Chapter 3. The carbon footprint of coffee production chains in Tolima, Colombia

In: Sustainable agroecosystems in climate change mitigation
Authors:
H.J. Andrade
Search for other papers by H.J. Andrade in
Current site
Google Scholar
PubMed
Close
,
M.A. Segura
Search for other papers by M.A. Segura in
Current site
Google Scholar
PubMed
Close
,
D.S. Canal
Search for other papers by D.S. Canal in
Current site
Google Scholar
PubMed
Close
,
M. Feria
Search for other papers by M. Feria in
Current site
Google Scholar
PubMed
Close
,
J.J. Alvarado
Search for other papers by J.J. Alvarado in
Current site
Google Scholar
PubMed
Close
,
L.M. Marín
Search for other papers by L.M. Marín in
Current site
Google Scholar
PubMed
Close
,
D. Pachón
Search for other papers by D. Pachón in
Current site
Google Scholar
PubMed
Close
, and
M.J. Gómez
Search for other papers by M.J. Gómez in
Current site
Google Scholar
PubMed
Close

Purchase instant access (PDF download and unlimited online access):

$40.00

Agriculture is one of the most important sectors influencing climate change because it can act as net source of greenhouse gases (GHG) or it is able to mitigate global warming. Production systems with woody perennial species, such as coffee (Coffea arabica L.) plantations, have shown to mitigate global warming because of their ability to sequester carbon (C) in biomass and soil. In this study, the C footprint of coffee production systems in Líbano, Colombia was assessed by evaluating coffee plantations in monoculture, in agroforestry systems (AFS) with Cordia alliodora (Ruiz & Pavón) Oken, and in AFS with plantain (Musa sp. var AAB). Carbon sequestration varied between 2.7 and 19.9 tCO2/ha/y for monoculture and AFS with C. alliodora, respectively. All coffee production systems emitted GHG at a rate of 1.4 to 3.5 Mg CO2e/ha/y; whereas coffee bean processing emitted 7.1 kg CO2e/kg. Only the agroforestry system with C. alliodora had a positive C footprint, showing a net sequestration of 14.2 Mg CO2e/ha/y in comparison to the AFS with plantain (-2.9 Mg CO2e/ha/y) and the coffee monoculture (-5.7 Mg CO2e/ha/y). The inclusion of timber trees, such as C. alliodora, in coffee production systems can change a coffee plantation from a C emitter to one of C sequestration. Results from our study suggested that AFS coffee production systems play an important role in mitigating global warming. This provides an incentive not only for coffee producers, but also for the development of policies to adapt AFS for coffee production because they can play an important ecological service in tropical biomes.

  • Collapse
  • Expand
  • Albrecht, A. and Kandji, S.T., 2003. Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosystems and Environment 99: 15-27.

  • Andrade, H.J., Segura, M., Somarriba, E. and Villalobos, M., 2008. Valoración biofísica y financiera de la fijación de carbono por uso del suelo en fincas cacaoteras indígenas de Talamanca, Costa Rica. Revista Agroforestería en las Américas 46: 45-50.

  • Aristizábal, J.D., 2011. Desarrollo de modelos de biomasa aérea en sombríos de cafeto (Coffea arabica L.) mediante datos simulados. Revista U.D.C.A Actualidad and Divulgación Científica 14: 49-56.

  • Beer, J., Harvey, C., Ibrahim, M., Harmand, J.M., Somarriba, E. and Jiménez, F., 2003. Servicios ambientales de los sistemas agroforestales. Agroforestería en las Américas 10: 80-87.

  • Brown, S., 1996. Present and potential roles of forests in the global climate change debate. Unasylva 185: 3-10.

  • Cairns, M.A., Brown, S., Helmer, E.H. and Baumgardner, G.A., 1997. Root biomass allocation in the world's upland forests. Oecologia 111: 1-11.

  • Camargo, L.A., Arboleda, M.N. and Cardona, E., 2013. Producción de energía limpia en Colombia, la base para un crecimiento sostenible. Boletin Virtual XM. Compañía Expertos en Mercados, Filial de ISA, Colombia. Available at: http://www.xm.com.co/BoletinXM/Documents/MDLColombia_Feb2013.pdf.

  • Cranston, G.R. and Hammond, G.P., 2012. Carbon footprints in a bipolar, climate-constrained world. Ecological Indicators 16: 91-99.

  • Federación Nacional de Cafeteros de Colombia (FEDERACAFÉ), 2013. Tolima café de alta calidad. Available at: http://tolima.federaciondecafeteros.org.

  • Frank, E., Eakin, H. and López-Carr, D., 2011. Social identity, perception and motivation in adaptation to climate risk in the coffee sector of Chiapas, Mexico. Global Environmental Change 21: 66-76.

  • Giovannucci, D. and Koekoek, F.J., 2003. The state of sustainable coffee: a study of twelve major markets. Feriva S.A., Cali, Colombia, 198 pp.

  • Hergoualc’h, K., Blanchart, E., Skiba, U., Henault, C. and Harmand, J. M., 2012. Changes in carbon stock and greenhouse gas balance in a coffee (Coffea arabica) monoculture versus an agroforestry system with Inga densiflora, in Costa Rica. Agriculture, Ecosystems and Environment 148: 102-110.

  • Holdridge, L., 1996. Ecología basada en zonas de vida. 4ª reimpresión, Instituto Interamericano de Cooperación para la agricultura IICA, San José, Costa Rica, 216 pp.

  • Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), 2010. Cambio Climático en Colombia. Available at: http://www.derechoambientalcolombiano.org/Assets/PDFs/ICDA-Generalidades_CC_Ideam.pdf.

  • Intergovernmental Panel on Climate Change (IPCC), 2006. IPCC guidelines for national greenhouse gas inventories. Intergovernmental Panel on Climate Change National Greenhouse Gas Inventories Programme. Available at: http://www.ipcc-nggip.iges.or.jp/public/2006gl.

  • Johnson, J., Franzluebbers, A.J., Weyers, S.L. and Reicosky, D.C., 2007. Agricultural opportunities to mitigate greenhouse gas emissions. Environmental pollution 150: 107-124.

  • Kanninen, M. and Pérez, L.D., 2002. Wood specific gravity and aboveground biomass of Bombacopsis quinata plantations in Costa Rica. Forest Ecology and Management 165: 1-9.

  • Lott, J.E., Howard, S.B., Black, C.R. and Ong, C.K., 2000. Allometric estimation of above-ground biomass and leaf area in managed Grevillea robusta agroforestry systems. Agroforestry Systems 49: 1-15.

  • Montagnini, F. and Nair, P.K.R., 2004. Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agroforestry Systems 61: 281-295.

  • Noponen, R., Edwards-Jones, G., Haggar, J.P., Soto, G., Attarzadeh, N. and Healey, J.R., 2012. Greenhouse gas emissions in coffee grown with differing input levels under conventional and organic management. Agriculture, Ecosystems and Environment 151: 6-15.

  • Oelbermann, M., Voroney, R.P. and Gordon, A.M., 2004. Carbon sequestration in tropical and temperate agroforestry systems: a review with examples from Costa Rica and Southern Canada. Agriculture, Ecosystems and Environment 104: 359-377.

  • Parliamentary Office for Science and Technology (POST), 2006. Carbon footprint of electricity generation. Available at: http://www.parliament.uk/documents/post/postpn268.pdf.

  • Pearson, T., Walker, S. and Brown, S., 2005. Sourcebook for land use, land-use change and forestry projects. Biocarbon Fund and Winrock International. Available at: http://www.winrock.org/sites/ default/files/publications/attachments/Winrock-BioCarbon_Fund_Sourcebook-compressed.pdf.

  • Philpott, S., Bichier, P., Rice, R. and Greenberg, R., 2007. Field-testing ecological and economic benefits of coffee certification programs. Conservation Biology 21: 975-985.

  • Segura, M. and Andrade, H.J. 2008. ¿Cómo construir modelos alométricos de volumen, biomasa o carbono de especies leñosas perennes? Agroforestería de las Américas 46: 89-96.

  • Segura, M. and Andrade, H.J., 2012. Huella de carbono en cadenas productivas de café (Coffea arabica) con diferentes estándares de certificación en Costa Rica. Revista Luna Azul 35: 60-77.

  • Segura, M. and Kanninen, M., 2005. Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica. Biotropica 37: 2-8.

  • Segura, M., Kanninen, M. and Suárez, D., 2006. Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agroforestry Systems 68: 143-150.

  • Soto-Pinto, L.M., Anzueto, J., Mendoza, G. and Jiménez-Ferrer, B., 2010. Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agroforestry Systems 78: 39-51.

  • Van Noordwijk, M., Widayati, A., Lusiana, B., Hairiah, K. and Arifin, B., 2005. What can a clean development mechanism do to enhance trees in the land scape? Experience with rubber, coffee and timber-based agroforestry systems in Indonesia. In: Murdiyarso, D. and Herawati, H. (eds.) Carbon forestry: who will benefit? CIFOR, Bogor, Indonesia, pp. 92-111.

  • Verchot, L., Mackensen, J., Kandji, S., Van Noordwijk, M., Tomich, T., Ong, C., Albrecht, A., Bantilan, C., Anupama, K. and Palm, C., 2005. Opportunities for linking adaptation and mitigation in agroforestry systems. In: Robledo, C., Kanninen, M. and Pedroni, L. (eds.) Tropical forests and adaptation to climate change – in search of synergies. Center for International Forestry Research (CIFOR), Bogor, Indonesia, 186 pp.

  • Wunder, S., 2007. The efficiency of payments for environmental services in tropical conservation. Conservation Biology 21: 48-58.

Metrics

All Time Past 365 days Past 30 Days
Abstract Views 401 286 21
Full Text Views 24 20 1
PDF Views & Downloads 32 25 1