In an arable field the herbivore and detritivore soil food chains were manipulated by the following treatments: maize as crop, amendment with maize litter and bare soil, representing labile rhizodeposits, recalcitrant plant debris and soil organic matter as major resource, respectively. Samples from top soil, rooted zone and root-free zone were collected in two consecutive years. The impact of these differences in resource availability and quality on the nematode community composition, Maturity Index (MI), diversity (
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Aksakal, E.L., Barik, K., Angin, I., Sari, S. & Islam, K.R. (2019). Spatio-temporal variability in physical properties of different textured soils under similar management and semi-arid climatic conditions. Catena 172, 528-546. DOI: 10.1016/j.catena.2018.09.017
Ali, M.A., Abbas, A., Azeem, F., Javed, N. & Bohlmann, H. (2015). Plant-nematode interactions: from genomics to metabolomics. International Journal of Agricultural Biology 17, 1071-1082. DOI: 10.17957/IJAB/15.0037
Bardgett, R.D. & Chan, K.F. (1999). Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in montane grassland ecosystems. Soil Biology and Biochemistry 31, 1007-1014. DOI: 10.1016/S0038-0717(99)00014-0
Baxter, C., Rowan, J.S., McKenzie, B.M. & Neilson, R. (2013). Understanding soil erosion impacts in temperate agroecosystems: bridging the gap between geomorphology and soil ecology using nematodes as a model organism. Biogeosciences Discussions 10, 7133-7145. DOI: 10.5194/bgd-10-7491-2013
Bongers, T. (1990). The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83, 14-19. DOI: 10.1007/BF00324627
Bongers, T. & Ferris, H. (1999). Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution 14, 224-228. DOI: 10.1016/S0169-5347(98)01583-3
Buchan, D., Gebremikael, M.T., Ameloot, N., Sleutel, S. & de Neve, S. (2013). The effect of free-living nematodes on nitrogen mineralisation in undisturbed and disturbed soil cores. Soil Biology and Biochemistry 60, 142-155. DOI: 10.1016/j.soilbio.2013.01.022
Clarke, K.R. & Warwick, R.M. (2006). Change in marine communities: an approach to statistical analysis and interpretation. Plymouth, UK, Primer-E Ltd.
Collado, S., Oulego, P., Suárez-Iglesias, O. & Díaz, M. (2019). Leachates and natural organic matter. A review of their biotreatment using fungi. Waste Management 96, 108-120. DOI: 10.1016/j.wasman.2019.07.018
Dibbern, D., Schmalwasser, A., Lueders, T. & Totsche, K.U. (2014). Selective transport of plant root-associated bacterial populations in agricultural soils upon snowmelt. Soil Biology and Biochemistry 69, 187-196. DOI: 10.1016/j.soilbio.2013.10.040
Drigo, B., Pijl, A.S., Duyts, H., Kielak, A.M., Gamper, H.A., Houtekamer, M.J., Boschker, H.T.S., Bodelier, P.L.E., Whiteley, A.S., van Veen, J.A. et al. (2010). Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America 107, 10938-10942. DOI: 10.1073/pnas.0912421107
Ferris, H. (2010a). Contribution of nematodes to the structure and function of the soil food web. Journal of Nematology 42, 63-67.
Ferris, H. (2010b). Form and function: metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology 46, 97-104. DOI: 10.1016/j.ejsobi.2010.01.003
Ferris, H. & Bongers, T. (2006). Nematode indicators of organic enrichment. Journal of Nematology 38, 3-12.
Ferris, H. & Bongers, T. (2009). Indices developed specifically for analysis of nematode assemblages. In: Wilson, M.J. & Khakouli-Duarte, T. (Eds). Nematodes as environmental indicators. Wallingford, UK, CAB International, pp. 124-145.
Ferris, H., Bongers, T. & de Goede, R.G.M. (2001). A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology 18, 13-29. DOI: 10.1016/S0929-1393(01)00152-4
Ferris, H., Sánchez-Moreno, S. & Brennan, E.B. (2012). Structure, functions and interguild relationships of the soil nematode assemblage in organic vegetable production. Applied Soil Ecology 61, 16-25. DOI: 10.1016/j.apsoil.2012.04.006
Freckman, D.W. & Ettema, C.H. (1993). Assessing nematode communities in agroecosystems of varying human intervention. Agriculture, Ecosystems and Environment 45, 239-261. DOI: 10.1016/0167-8809(93)90074-Y
Gebremikael, M.T., Steel, H., Buchan, D., Bert, W. & de Neve, S. (2016). Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions. Nature Scientific Reports 6, 32862. DOI: 10.1038/srep32862
Gillet, F.-X., Bournaud, C., de Souza Jr, J.D.A. & Grossi-de-Sa, M.F. (2017). Plant-parasitic nematodes: towards understanding molecular players in stress responses. Annals of Botany 199, 775-789. DOI: 10.1093/aob/mcw260
Glavatska, O., Müller, K., Butenschoen, O., Schmalwasser, A., Kandler, E., Scheu, S., Totsche, K.U. & Ruess, L. (2017). Disentangling the root- and detritus-based food chain in the micro-food web of an arable soil by plant removal. PloS ONE 12, e0180264. DOI: 10.1371/journal.pone.0180264
Griffiths, B.S., Daniell, T.J., Donn, S. & Neilson, R. (2012). Bioindication potential of using molecular characterisation of the nematode community: response to soil tillage. European Journal of Soil Biology 49, 92-97. DOI: 10.1016/j.ejsobi.2011.09.002
Háněl, L. (2003). Recovery of soil nematode populations from cropping stress by natural secondary succession to meadow land. Applied Soil Ecology 22, 255-270. DOI: 10.1016/S0929-1393(02)00152-X
Heijboer, A., Ruess, L., Traugott, M., Jousset, A. & de Ruiter, P. (2017). Empirical methods of identifying and quantifying trophic interactions for constructing soil food web models. In: Moore, J.C., de Ruiter, D., McCabb, K. & Wolters, V. (Eds). Adaptive food webs: stability and transitions of real and model ecosystems. Cambridge, UK, Cambridge University Press, pp. 257-286.
Ilieva-Makulec, K., Tyburski, J. & Makulec, G. (2016). Soil nematodes in organic and conventional farming system: a comparison of the taxonomic and functional diversity. Polish Journal of Ecology 64, 547-563. DOI: 10.3161/15052249PJE2016.64.4.010
Jarvis, N.J. (2007). A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. European Journal of Soil Science 58, 523-546. DOI: 10.1111/j.1365-2389.2007.00915.x
Jiang, Y., Zhou, H., Chen, L., Yuan, Y., Fang, H., Luan, L., Chen, Y., Wang, X., Liu, M., Li, H. et al. (2018). Nematodes and microorganisms interactively stimulate soil organic carbon turnover in the macroaggregates. Frontiers in Microbiology 9, 2803. DOI: 10.3389/fmicb.2018.02803
Kramer, S., Marhan, S., Ruess, L., Armbruster, W., Butenschoen, O., Haslwimmer, H., Kuzyakov, Y., Pausch, J., Scheunemann, N., Schoene, J. et al. (2012). Carbon flow into microbial and fungal biomass as a basis for the belowground food web of agroecosystems. Pedobiologia 55, 111-119. DOI: 10.1016/j.pedobi.2011.12.001
Lipson, D.A., Schadt, C.W. & Schmidt, S.K. (2002). Changes in soil microbial community structure and function in an alpine dry meadow following spring snowmelt. Microbial Ecology 43, 307-314. DOI: 10.1007/s00248-001-1057-x
Maboreke, H.R., Feldhahn, L., Bönn, M., Tarkka, M.T., Buscot, F., Herrmann, S., Menzel, R. & Ruess, L. (2016). Transcriptome analysis in oak uncovers a strong impact of endogenous rhythmic growth on the interaction with plant-parasitic nematodes. BMC Genomics 17, 627. DOI: 10.1186/s12864-016-2992-8
McSorley, R. (1999). Host suitability of potential cover crops for root-knot nematodes. Journal of Nematology 31(4S), 619-623. PMCID: PMC2620418
Moll, J., Goldmann, K., Kramer, S., Hempel, S., Kandeler, E., Marhan, S., Ruess, L., Krüger, D. & Buscot, F. (2015). Resource type and availability regulate fungal communities along arable soil profiles. Microbial Ecology 70, 390-399. DOI: 10.1007/s00248-015-0569-8
Monokrousos, N., Charalampidis, G., Boutsis, G., Sousanidou, V., Patatheodorou, E.M. & Argyropoulou, M.D. (2014). Plant-induced differentiation of soil variables and nematode community structure in a Mediterranean serpentine ecosystem. Soil Research 52, 593-603. DOI: 10.1071/SR14011
Mulder, C. & Maas, R. (2017). Unifying the functional diversity in natural and cultivated soils using the overall body-mass distribution of nematodes. BMC Ecology 17, 36. DOI: 10.1186/s12898-017-0145-9
Müller, K., Kramer, S., Haslwimmer, H., Marhan, S., Scheunemann, N., Butenschön, O., Scheu, S. & Kandeler, E. (2016). Carbon transfer from maize roots and litter into bacteria and fungi depends on soil depth and time. Soil Biology and Biochemistry 93, 79-89. DOI: 10.1016/j.soilbio.2015.10.015
Neher, D.A. (2010). Ecology of plant and free-living nematodes in natural and agricultural soil. Annual Review of Phytopathology 48, 371-394. DOI: 10.1146/annurev-phyto-073009-114439
Nieminen, J.K. (2008). Soil animals and ecosystem processes: how much does nutrient cycling explain? Pedobiologia 51, 367-373. DOI: 10.1016/j.pedobi.2007.09.001
Okada, H. & Harada, H. (2007). Effects of tillage and fertilizer on nematode communities in a Japanese soybean field. Applied Soil Ecology 35, 582-598. DOI: 10.1016/j.apsoil.2006.09.008
Ou, W., Liang, W., Jiang, Y., Li, Q. & Wen, D. (2005). Vertical distribution of soil nematodes under different land use types in an aquatic brown soil. Pedobiologia 49, 139-148. DOI: 10.1016/j.pedobi.2004.10.001
Pausch, J., Tian, J., Riederer, M. & Kuzyakov, Y. (2013). Estimation of rhizodeposition at field scale: upscaling of a 14C labeling study. Plant and Soil 364, 273-285. DOI: 10.1007/s11104-012-1363-8
Pausch, J., Kramer, S., Scharroba, A., Scheunemann, N., Butenschoen, O., Kandeler, E., Marhan, S., Riederer, M., Scheu, S., Kuzyakov, Y. et al. (2016). Small but active – pool size does not matter for carbon incorporation in below-ground food webs. Functional Ecology 30, 479-489. DOI: 10.1111/1365-2435.12512
Pausch, J., Hünninghaus, M., Kramer, S., Scharroba, A., Scheunemann, N., Butenschoen, O., Marhan, S., Bonkowski, M., Kandeler, E., Scheu, S. et al. (2018). Carbon budgets of top- and subsoil food webs in an arable system. Pedobiologia 69, 29-33. DOI: 10.1016/j.pedobi.2018.06.002
Ruess, L. (1995). Nematode fauna in spruce forest soils: a qualitative/quantitative comparison. Nematologica 41, 106-124. DOI: 10.1163/003925995X00080
Ruess, L. & Ferris, H. (2004). Decomposition pathways and successional changes. In: Cook, R. & Hunt, D.J. (Eds). Nematology Monographs and Perspectives 2. Leiden, The Netherlands, Brill, pp. 547-556.
Scharroba, A., Dibbern, D., Hünninghaus, M., Kramer, S., Moll, J., Butenschoen, O., Bonkowski, M., Buscot, F., Kandeler, E., Koller, R. et al. (2012). Effects of resource availability and quality on the micro-food web of an arable soil across depth. Soil Biology and Biochemistry 59, 1-11. DOI: 10.1016/j.soilbio.2012.03.002
Scharroba, A., Kramer, S., Kandeler, E. & Ruess, L. (2016). Spatial and temporal variations of resource allocation in an arable soil drives community structure and biomass of nematodes and their role in the micro-food web. Pedobiologia 59, 111-120. DOI: 10.1016/j.pedobi.2016.03.005
Schmidt, S.K., Costello, E.K., Nemergut, D.R., Reed, S.C., Weintraub, M.N., Meyer, A.F. & Martin, A.M. (2007). Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil. Ecological Society of America 88, 1379-1385. DOI: 10.1890/06-0164
Shannon, C.E. & Weaver, W. (1949). The mathematical theory of communication. Urbana, IL, USA, The University of Illinois Press.
Shi, P., Thorlacius, S., Keller, T., Keller, M. & Schulin, R. (2017). Soil aggregate breakdown in a field experiment with different rainfall intensities and initial soil water contents. European Journal of Soil Science 68, 853-863. DOI: 10.1111/ejss.12472
Sohlenius, B. & Sandor, A. (1987). Vertical distribution of nematodes in arable soil under grass (Festuca pratensis) and barley (Hordeum distichum). Biology and Fertility of Soils 3, 19-25. DOI: 10.1007/BF00260574
Strickland, M.S. & Rousk, J. (2010). Considering fungal: bacterial dominance in soils – Methods, controls, and ecosystems implications. Soil Biology and Biochemistry 9, 1385-1395. DOI: 10.1016/j.soilbio.2010.05.007
van den Hoogen, J., Geisen, S., Routh, D., Ferris, F., Traunspurger, W., Wardle, D.A., de Goede, R.G.M., Adams, B.J., Ahmad, W., Andriuzzi, W.S. et al. (2019). Soil nematode abundance and functional group composition at a global scale. Nature 572, 194-198. DOI: 10.1038/s41586-019-1418-6
Yeates, G.W. & Bongers, T. (1999). Nematode diversity in agroecosystems. Agriculture, Ecosystems & Environment 74, 113-135. DOI: 10.1016/S0167-8809(99)00033-X
Yeates, G.W., Bongers, T., de Goede, R.G.M., Freckman, D.W. & Georgieva, S.S. (1993). Feeding habits in soil nematode families and genera – an outline for soil ecologists. Journal of Nematology 25, 315-331.
Zhang, X., Li, Q., Zhu, A., Liang, W., Zhang, J. & Steinberger, Y. (2012). Effects of tillage and residue management on soil nematode communities in North China. Ecological Indicators 13, 75-81. DOI: 10.1016/j.ecolind.2011.05.009
Zhang, X., Guan, P., Wan, Y., Li, Q., Zhang, S., Zhang, Z., Bezemer, T.M. & Liang, W. (2015). Community composition, diversity and metabolic footprints of soil nematodes in differently-aged temperate forests. Soil Biology and Biochemistry 80, 118-126. DOI: 10.1016/j.soilbio.2014.10.003
Zhao, J., Xiao, J., Zhang, W., Fu, Z., Zhang, M., Liu, T., Tan, Q. & Wang, K. (2019). A method for estimating nematode body lengths for use in the calculation of biomass via a simplified formula. Soil Biology and Biochemistry 134, 36-41. DOI: 10.1016/j.soilbio.2019.03.021
Zhong, S., Zeng, H. & Jin, Z. (2017). Influences of different tillage and residue management systems on soil nematode community composition and diversity in the tropics. Soil Biology and Biochemistry 107, 234-243. DOI: 10.1016/j.soilbio.2017.01.007
| All Time | Past 365 days | Past 30 Days | |
|---|---|---|---|
| Abstract Views | 1329 | 586 | 38 |
| Full Text Views | 90 | 11 | 1 |
| PDF Views & Downloads | 148 | 17 | 0 |
In an arable field the herbivore and detritivore soil food chains were manipulated by the following treatments: maize as crop, amendment with maize litter and bare soil, representing labile rhizodeposits, recalcitrant plant debris and soil organic matter as major resource, respectively. Samples from top soil, rooted zone and root-free zone were collected in two consecutive years. The impact of these differences in resource availability and quality on the nematode community composition, Maturity Index (MI), diversity (
| All Time | Past 365 days | Past 30 Days | |
|---|---|---|---|
| Abstract Views | 1329 | 586 | 39 |
| Full Text Views | 90 | 11 | 1 |
| PDF Views & Downloads | 148 | 17 | 0 |