Significant genetic differences among Heterodera schachtii populations within and among sugar beet production areas

In: Nematology

Summary

Characterising the non-neutral genetic variation within and among populations of plant-parasitic nematodes is essential to determine factors shaping the population genetic structure. This study describes the genetic variation of the parasitism gene vap1 within and among geographic populations of the beet cyst nematode Heterodera schachtii. Forty populations of H. schachtii were sampled at four spatial scales: 695 km, 49 km, 3.1 km and 0.24 km. DGGE fingerprinting showed significant differences in vap1 patterns among populations. High similarity of vap1 patterns appeared between geographically close populations, and occasionally among distant populations. Analysis of spatially sampled populations within fields revealed an effect of tillage direction on the vap1 similarity for two of four studied fields. Overall, geographic distance and similarity of vap1 patterns of H. schachtii populations were negatively correlated. In conclusion, the population genetic structure was shaped by the interplay between the genetic adaptation and the passive transport of this nematode.

  • BingeforsS. (1967). International dispersal of nematodes. Netherlands Journal of Plant Pathology 7344-60. DOI: 10.1007/BF01974422

  • BohonakA.J. (1999). Dispersal, gene flow, and population structure. The Quarterly Review of Biology 7421-45.

  • CarboneI. & KohnL. (2004). Inferring process from pattern in fungal population genetics. In: Applied mycology and biotechnology, an international series – fungal genetics. Amsterdam, The NetherlandsElsevier, pp. 29-58. DOI: 10.1016/S1874-5334(04)80005-4

    • Search Google Scholar
    • Export Citation
  • CurtoG. (2008). Sustainable methods for management of cyst nematodes. In: CiancioA. & MukerjiK.G. (Eds). Integrated management and biocontrol of vegetable and grain crops nematodes. Dordrecht, The NetherlandsSpringer, pp. 221-227. DOI: 10.1007/978-1-4020-6063-2_11

    • Search Google Scholar
    • Export Citation
  • GavassoniW.L.TylkaG.L. & MunkvoldG.P. (2001). Relationships between tillage and spatial patterns of Heterodera glycines. Phytopathology 91534-545. DOI: 10.1094/PHYTO.2001.91.6.534

    • Search Google Scholar
    • Export Citation
  • GavassoniW.L.TylkaG.L. & MunkvoldG.P. (2007). Effects of tillage practices on dissemination and spatial patterns of Heterodera glycines and soybean yield. Plant Disease 91973-978. DOI: 10.1094/PDIS-91-8-0973

    • Search Google Scholar
    • Export Citation
  • GheysenG.MeutterJ.D.TytgatT. & CoomansA. (2000). Sedentary endoparasitic nematodes as a model for other plant-parasitic nematodes. Nematology 2113-121. DOI: 10.1163/156854100508827

    • Search Google Scholar
    • Export Citation
  • GracianneC.JanP.-L.FournetS.OlivierE.ArnaudJ.-F.PorteC.Bardou-ValetteS.DenisM.-C. & PetitE.J. (2016). Temporal sampling helps unravel the genetic structure of naturally occurring populations of a phytoparasitic nematode. 2. Separating the relative effects of gene flow and genetic drift. Evolutionary Applications 91005-1016. DOI: 10.1111/eva.12401

    • Search Google Scholar
    • Export Citation
  • GriffinG.D. (1980). Effect of nonhost cultivars on Heterodera schachtii population dynamics. Journal of Nematology 1253-57.

  • GriffinG.D. (1981). Pathological differences in Heterodera schachtii populations. Journal of Nematology 13191-195.

  • HoldereggerR.KammU. & GugerliF. (2006). Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landscape Ecology 21797-807. DOI: 10.1007/s10980-005-5245-9

    • Search Google Scholar
    • Export Citation
  • HusseyR.S.DavisE.L. & BaumT.J. (2002). Secrets in secretions: genes that control nematode parasitism of plants. Brazilian Journal of Plant Physiology 14183-194. DOI: 10.1590/S1677-04202002000300002

    • Search Google Scholar
    • Export Citation
  • JonesJ.T.HaegemanA.DanchinE.G.J.GaurH.S.HelderJ.JonesM.G.K.KikuchiT.Manzanilla-LópezR.Palomares-RiusJ.E.WesemaelW.M.L. et al. (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology 14946-961. DOI: 10.1111/mpp.12057

    • Search Google Scholar
    • Export Citation
  • KaplanM.Caswell-ChenE.P. & WilliamsonV.M. (1999). Assessment of host-induced selection on three geographic isolates of Heterodera schachtii using RAPD and AFLP markers. Phytopathology 8968-73. DOI: 10.1094/PHYTO.1999.89.1.68

    • Search Google Scholar
    • Export Citation
  • KhanM.F.R.ArabiatS.ChandaA.K. & YanG. (2016). Sugar beet cyst nematode. Extension Bulletin PP1788. Fargo, ND, USANorth Dakota State University.

    • Search Google Scholar
    • Export Citation
  • KimJ.KimT.LeeY.-C.ChunJ.-Y.KernE.M.A.JungJ. & ParkJ.-K. (2016). Characterization of 15 microsatellite loci and genetic analysis of Heterodera schachtii (Nematoda: Heteroderidae) in South Korea. Biochemical Systematics and Ecology 6497-104. DOI: 10.1016/j.bse.2015.11.013

    • Search Google Scholar
    • Export Citation
  • KropfS.HeuerH.GrüningM. & SmallaK. (2004). Significance test for comparing complex microbial community fingerprints using pairwise similarity measures. Journal of Microbiological Methods 57187-195. DOI: 10.1016/j.mimet.2004.01.002

    • Search Google Scholar
    • Export Citation
  • LambertiF. & TaylorC.E. (Eds) (1986). Cyst nematodes. Boston, MA, USASpringer.

  • LeachM.AgudeloP. & Lawton-RauhA. (2012). Effect of crop rotations on Rotylenchulus reniformis population structure. Plant Disease 9624-29. DOI: 10.1094/PDIS-02-11-0131

    • Search Google Scholar
    • Export Citation
  • Lozano-TorresJ.L.WilbersR.H.P.WarmerdamS.Finkers-TomczakA.Diaz-GranadosA.van SchaikC.C.HelderJ.BakkerJ.GoverseA.SchotsA. et al. (2014). Apoplastic venom allergen-like proteins of cyst nematodes modulate the activation of basal plant innate immunity by cell surface receptors. PLoS Pathogens 10e1004569. DOI: 10.1371/journal.ppat.1004569

    • Search Google Scholar
    • Export Citation
  • MallezS.CastagnoneC.EspadaM.VieiraP.EisenbackJ.D.MotaM.GuillemaudT. & Castagnone-SerenoP. (2013). First insights into the genetic diversity of the pinewood nematode in its native area using new polymorphic microsatellite loci. PLoS ONE 8e59165. DOI: 10.1371/journal.pone.0059165

    • Search Google Scholar
    • Export Citation
  • MallezS.CastagnoneC.EspadaM.VieiraP.EisenbackJ.D.HarrellM.MotaM.AikawaT.AkibaM.KosakaH. et al. (2014). Worldwide invasion routes of the pinewood nematode: what can we infer from population genetics analyses? Biological Invasions 171199-1213. DOI: 10.1007/s10530-014-0788-9

    • Search Google Scholar
    • Export Citation
  • McDonaldB.A. & LindeC. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology 40349-379. DOI: 10.1146/annurev.phyto.40.120501.101443

    • Search Google Scholar
    • Export Citation
  • MüllerH.C. & MolzE. (1914). Versuche zur Bekämpfung des Rübennematoden Heterodera schachtii. [Attempts to control the beet nematode Heterodera schachtii.] Zeitschrift des Vereins der Deutschen Zuckerindustrie 64959.

    • Search Google Scholar
    • Export Citation
  • MüllerJ. (1980). Ein verbessertes Extraktionsverfahren für Heterodera schachtii. [An improved extraction method for Heterodera schachtii.] Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 3221-24.

    • Search Google Scholar
    • Export Citation
  • MüllerJ. (1992). Detection of pathotypes by assessing the virulence of Heterodera schachtii populations. Nematologica 3850-64. DOI: 10.1163/187529292X00045

    • Search Google Scholar
    • Export Citation
  • MüllerJ. (1998). New pathotypes of the beet cyst nematode (Heterodera schachtii) differentiated on alien genes for resistance in beet (Beta vulgaris). Fundamental and Applied Nematology 21519-526.

    • Search Google Scholar
    • Export Citation
  • NuaimaR.H.RoebJ.HallmannJ.DaubM.OtteS. & HeuerH. (2018). Effector gene vap1 based DGGE fingerprinting to assess variation within and among Heterodera schachtii populations. Journal of Nematology 50517-528. DOI: 10.21307/jofnem-2018-055

    • Search Google Scholar
    • Export Citation
  • OrsiniL.VanoverbekeJ.SwillenI.MergeayJ. & de MeesterL. (2013). Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Molecular Ecology 225983-5999. DOI: 10.1111/mec.12561

    • Search Google Scholar
    • Export Citation
  • PicardD. & PlantardO. (2006). What constitutes a population for the plant parasitic nematode Globodera pallida in its native area (Peru)? International Journal for Parasitology 36115-122. DOI: 10.1016/j.ijpara.2005.08.015

    • Search Google Scholar
    • Export Citation
  • PlantardO. & PorteC. (2004). Population genetic structure of the sugar beet cyst nematode Heterodera schachtii: a gonochoristic and amphimictic species with highly inbred but weakly differentiated populations. Molecular Ecology 1333-41. DOI: 10.1046/j.1365-294X.2003.02023.x

    • Search Google Scholar
    • Export Citation
  • StirlingG.R. (1991). Biological control of plant parasitic nematodes: progress, problems and prospects. Wallingford, UKCAB International.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 52 52 32
Full Text Views 15 15 5
PDF Downloads 8 8 3