Contributions of the Basal Ganglia to Temporal Processing: Evidence from Parkinson’s Disease

In: Timing & Time Perception
View More View Less
  • 1 School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT, UK
  • | 2 Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK

Purchase instant access (PDF download and unlimited online access):

€29.95$34.95

The motor and perceptual timing deficits documented in patients with Parkinson’s disease (PD) have heavily influenced the theory that the basal ganglia play an important role in temporal processing. This review is a systematic exploration of the findings from behavioural and neuroimaging studies of motor and perceptual timing in PD. In particular, we consider the influence of a variety of task factors and of patient heterogeneity in explaining the mixed results. We also consider the effect of basal ganglia dysfunction on the non-temporal cognitive factors that contribute to successful motor and perceptual timing. Although there is convincing evidence from PD that the basal ganglia are critical to motor and perceptual timing, further work is needed to characterize the precise contribution of this complex structure to temporal processing.

  • Alexander G. E., DeLong M. R., Strick P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci., 9, 357381.

    • Search Google Scholar
    • Export Citation
  • Allman M. J., Meck W. H. (2012). Pathophysiological distortions in time perception and timed performance. Brain, 135, 656677.

  • Artieda J., Pastor M. A., Lacruz F., Obeso J. A. (1992). Temporal discrimination is abnormal in Parkinson’s disease. Brain, 115, 199210.

  • Bareš M., Lungu O. V., Husárová I., Gescheidt T. (2010). Predictive motor timing performance dissociates between early diseases of the cerebellum and Parkinson’s disease. Cerebellum, 9, 124135.

    • Search Google Scholar
    • Export Citation
  • Brown R. G., Marsden C. D. (1991). Dual task performance and processing resources in normal subjects and patients with Parkinson’s disease. Brain, 114, 215231.

    • Search Google Scholar
    • Export Citation
  • Buhusi C. V., Meck W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nat. Rev. Neurosci., 6, 755765.

    • Search Google Scholar
    • Export Citation
  • Cerasa A., Hagberg G. E., Peppe A., Bianciardi M., Gioia M., Costa A., Castriota-Scanderbeg A., Caltagirone C., Sabatini U. (2006). Functional changes in the activity of cerebellum and frontostriatal regions during externally and internally timed movement in Parkinson’s disease. Brain Res. Bull., 71, 259269.

    • Search Google Scholar
    • Export Citation
  • Chaudhuri K. R., Healy D. G., Schapira A. H. (2006). Non-motor symptoms of Parkinson’s disease: Diagnosis and management. Lancet Neurol., 5, 235245.

    • Search Google Scholar
    • Export Citation
  • Chaudhuri K. R., Schapira A. H. (2009). Non-motor symptoms of Parkinson’s disease: Dopaminergic pathophysiology and treatment. Lancet Neurol., 8, 464474.

    • Search Google Scholar
    • Export Citation
  • Cheng R. K., Ali Y. M., Meck W. H. (2007). Ketamine “unlocks” the reduced clock-speed effect of cocaine following extended training: Evidence for dopamine–glutamate interactions in timing and time perception. Neurobiol. Learn. Mem., 88, 149159.

    • Search Google Scholar
    • Export Citation
  • Claassen D. O., Jones C. R., Yu M., Dirnberger G., Malone T., Parkinson M., Giunti P., Kubovy M., Jahanshahi M. (2013). Deciphering the impact of cerebellar and basal ganglia dysfunction in accuracy and variability of motor timing. Neuropsychologia, 51, 267274.

    • Search Google Scholar
    • Export Citation
  • Collier G. L., Ogden R. T. (2001). Variance decomposition of tempo drift in isochronous rhythmic tapping. Ann. NY Acad. Sci., 930, 405408.

    • Search Google Scholar
    • Export Citation
  • Conte A., Modugno N., Lena F., Dispenza S., Gandolfi B., Iezzi E., Fabbrini G., Berardelli A. (2010). Subthalamic nucleus stimulation and somatosensory temporal discrimination in Parkinson’s disease. Brain, 133, 26562663.

    • Search Google Scholar
    • Export Citation
  • Cools R., Barker R. A., Sahakian B. J., Robbins T. W. (2001). Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cereb. Cortex, 11, 11361143.

    • Search Google Scholar
    • Export Citation
  • Coull J. T., Cheng R. K., Meck W. H. (2011). Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology, 36, 325.

  • Coull J. T., Hwang H. J., Leyton M., Dagher A. (2012). Dopamine precursor depletion impairs timing in healthy volunteers by attenuating activity in putamen and supplementary motor area. J. Neurosci., 32, 1670416715.

    • Search Google Scholar
    • Export Citation
  • Coull J. T., Nobre A. C. (2008). Dissociating explicit timing from temporal expectation with fMRI. Curr. Opin. Neurobiol., 18, 137144.

    • Search Google Scholar
    • Export Citation
  • Domellöf M. E., Elgh E., Forsgren L. (2011). The relation between cognition and motor dysfunction in drug-naive newly diagnosed patients with Parkinson’s disease. Movement Disord., 26, 21832189.

    • Search Google Scholar
    • Export Citation
  • Domellöf M. E., Forsgren L. & Elgh E. (in press). Persistence of associations between cognitive impairment and motor dysfunction in the early phase of Parkinson’s disease. J. Neurol.

    • Search Google Scholar
    • Export Citation
  • Drew M. R., Fairhurst S., Malapani C., Horvitz J. C., Balsam P. D. (2003). Effects of dopamine antagonists on the timing of two intervals. Pharmacol. Biochem. Behav., 75, 915.

    • Search Google Scholar
    • Export Citation
  • Duchek J. M., Balota D. A., Ferraro F. R. (1994). Component analysis of a rhythmic finger tapping task in individuals with senile dementia of the Alzheimer type and in individuals with Parkinson’s disease. Neuropsychology, 8, 218226.

    • Search Google Scholar
    • Export Citation
  • Dušek P., Jech R., Sieger T., Vymazal J., Růžička E., Wackermann J., Mueller K. (2012). Abnormal activity in the precuneus during time perception in Parkinson’s disease: An fMRI study. PLoS One, 7, e29635. doi:10.1371/journal.pone.0029635.

    • Search Google Scholar
    • Export Citation
  • Elsinger C. L., Rao S., Zimbelman J. L., Reynolds N. C., Blindauer K. A., Hoffmann R. G. (2003). Neural basis for impaired time reproduction in Parkinson’s disease: An fMRI study. J. Int. Neuropsychol. Soc., 9, 10881098.

    • Search Google Scholar
    • Export Citation
  • Fahn S., Elton R. L., & members of the UPDRS Development Committee (1987). Unified Parkinson’s Disease rating scale. In Fahn S., Marsden C. D., Calne D. B., Goldstein M. (Eds.), Recent developments in Parkinson’s disease (pp.  153164). Florham Park, NJ, USA: Macmillan Healthcare Information.

    • Search Google Scholar
    • Export Citation
  • Filippopoulos P. C., Hallworth P., Lee S. & Wearden J. H. (in press). Interference between auditory and visual duration judgments suggests a common code for time. Psychol. Res.

    • Search Google Scholar
    • Export Citation
  • Fiorio M., Stanzani C., Rothwell J. C., Bhatia K. P., Moretto G., Fiaschi A., Tinazzi M. (2007). Defective temporal discrimination of passive movements in Parkinson’s disease. Neurosci. Lett., 417, 312315.

    • Search Google Scholar
    • Export Citation
  • Follett K. A., Weaver F. M., Stern M., Hur K., Harris C. L., Luo P., Marks W. J. Jr., Rothlind J., Sagher O., Moy C., Pahwa R., Burchiel K., Hogarth P., Lai E. C., Duda J. E., Holloway K., Samii A., Horn S., Bronstein J. M., Stoner G., Starr P. A., Simpson R., Baltuch G., De Salles A., Huang G. D., Reda D. J., & CSP 468 Study Group (2012). Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. New Engl. J. Med., 362, 20772091.

    • Search Google Scholar
    • Export Citation
  • Freeman J. S., Cody F. W., Schady W. (1993). The influence of external timing cues upon the rhythm of voluntary movements in Parkinson’s disease. J. Neurol. Neurosurg. Psychiat., 56, 10781084.

    • Search Google Scholar
    • Export Citation
  • Gibbon J. (1977). Scalar expectancy theory and Weber’s law in animal timing. Psychol. Rev., 84, 279325.

  • Gibbon J., Church R. M., Meck W. H. (1984). Scalar timing in memory. Ann. NY Acad. Sci., 423, 5277.

  • Gibbon J., Malapani C., Dale C. L., Gallistel C. R. (1997). Toward a neurobiology of temporal cognition: Advances and challenges. Curr. Opin. Neurobiol., 7, 170184.

    • Search Google Scholar
    • Export Citation
  • Gotham A. M., Brown R. G., Marsden C. D. (1988). Frontal’ cognitive function in patients with Parkinson’s disease ‘on’ and ‘off’ levodopa. Brain, 111, 299321.

    • Search Google Scholar
    • Export Citation
  • Graham J. M., Sagar H. J. (1999). A data-driven approach to the study of heterogeneity in idiopathic Parkinson’s disease: Identification of three distinct syptypes. Movement Disord., 14, 1020.

    • Search Google Scholar
    • Export Citation
  • Grahn J. A., Brett M. (2009). Impairment of beat-based rhythm discrimination in Parkinson’s disease. Cortex, 45, 5461.

  • Gu B.-M., Jurkowski A. J., Lake J. I., Malapani C. & Meck W. H. (in press). Bayesian models of interval timing and distortions in temporal memory as a function of Parkinson’s disease and dopamine-related error processing. In Vatakis A., Allman M. J. (Eds.), Time distortions in mind: temporal processing in clinical populations. Leiden, The Netherlands: Brill.

    • Search Google Scholar
    • Export Citation
  • Guehl D., Burbaud P., Lorenzi C., Ramos C., Bioulac B., Semal C., Demany L. (2008). Auditory temporal processing in Parkinson’s disease. Neuropsychologia, 46, 23262335.

    • Search Google Scholar
    • Export Citation
  • Harrington D. L., Castillo G. N., Greenberg P. A., Song D. D., Lessig S., Lee R. R., Rao S. M. (2011). Neurobehavioural mechanisms of temporal processing deficits in Parkinson’s disease. PLoS One, 6, e17461. doi:10.1371/journal.pone.0017461.

    • Search Google Scholar
    • Export Citation
  • Harrington D. L., Haaland K. Y., Hermanowicz N. (1998). Temporal processing in the basal ganglia. Neuropsychology, 12, 312.

  • Hellström A., Lang H., Portin R., Rinne J. (1997). Tone duration discrimination in Parkinson’s disease. Neuropsychologia, 35, 737740.

  • Hinton S. C., Harrington D. L., Binder J. R., Durgerian S., Rao S. M. (2004). Neural systems supporting timing and chronometric counting: An fMRI study. Cognitive Brain Res., 21, 183192.

    • Search Google Scholar
    • Export Citation
  • Hinton S. C., Meck W. H. (2004). Frontal-striatal circuitry activated by human peak-interval timing in the supra-seconds range. Cognitive Brain Res., 21, 171182.

    • Search Google Scholar
    • Export Citation
  • Hinton S. C., Rao S. M. (2004). One-thousand one… one-thousand two…”: Chronometric countring violates the scalar property in interval timing. Psychonom. Bull. Rev., 11, 2430.

    • Search Google Scholar
    • Export Citation
  • Hoehn M., Yahr M. (1967). Parkinsonism: Onset, progression and mortality. Neurology, 17, 427442.

  • Husárová I., Lungu O. V., Mareček R., Mikl M., Gescheidt T., Krupa P., Bareš M. (2011). Functional imaging of the cerebellum and basal ganglia during motor predictive motor timing in early Parkinson’s disease. J. Neuroimaging. doi:10.1111/j.1552-6569.2011.00663.x.

    • Search Google Scholar
    • Export Citation
  • Ivry R. B. (1996). The representation of temporal information in perception and motor control. Curr. Opin. Neurobiol., 6, 851857.

  • Ivry R. B., Keele S. W. (1989). Timing functions of the cerebellum. J. Cognitive Neurosci., 1, 136152.

  • Jahanshahi M., Jones C. R. G., Dirnberger G., Frith C. D. (2006). The substantia nigra pars compacta and temporal processing. J. Neurosci., 26, 1226612273.

    • Search Google Scholar
    • Export Citation
  • Jahanshahi M., Wilkinson L., Gahir H., Dharminda A., Lagnado D. A. (2010a). Medication impairs probailistic classification learning in Parkinson’s disease. Neuropsychologia, 48, 10961103.

    • Search Google Scholar
    • Export Citation
  • Jahanshahi M., Jones C. R. G., Zijlmans J., Katzenschlager R., Lee L., Quinn N., Frith C. D., Lees A. J. (2010b). Dopaminergic modulation of striato-frontal connectivity during motor timing in Parkinson’s disease. Brain, 133, 727745.

    • Search Google Scholar
    • Export Citation
  • Jäncke L., Specht K., Mirzazade S., Loose R., Himmelbach M., Lutz K., Shah N. J. (1998). A parametric analysis of the ‘rate effect’ in the sensorimotor cortex: A functional magnetic resonance imaging analysis in human subjects. Neurosci. Lett., 252, 3740.

    • Search Google Scholar
    • Export Citation
  • Jankovic J., McDermott M., Carter J., Gauthier S., Goetz C., Golbe L., Huber S., Koller W., Olanow C., Shoulson I., Stern M., Tanner C., Weiner A., & Parkinson Study Group (1990). Variable expression of Parkinson’s disease: A base-line analysis of the DATATOP cohort. Neurology, 40, 15291534.

    • Search Google Scholar
    • Export Citation
  • Jones C. R. G., Claassen D. O., Minhong Y., Spies J. R., Malone T., Dirnberger G., Jahanshahi M., Kubovy M. (2011). Modeling accuracy and variability of motor timing in treated and untreated Parkinson’s disease and healthy controls. Frontiers Integrat. Neurosci., 5, 81. doi:10.3389/fnint.2011.00081.

    • Search Google Scholar
    • Export Citation
  • Jones C. R. G., Jahanshahi M. (2009). The substantia nigra, the basal ganglia, dopamine and temporal processing. J. Neural Transm., 73, 161171.

    • Search Google Scholar
    • Export Citation
  • Jones C. R. G., Jahanshahi M. (2011). Dopamine modulates striato-frontal functioning during temporal processing. Frontiers Integrat. Neurosci., 5, 70. doi:10.3389/fnint.2011.00070.

    • Search Google Scholar
    • Export Citation
  • Jones C. R. G., Malone T. J., Dirnberger G., Edwards M., Jahanshahi M. (2008). Basal ganglia, dopamine and temporal processing: Performance on three timing tasks on and off medication in Parkinson’s disease. Brain Cognition, 68, 3041.

    • Search Google Scholar
    • Export Citation
  • Joundi R. A., Brittain J. S., Green A. L., Aziz T. Z., Jenkinson N. (2012). High-frequency stimulation of the subthalamic nucleus selectively decreases central variance of rhythmic finger tapping in Parkinson’s disease. Neuropsychologia, 50, 24602466.

    • Search Google Scholar
    • Export Citation
  • Keele S. W., Pokorny R. A., Corcos D. M., Ivry R. (1985). Do perception and motor production share common timing mechanisms: A correctional analysis. Acta Psychol., 60, 173191.

    • Search Google Scholar
    • Export Citation
  • Kehagia A. A., Barker R. A., Robbins T. W. (2010). Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurol., 9, 12001213.

    • Search Google Scholar
    • Export Citation
  • Kessler J., Markowitsch H. J., Denzler P. (2000). Mini-Mental-Status-Test (MMST). Göttingen: Beltz-Test GmbH.

  • Koch G., Brusa L., Caltagirone C., Oliveri M., Peppe A., Tiraboschi P., Stanzione P. (2004). Subthalamic deep brain stimulation improves time perception in Parkinson’s disease. NeuroReport, 15, 10711073.

    • Search Google Scholar
    • Export Citation
  • Koch G., Brusa L., Oliveri M., Stanzione P., Caltagirone C. (2005). Memory for time intervals is impaired in left hemi-Parkinson patients. Neuropsychologia, 43, 11631167.

    • Search Google Scholar
    • Export Citation
  • Koch G., Costa A., Brusa L., Peppe A., Gatto I., Torriero S., Lo Gerfo E., Salerno S., Oliveri M., Carlesimo G. A., Caltagrione C. (2008). Impaired reproduction of second but not millisecond time intervals in Parkinson’s disease. Neuropsychologia, 46, 13051313.

    • Search Google Scholar
    • Export Citation
  • Lake J. I., Meck W. H. (2013). Differential effects of amphetamine and haloperidol on temporal reproduction: Dopaminergic regulation of attention and clock speed. Neuropsychologia, 51, 284292.

    • Search Google Scholar
    • Export Citation
  • Lange K. W., Tucha O., Steup A., Gsell W., Naumann M. (1995). Subjective time estimation in Parkinson’s disease. J. Neural Transm. Suppl., 46, 433438.

    • Search Google Scholar
    • Export Citation
  • Lee M. S., Kim H. S., Lyoo C. H. (2005). “Off” gait freezing and temporal discrimination threshold in patients with Parkinson disease. Neurology, 64, 670674.

    • Search Google Scholar
    • Export Citation
  • Lewis S. J., Cools R., Robbins T. W., Dove A., Barker R. A., Owen A. M. (2003). Using executive heterogeneity to explore the nature of working memory deficits in Parkinson’s disease. Neuropsychologia, 41, 645654.

    • Search Google Scholar
    • Export Citation
  • Lewis S. J., Foltynie T., Blackwell A. D., Robbins T. W., Owen A. M., Barker R. A. (2005). Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach. J. Neurol. Neurosurg. Psychiat., 76, 343348.

    • Search Google Scholar
    • Export Citation
  • Lewis P. A., Miall R. C. (2003). Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Curr. Opin. Neurobiol., 13, 250255.

    • Search Google Scholar
    • Export Citation
  • Logigian E., Hefter H., Reiners K., Freund H. J. (1991). Does tremor pace repetitive voluntary motor behavior in Parkinson’s disease? Ann. Neurol., 30, 172179.

    • Search Google Scholar
    • Export Citation
  • Lustig C., Matell M. S., Meck W. H. (2005). Not “just” a coincidence: Frontal-striatal interactions in working memory and interval timing. Memory, 13, 441448.

    • Search Google Scholar
    • Export Citation
  • Lustig C., Meck W. H. (2005). Chronic treatment with haloperidol induces working memory deficits in feedback effects of interval timing. Brain Cognition, 58, 916.

    • Search Google Scholar
    • Export Citation
  • Lyoo C. H., Ryu Y. H., Lee M. J., Lee M. S. (2012). Striatal dopamine loss and discriminative sensory dysfunction in Parkinson’s disease. Acta Neurol. Scand., 126, 344349.

    • Search Google Scholar
    • Export Citation
  • MacDonald C. J., Meck W. H. (2005). Differential effects of clozapine and haloperidol on interval timing in the supraseconds range. Psychopharmacology (Berl.), 182, 232244.

    • Search Google Scholar
    • Export Citation
  • MacDonald A. A., Monchi O., Seergobin K. N., Ganjavi H., Tamjeedi R., MacDonald P. A. (2013). Parkinson’s disease duration determines effect of dopaminergic therapy on ventral striatum function. Movement Disord., 28, 153160.

    • Search Google Scholar
    • Export Citation
  • Madison G. (2001). Variability in isochronous tapping: Higher order dependencies as a function of intertap interval. J. Exp. Psychol.-Human, 27, 411422.

    • Search Google Scholar
    • Export Citation
  • Malapani C., Deweer B., Gibbon J. (2002). Separating storage from retrieval dysfunction of temporal memory in Parkinson’s disease. J. Cognitive Neurosci., 14, 311322.

    • Search Google Scholar
    • Export Citation
  • Malapani C., Rakitin B., Levy R., Meck W. H., Deweer B., Dubois B., Gibbon J. (1998). Coupled temporal memories in Parkinson’s disease: A dopamine-related dysfunction. J. Cognitive Neurosci., 10, 316331.

    • Search Google Scholar
    • Export Citation
  • Matell M. S., Bateson M., Meck W. H. (2006). Single-trials analyses demonstrate that increases in clock speed contribute to the methamphetamine-induced horizontal shifts in peak-interval timing functions. Psychopharmacology (Berl.), 188, 201212.

    • Search Google Scholar
    • Export Citation
  • Matell M. S., King G. R., Meck W. H. (2004). Differential adjustment of interval timing by the chronic administation of intermittent or continuous cocaine. Behav. Neurosci., 118, 150156.

    • Search Google Scholar
    • Export Citation
  • Matell M. S., Meck W. H. (2000). Neuropsychological mechanisms of interval timing behaviour. Bioessays, 22, 94103.

  • Matell M. S., Meck W. H. (2004). Cortico-striatal circuits and interval timing: Coincidence detection of oscillatory processes. Cognitive Brain Res., 21, 139170.

    • Search Google Scholar
    • Export Citation
  • Mattis S. (1988). Dementia rating scale. Odessa F: Psychological Assessment Resources.

  • McNab F., Klingberg T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nat. Neurosci., 11, 103107.

  • Meck W. H. (1983). Selective adjustment of the speed of internal clock and memory processes. J. Exp. Psychol.-Anim. Behav. Proc., 9, 171201.

    • Search Google Scholar
    • Export Citation
  • Meck W. H. (1986). Affinity for the dopamine D2 receptor predicts neuroleptic potency in decreasing the speed of an internal clock. Pharmacol. Biochem. Behav., 25, 11851189.

    • Search Google Scholar
    • Export Citation
  • Meck W. H. (1996). Neuropharmacology of timing and time perception. Cognitive Brain Res., 3, 227242.

  • Meck W. H. (2006). Neuroanatomical localization of an internal clock: A functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Res., 1109, 93107.

    • Search Google Scholar
    • Export Citation
  • Meck W. H., Benson A. M. (2002). Dissecting the brain’s internal clock: How frontal-striatal circuitry keeps time and shifts attention. Brain Cognition, 48, 195211.

    • Search Google Scholar
    • Export Citation
  • Meck W. H., Cheng R. K., MacDonald C. J., Gainetdinov R. R., Caron M. G., Çevik M. Ö. (2012). Gene-dose dependent effects of methamphetamine on interval timing in dopamine-transporter knockout mice. Neuropharmacology, 62, 12211229.

    • Search Google Scholar
    • Export Citation
  • Merchant H., Harrington D. L., Meck W. H. (2013). Neural basis of the perception and estimation of time. Annu. Rev. Neurosci., 36, 313336.

    • Search Google Scholar
    • Export Citation
  • Merchant H., Luciana M., Hooper C., Majestic S., Tuite P. (2008). Interval timing and Parkinson’s disease: Heterogeneity in temporal performance. Exp. Brain Res., 184, 233248.

    • Search Google Scholar
    • Export Citation
  • Moreau C., Ozsancak C., Blatt J. L., Derambure P., Destee A., Defebvre L. (2007). Oral festination in Parkinson’s disease: Biomechanical analysis and correlation with festination and freezing of gait. Movement Disord., 22, 15031506.

    • Search Google Scholar
    • Export Citation
  • Nakamura R., Nagasaki H., Narabayashi H. (1978). Disturbances of rhythm formation in patients with Parkinson’s disease. Part I. Characteristics of tapping response to the periodic signals. Percept. Motor Skill., 46, 6375.

    • Search Google Scholar
    • Export Citation
  • Nambu A., Tokuno H., Takada M. (2002). Functional significance of the cortico-sybthalamo-pallidal ‘hyperdirect’ pathway. Neurosci. Res., 43, 111117.

    • Search Google Scholar
    • Export Citation
  • O’Boyle D. J., Freeman J. S., Cody F. W. (1996). The accuracy and precision of timing of self-paced, repetitive movements in subjects with Parkinson’s disease. Brain, 119, 5170.

    • Search Google Scholar
    • Export Citation
  • Oliveira F. T., McDonald J. J., Goodman D. (2007). Performance monitoring in the anterior cingulate is not all error related: Expectancy deviation and the represntation of action-outcome associations. J. Cognitive Neurosci., 19, 111.

    • Search Google Scholar
    • Export Citation
  • Pastor M. A., Artieda J., Jahanshahi M., Obeso J. A. (1992a). Time estimation and reproduction is abnormal in Parkinson’s disease. Brain, 115, 211225.

    • Search Google Scholar
    • Export Citation
  • Pastor M. A., Jahanshahi M., Artieda J., Obeso J. A. (1992b). Performance of repetitive wrist movements in Parkinson’s disease. Brain, 115, 875891.

    • Search Google Scholar
    • Export Citation
  • Perbal S., Deweer B., Pillon B., Vidailhet M., Dubois B., Pouthas V. (2005). Effects of internal clock and memory disorders on duration reproductions and duration productions in patients with Parkinson’s disease. Brain Cognition, 58, 3548.

    • Search Google Scholar
    • Export Citation
  • Post B., Speelman J. D., de Haan R. J., & CARPA-study group (2008). Clinical heterogeneity in newly diagnosed Parkinson’s disease. J. Neurol., 255, 716722.

    • Search Google Scholar
    • Export Citation
  • Rakitin B. C., Gibbon J., Penney T. B., Malapani C., Hinton S. C., Meck W. H. (1998). Scalar expectancy theory and peak-interval timing in humans. J. Exp. Psychol.-Anim. Behav. Proc., 24, 1533.

    • Search Google Scholar
    • Export Citation
  • Rakshi J. S., Uema T., Ito K., Bailey D. L., Morrish P. K., Ashburner J., Dagher A., Jenkins I. H., Friston K. J., Brooks D. J. (1999). Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson’s disease: A 3D [18F]dopa-PET study. Brain, 122, 16371650.

    • Search Google Scholar
    • Export Citation
  • Rascol O., Goetz C., Koller W., Poewe W., Sampaio C. (2002). Treatment interventions for Parkinson’s disease: An evidence based assessment. Lancet, 359, 15891598.

    • Search Google Scholar
    • Export Citation
  • Rammsayer T., Classen W. (1997). Impaired temporal discrimination in Parkinson’s disease: Temporal processing of brief durations as an indicator of degeneration of dopaminergic neurons in the basal ganglia. Intl J. Neurosci., 91, 4555.

    • Search Google Scholar
    • Export Citation
  • Riesen J. M., Schnider A. (2001). Time estimation in Parkinson’s disease: Normal long duration estimation despite impaired short duration discrimination. J. Neurol., 248, 2735.

    • Search Google Scholar
    • Export Citation
  • Rocchi L., Conte A., Nardella A., Li Voti P., Di Biasio F., Leodori G., Fabbrini G., Berardelli A. (2013). Somatosensory temporal discrimination threshold may help to differentiate patients with multiple system atrophy from patients with Parkinson’s disease. Eur. J. Neurol., 20, 714719.

    • Search Google Scholar
    • Export Citation
  • Sadato N., Ibanez V., Campbell G., Deiber M.-P., Le Bihan D., Hallett M. (1997). Frequency-dependent changes of regional cerebral blood flow during finger movements: Functional MRI compared to PET. J. Cerebr. Blood F. Met., 17, 670679.

    • Search Google Scholar
    • Export Citation
  • Santi A., Miki A., Hornyak S., Eidse J. (2005). The perception of empty and filled time intervals by rats. Behav. Proc., 70, 247263.

  • Schrag A., Quinn N. P., Ben-Shlomo Y. (2006). Heterogeneity of Parkinson’s disease. J. Neurol., Neurosurg. Psychiat., 77, 275276.

  • Shidara M., Aigner T. G., Richmond B. J. (1998). Neuronal signals in the monkey ventral striatum related to progress through a predictable series of trials. J. Neurosci., 18, 26132625.

    • Search Google Scholar
    • Export Citation
  • Smith J. G., Harper D. N., Gittings D., Abernethy D. (2007). The effect of Parkinson’s disease on time estimation as a function of stimulus duration range and modality. Brain Cognition, 64, 130143.

    • Search Google Scholar
    • Export Citation
  • Spencer R. M., Ivry R. B. (2005). Comparison of patients with Parkinson’s disease or cerebellar lesions in the production of periodic movements involving event-based or emergent timing. Brain Cognition, 58, 8493.

    • Search Google Scholar
    • Export Citation
  • Stegemöller E. L., Simuni T., MacKinnon C. (2009). Effect of movement frequency on repetitive finger movements in patients with Parkinson’s disease. Movement Disord., 24, 11621169.

    • Search Google Scholar
    • Export Citation
  • Summers J. J., Anson J. G. (2009). Current status of the motor program: Revisited. Hum. Movement Sci., 28, 566577.

  • Toma K., Mima T., Matsuoka T., Gerloff C., Ohnishi T., Koshy B., Andres F., Hallett M. (2002). Movement rate effect on activation and functional coupling of motor cortical areas. J. Neurophysiol., 88, 33773385.

    • Search Google Scholar
    • Export Citation
  • Torta D. M., Castelli L., Latini-Corazzini L., Banche A., Lopiano L., Geminiani G. (2010). Dissociation between time reproduction of actions and of intervals in patients with Parkinson’s disease. J. Neurol., 257, 33773385.

    • Search Google Scholar
    • Export Citation
  • Van Rooden S. M., Colas F., Martínez-Martín P., Visser M., Verbaan D., Marinus J., Chaudhuri R. K., Kok J. N., van Hilten J. J. (2011). Clinical subtypes of Parkinson’s disease. Movement Disord., 26, 5158.

    • Search Google Scholar
    • Export Citation
  • Wearden J. H., Todd N. P., Jones L. A. (2006). When do auditory/visual differences in duration judgements occur? Q. J. Exp. Psychol., 59, 17091724.

    • Search Google Scholar
    • Export Citation
  • Wearden J. H., Norton R., Martin S., Montford-Bebb O. (2007). Internal clock processes and the filled-duration illusion. J. Exp. Psychol.-Human, 33, 716729.

    • Search Google Scholar
    • Export Citation
  • Wearden J. H., Smith-Spark J. H., Cousins R., Edelstyn N. M., Cody F. W., O’Boyle D. J. (2008). Stimulus timing by people with Parkinson’s disease. Brain Cognition, 67, 264279.

    • Search Google Scholar
    • Export Citation
  • Webster D. D. (1968). Critical analysis of the disability in Parkinson’s disease. Mod. Treat., 5, 257282.

  • Wiener M., Lohoff F. W., Coslett H. B. (2011). Double dissociation of dopamine genes and timing in humans. J. Cognitive Neurosci., 23, 28112821.

    • Search Google Scholar
    • Export Citation
  • Wild-Wall N., Willemssen R., Falkenstein M., Beste C. (2008). Time estimation in healthy ageing and neurodegenerative basal ganglia disorders. Neuroscience Lett., 442, 3438.

    • Search Google Scholar
    • Export Citation
  • Wing A. M., Kristofferson A. B. (1973a). Timing of interresponse intervals. Percept. Psychophys., 13, 455460.

  • Wing A. M., Kristofferson A. B. (1973b). Response delays and timing of discrete motor responses. Percept. Psychophys., 14, 512.

  • Wojtecki L., Elben S., Timmermann L., Reck C., Maarouf M., Jorgens S., Ploner M., Südmeyer M., Groiss S. J., Sturm V., Niedeggen M., Schnitzler A. (2011). Modulation of human time processing by subthalamic deep brain stimulation. PLoS One, 6, 12.

    • Search Google Scholar
    • Export Citation
  • Yahalom G., Simon E. S., Thorne R., Peretz C., Giladi N. (2004). Hand rhythmic tapping and timing in Parkinson’s disease. Parkinsonism Relat. D., 10, 143148.

    • Search Google Scholar
    • Export Citation
  • Yu H., Sternad D., Corcos D. M., Vaillancourt D. E. (2007). Role of hyperactive cerebellum and motor cortex in Parkinson’s disease. NeuroImage, 35, 222233.

    • Search Google Scholar
    • Export Citation
  • Zélanti P. S., Droit-Volet S. (2012). Auditory and visual differences in time perception? An investigation from a developmental perspective with neuropsychological tests. J. Exp. Child Psychol., 112, 296311.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 667 173 28
Full Text Views 290 13 1
PDF Views & Downloads 37 13 0