobyevV.P. (1940). [Hydrobiological essay on the Eastern Sivash and its potential for fisheries.] Proceedings of AzCherNIRO 1269-164.

    • Search Google Scholar
    • Export Citation
  • WetzelM.A.FleegerJ.W. & PowersS.P. (2001). Effects of hypoxia and anoxia on meiofauna: a review with new data from the Gulf of Mexico. In: RabalaisN.N. & TurnerR.E. (Eds). Coastal hypoxia: consequences for living resources and ecosystems. Coastal and Estuarine Studies Vol. 58. Washington, DC, USAAmerican Geophysical Union pp. 165-184.

    • Search Google Scholar
    • Export Citation
  • WiktorJ. & SzymelfenigM. (2002). Patchiness of sympagic algae and meiofauna from the fast ice of North Open Water (NOW) Polynya. Polish Polar Research 23175-184.

    • Search Google Scholar
    • Export Citation
  • ZagorodnyayaYu.A. (2006). [The taxonomic composition and quantitative characteristics of zooplankton in the eastern part of Gulf Sivash during summer 2004.] Ecosystem Researches of the Azov Sea the Black Sea and the Caspian Sea 8103-114.

    • Search Google Scholar
    • Export Citation
  • ZakiM.J.KhanD. & AbidM. (2012). Nematodes in the saline environment: a mini overview. International Journal of Biology and Biotechnology 999-113.

    • Search Google Scholar
    • Export Citation
  • ZhangZ.Q. (2013). Animal biodiversity: an update of classification and diversity in 2013. Zootaxa 37035-11.

Figures
  • View in gallery

    The Sivash Bay (The Sea of Azov) and sampling stations (circle: samples taken in 1 or 2 years; triangle: samples taken in all 3 years).

  • View in gallery

    List of all species of Nematoda found in Sivash Bay during 1979, 2013 and 2015.

  • View in gallery

    (Continued.)

  • View in gallery

    (Continued.)

  • View in gallery

    Structure of meiobenthos and Nematoda taxocene in Sivash Bay during 2013 and 2015 (excluding rare species <1% of total nematode abundance).

  • View in gallery

    (Continued.)

  • View in gallery

    The calculated pairwise Jaccard and Chekanovski-Sørensen-Dice coefficients of species composition similarity found in different sites during 2013 and 2015.

  • View in gallery

    Calculated pairwise Jaccard and Chekanovski-Sørensen-Dice coefficients of species composition similarity found in different years.

Index Card
Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 88 88 5
Full Text Views 5 5 1
PDF Downloads 6 6 1
EPUB Downloads 0 0 0