Mathematical Generality, Letter-Labels, and All That

In: Phronesis
Author: F. Acerbi 1
View More View Less
  • 1 CNRS, UMR 8167 Orient et Méditerranée, Paris

Purchase instant access (PDF download and unlimited online access):

€25.00$30.00

Abstract

This article focusses on the generality of the entities involved in a geometric proof of the kind found in ancient Greek treatises: it shows that the standard modern translation of Greek mathematical propositions falsifies crucial syntactical elements, and employs an incorrect conception of the denotative letters in a Greek geometric proof; epigraphic evidence is adduced to show that these denotative letters are ‘letter-labels’. On this basis, the article explores the consequences of seeing that a Greek mathematical proposition is fully general, and the ontological commitments underlying the stylistic practice.

  • Acerbi, F. (2011). Perché una dimostrazione geometrica greca è generale. In: G. Micheli and F. Franco Repellini, eds., La scienza antica e la sua tradizione. Milan, pp. 25-80.

    • Search Google Scholar
    • Export Citation
  • Acerbi, F. (2012). I codici stilistici della matematica greca: dimostrazioni, procedure, algoritmi. Quaderni Urbinati di Cultura Classica 101, pp. 167-214.

    • Search Google Scholar
    • Export Citation
  • Acerbi, F. (2013). Aristotle and Euclid’s Postulates. Classical Quarterly 63, pp. 680-685.

  • Acerbi, F. (2017). The Mathematical Scholia Vetera to Almagest I.10-15. With a Critical Edition of the Diagrams and an Interpretation of Their Symmetry Properties. SCIAMVS 18, pp. 133-259.

    • Search Google Scholar
    • Export Citation
  • Aerts, W. J. (1965). Periphrastica. An Investigation into the Use of εἶναι and ἔχειν as Auxiliaries or Pseudo-Auxiliaries in Greek from Homer up to the Present Day. Amsterdam.

    • Search Google Scholar
    • Export Citation
  • Allan, R. (2010). The infinitivus pro imperativo in Ancient Greek. The Imperatival Infinitive as an Expression of Proper Procedural Action. Mnemosyne 63, pp. 203-228.

    • Search Google Scholar
    • Export Citation
  • Allman, G. J. (1889). Greek Geometry from Thales to Euclid. Dublin.

  • Avigad, J., Dean, E. and Mumma, J. (2009). A Formal System for Euclid’s Elements. The Review of Symbolic Logic 2, pp. 700-768.

  • Bailey, N. A. (2009). Thetic Constructions in Koine Greek. PhD Dissertation, Vrije Universiteit Amsterdam.

  • Bakker, E. J. (1993). Boundaries, Topics, and the Structure of Discourse. An Investigation of the Ancient Greek Particle . Studies in Language 17, pp. 275-311.

    • Search Google Scholar
    • Export Citation
  • Bakker, S. J. (2009). The Noun Phrase in Ancient Greek. A Functional Analysis of the Order and Articulation of NP Constituents in Herodotus. Amsterdam.

    • Search Google Scholar
    • Export Citation
  • Barnes, J. (2006). Osservazioni sull’uso delle lettere nella sillogistica di Aristotele. Elenchos 27, pp. 277-304.

  • Barnes, J. (2007). Truth, Etc. Six Lectures on Ancient Logic. Oxford.

  • Becker, O. (1934-6). Zur Textgestaltung des eudemischen Berichts über die Quadratur der Möndchen durch Hippokrates von Chios. Quellen und Studien zur Geschichte der Mathematik, Astronomie, und Physik B3, pp. 411-419.

    • Search Google Scholar
    • Export Citation
  • Beeson, M. (2010). Constructive Geometry. In: T. Arai et al., eds., Proceedings of the 10th Asian Logic Conference. Singapore, pp. 19-84.

    • Search Google Scholar
    • Export Citation
  • Bentein, K. (2016). Verbal Periphrasis in Ancient Greek. Have- and Be- Constructions. Oxford.

  • Berkeley, G. (1734). Principles of Human Knowledge. London.

  • Beth, E. W. (1953/54). Kants Einteilung der Urteile in analytische und synthetische. Algemeen Nederlands Tijdschrift voor Wijsbegeerte en Psychologie 46, pp. 253-264.

    • Search Google Scholar
    • Export Citation
  • Beth, E. W. (1956/57). Über Lockes ‘allgemeines Dreieck’. Kant-Studien 48, pp. 361-380.

  • Bobzien, S. (1997). The Stoics on Hypotheses and Hypothetical Arguments. Phronesis 42, pp. 299-312.

  • Bobzien, S. (1999). Logic. The Stoics. In: K. Algra, J. Barnes, J. Mansfeld and M. Schofield, eds., The Cambridge History of Hellenistic Philosophy. Cambridge, pp. 92-157.

    • Search Google Scholar
    • Export Citation
  • De Morgan, A. (1860). Syllabus of a Proposed System of Logic. London.

  • Devine, A. M. and Stephens, L. D. (2000). Discontinuous Syntax. Hyperbaton in Greek. Oxford.

  • Diels, H., ed. (1882). Simplicii in Aristotelis Physicorum libros quattuor priores commentaria. Berlin.

  • Dik, H. (1995). Word Order in Ancient Greek. A Pragmatic account of Word Order Variation in Herodotus. Amsterdam.

  • Duhoux, Y. (2000). Le verbe grec ancien. Éléments de morphologie et de syntaxe historiques. Louvain-La-Neuve.

  • Federspiel, M. (1992). Sur la locution ἐφ’ οὗ / ἐφ’ ᾧ servant a désigner des êtres géométriques par des lettres. In: J.-Y. Guillaumin, ed., Mathématiques dans l’Antiquité. Saint-Étienne, pp. 9-25.

    • Search Google Scholar
    • Export Citation
  • Federspiel, M. (1995). Sur l’opposition défini/indéfini dans la langue des mathématiques grecques. Les Études Classiques 63, pp. 249-293.

    • Search Google Scholar
    • Export Citation
  • Federspiel, M. (2008). Les problèmes des livres grecs des Coniques d’Apollonius de Perge. Des propositions mathématiques en quête d’auteur. Les Études Classiques 76, pp. 321-360.

    • Search Google Scholar
    • Export Citation
  • Federspiel, M. (2010). Sur l’élocution de l’ecthèse dans la géométrie grecque classique. L’Antiquité Classique 79, pp. 95-116.

    • Search Google Scholar
    • Export Citation
  • Fine, K. (1983). A Defence of Arbitrary Objects. Proceedings of the Aristotelian Society, Supplementary Volume 57, pp. 55-77.

  • Fine, K. (1985). Reasoning with Arbitrary Objects. Oxford.

  • Gomez-Lobo, A. (1977). Aristotle’s Hypotheses and Euclid’s Postulates. Review of Metaphysics 30, pp. 430-439.

  • Gulwani, S., Korthikanti, V. A. and Tiwari, A. (2011). Synthetising Geometry Constructions. ACM SIGPLAN Notices 46, pp. 50-61.

  • Hand, M. (2007). Objectual and Substitutional Interpretations of the Quantifiers. In: D. Jacquette, ed., Philosophy of Logic. Amsterdam, pp. 649-674.

    • Search Google Scholar
    • Export Citation
  • Heath, T. L. (1949), Mathematics in Aristotle. Oxford.

  • Heiberg, J. L. and Menge, H., eds. (1883-1916). Euclidis opera omnia. 8 vols. Leipzig.

  • Heiberg, J. L., ed. (1898-1907). Claudii Ptolemaei opera quae exstant omnia. 2 vols. Leipzig.

  • Heiberg, J. L., ed. (1910-15). Archimedis opera omnia cum commentariis Eutocii. 3 vols. Leipzig.

  • Hintikka, J. (1973). Logic, Language-Games and Information. Oxford.

  • Hintikka, J. (1977). Aristotle’s Incontinent Logician. Ajatus 77, pp. 48-65.

  • Hintikka, J. and Remes, U. (1974). The Method of Analysis. Its Geometrical Origin and its General Significance. Dordrecht / Boston.

  • Husserl, E. (1984). Logische Untersuchungen. Gesammelte Werke, Band XIX/1. Berlin.

  • Hussey, E. (1991). Aristotle on Mathematical Objects. In: I. Mueller, ed., ΠΕΡΙ ΤΩΝ ΜΑΘΗΜΑΤΩΝ. Edmonton, pp. 105-133.

  • Jones A. (1986). Pappus of Alexandria, Book 7 of the Collection. New York.

  • Jones A. (1994). Peripatetic and Euclidean Theories of the Visual Ray. Physis 31, pp. 45-76.

  • Kahn, C. H. (1973). The Verb ‘Be’ in Ancient Greek. Indianapolis / Cambridge.

  • Kant, I. (1787). Kritik der reinen Vernunft. 2nd edn. Riga.

  • King, J. C. (1991). Instantial Terms, Anaphora and Arbitrary Objects. Philosophical Studies 61, pp. 239-265.

  • Knorr, W. R. (1994). Pseudo-Euclidean Reflections in Ancient Optics: A Re-Examination of Textual Issues Pertaining to the Euclidean Optica and Catoptrica. Physis 31, pp. 1-45.

    • Search Google Scholar
    • Export Citation
  • Kripke, S. (1976). Is There a Problem about Substitutional Quantification? In: G. Evans and J. McDowell, eds., Truth and Meaning. Oxford, pp. 325-419.

    • Search Google Scholar
    • Export Citation
  • Lattmann, C. (2018). Diagrammatizing Mathematics: Some Remarks on a Revolutionary Aspect of Ancient Greek Mathematics. In: M. Sialaros, ed., Revolutions and Continuity in Greek Mathematics. Berlin, pp. 107-129.

    • Search Google Scholar
    • Export Citation
  • Lattmann, C. (2019). Mathematische Modellierung bei Platon zwischen Thales und Euklid. Berlin.

  • Lear, J. (1980). Aristotle and Logical Theory. Cambridge.

  • Lee, H. D. P. (1935). Geometrical Method and Aristotle’s Account of First Principles. Classical Quarterly 29, pp. 113-124.

  • Lemmon, E. J. (1990). Beginning Logic. London.

  • Locke, J. (1700). An Essay Concerning Human Understanding. London.

  • Mäenpää, P. and von Plato, J. (1990). The Logic of Euclidean Construction Procedures. Acta Philosophica Fennica 49, pp. 275-293.

  • Malink, M. (2008). Τῷ vs τῶν in Prior Analytics 1.1-22. Classical Quarterly 58, pp. 519-536.

  • Malink, M. (2017). Aristotle on Principles as Elements. Oxford Studies in Ancient Philosophy 53, 163-213.

  • Manders, K. (2008 a). Diagram-Based Geometric Practice. In: P. Mancosu, ed., The Philosophy of Mathematical Practice. Oxford, pp. 65-79.

    • Search Google Scholar
    • Export Citation
  • Manders, K. (2008 b). The Euclidean Diagram (1995). In: P. Mancosu, ed., The Philosophy of Mathematical Practice. Oxford, pp. 80-133.

  • Mendell, H. (1986). Aristotle and the Mathematicians. Some Cross-Currents in the Fourth Century. PhD Dissertation, Stanford University.

  • Moler, N. and Suppes P. (1968). Quantifier-Free Axioms for Constructive Plane Geometry. Compositio Mathematica 20, pp. 143-152.

  • Moreschini Quattordio, A. (1970/1971). L’uso dell’imperativo e dell’infinito in Omero e nella tradizione epigrafica. Studi Classici e Orientali 19/20, pp. 347-358.

    • Search Google Scholar
    • Export Citation
  • Mueller, I. (1970). Aristotle on Geometric Objects. Archiv für Geschichte der Philosophie 52, pp. 156-171.

  • Mueller, I. (1981). Philosophy of Mathematics and Deductive Structure in Euclid’s Elements. Cambridge MA / London.

  • Mueller, I. (1991). On the Notion of a Mathematical Starting Point in Plato, Aristotle, and Euclid. In: A. C. Bowen, ed., Science and Philosophy in Classical Greece. New York / London, pp. 59-97.

    • Search Google Scholar
    • Export Citation
  • Mumma, J. (2010). Proofs, Pictures, and Euclid. Synthèse 175, pp. 255-287.

  • Netz, R. (1999). The Shaping of Deduction in Greek Mathematics. Cambridge.

  • Neuberger-Donath, R. (1980). The Obligative Infinitive in Homer and its Relationships to the Imperative. Folia Linguistica 14, pp. 65-82.

    • Search Google Scholar
    • Export Citation
  • Pambuccian, V. (2008). Axiomatizing Geometric Constructions. Journal of Applied Logic 6, pp. 24-46.

  • Panza, M. (2012). The Twofold Role of Diagrams in Euclid’s Plane Geometry. Synthèse 186, pp. 55-102.

  • Peirce, C. S. (1931-1935). Collected Papers. 6 vols. Cambridge MA.

  • Peters, R. D. (2014). The Greek Article. A Functional Grammar of ὁ-items in the Greek New Testament with Special Emphasis on the Greek Article. Leiden / Boston.

    • Search Google Scholar
    • Export Citation
  • Rudio, F. (1902). Der Bericht des Simplicius über die Quadraturen des Antiphon und des Hippokrates. Bibliotheca Mathematica 3.3, pp. 7-62.

    • Search Google Scholar
    • Export Citation
  • Ruijgh, C. J. (1979). Review of Kahn 1973. Lingua 48, pp. 43-83.

  • Ruijgh, C. J. (1984). Sur la valeur fondamentale de εἶναι: une réplique. Mnemosyne 37, pp. 264-270.

  • Ruijgh, C. J. (1990). La place des enclitiques dans l’ordre des mots chez Homère d’après la loi de Wackemagel. In: H. Eichner and H. Rix, eds., Sprachwissenschaft und Philologie. Jacob Wackernagel und die Indogermanistik heute. Wiesbaden, pp. 213-233.

    • Search Google Scholar
    • Export Citation
  • Russell, B. (1908). Mathematical Logic as Based on the Theory of Types. American Journal of Mathematics 30, pp. 222-262.

  • Saito, K. (2006). A Preliminary Study in the Critical Assessment of Diagrams in Greek Mathematical Works. SCIAMVS 7, pp. 81-144.

  • Saito, K. and Sidoli, N. (2012). Diagrams and Arguments in Ancient Greek Mathematics: Lessons Drawn from Comparisons of the Manuscript Diagrams with those in Modern Critical Editions. In: K. Chemla, ed., The History of Mathematical Proof in Ancient Traditions. Cambridge, pp. 135-162.

    • Search Google Scholar
    • Export Citation
  • Sidoli, N. (2018). Uses of Construction in Problems and Theorems in Euclid’s Elements I-VI. Archive for History of Exact Sciences 72, pp. 403-452.

    • Search Google Scholar
    • Export Citation
  • Smith, R. (1982). What is Aristotelian Ecthesis? History and Philosophy of Logic 3, pp. 113-127.

  • Tannery, P. (1883). Le fragment d’Eudème sur la quadrature des lunules. Mémoires de la Société des sciences physiques et naturelles de Bordeaux, 2e série. 5, pp. 217-237. [Reprinted in Mémoires Scientifiques. Volume 1. Toulouse / Paris, 1912, pp. 339-370.]

    • Search Google Scholar
    • Export Citation
  • Tannery, P. (1886). Aristote, Météorologie, Livre III, Ch. V. Revue de Philologie 9, pp. 38-46. [Reprinted in Mémoires Scientifiques. Volume 9. Toulouse / Paris, 1929, pp. 51-61.]

    • Search Google Scholar
    • Export Citation
  • Tannery, P. (1902). Simplicius et la quadrature du cercle. Bibliotheca Mathematica, 3. Folge, 3, pp. 342-349 [Reprinted in Mémoires Scientifiques. Volume 3. Toulouse / Paris, 1915, pp. 119-130.]

    • Search Google Scholar
    • Export Citation
  • Tarski, A. (1951). A Decision Method for Elementary Algebra and Geometry. Berkeley / Los Angeles.

  • Tarski, A. (1959). What is Elementary Geometry? In: L. Henkin, P. Suppes and A. Tarski, eds., The Axiomatic Method. Amsterdam / New York / London, pp. 16-29.

    • Search Google Scholar
    • Export Citation
  • Tod, M. N. (1911-12). The Greek Numeral Notation. The Annual of the British School at Athens 18, pp. 98-132.

  • Tod, M. N. (1913). Three Greek Numeral Systems. The Journal of Hellenic Studies 33, pp. 27-34.

  • Tod, M. N. (1926-27). Further Notes on the Greek Acrophonic Numerals. The Annual of the British School at Athens 28, pp. 141-157.

  • Tod, M. N. (1936-37). The Greek Acrophonic Numerals. The Annual of the British School at Athens 37, pp. 236-258.

  • Tod, M. N. (1950). The Alphabetic Numeral System in Attica. The Annual of the British School at Athens 45, pp. 126-139.

  • Tod, M. N. (1954). Letter-Labels in Greek Inscriptions. The Annual of the British School at Athens 49, pp. 1-8.

  • Toomer, G. J., ed. and tr. (1984). Ptolemy’s Almagest. London.

  • Vitrac, B. (2002). Note Textuelle sur un (Problème de) Lieu Géométrique dans les Météorologiques d’Aristote (III.5, 375b16-376b22). Archive for History of Exact Sciences 56, pp. 239-283.

    • Search Google Scholar
    • Export Citation
  • Zeuthen, H. G. (1896). Die geometrische Construction als ‘Existenzbeweis’ in der antiken Geometrie. Mathematische Annalen 47, pp. 222-228.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 221 221 8
Full Text Views 71 71 10
PDF Downloads 48 48 5