Chapter 3: The molecular and neural determinants of olfactory behaviour in mosquitoes

In: Sensory ecology of disease vectors
Authors:
D.M. Ruel Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7610001 Rehovot, Israel.

Search for other papers by D.M. Ruel in
Current site
Google Scholar
PubMed
Close
and
J.D. Bohbot Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7610001 Rehovot, Israel.

Search for other papers by J.D. Bohbot in
Current site
Google Scholar
PubMed
Close
Open Access

Mosquito olfaction is a fascinating object of study, as mosquitoes are adapted to exploit diverse resources, such as plant- and animal-hosts, as well as oviposition sites in both aquatic and terrestrial environments. Most significantly, mosquito olfaction is the main mechanism by which female mosquitoes detect their prey, leading to unpleasant bites at best and transmitting lethal diseases at worst. For close to a century, scientific research has focused on the mosquito sense of smell with the hope of uncovering their secret chemical language, and with the ultimate purpose of using this knowledge for the benefit of society in the form of repellents and attractants. While we have discovered several behaviourally-active odorants and near complete olfactory receptor repertoires of several mosquito species, we are still suffering from a large gap of knowledge about mosquito semiochemicals and how they are encoded by olfactory receptors. This chapter aims to recapitulate which semiochemicals affect mosquito behaviour, their ecological contexts and how these chemicals are detected by olfactory receptors.

  • Abuin, L., Bargeton, B., Ulbrich, M.H., Isacoff, E.Y., Kellenberger, S. and Benton, R., 2011. Functional architecture of olfactory ionotropic glutamate receptors. Neuron 69: 44-60. https://doi.org/10.1016/j.neuron.2010.11.042

  • Acree, F., Turner, R.B., Gouck, H.K., Beroza, M. and Smith, N., 1968. L-lactic acid: a mosquito attractant isolated from humans. Science 161: 1346-1347. https://doi.org/10.1126/science.161.3848.134

  • Afify, A., Betz, J.F., Riabinina, O., Lahondère, C. and Potter, C.J., 2019. Commonly used insect repellents hide human odors from Anopheles mosquitoes. Current Biology 29: 3669-3680. https://doi.org/10.1016/j.cub.2019.09.007

  • Afify, A. and Galizia, C.G., 2014. Gravid females of the mosquito Aedes aegypti avoid oviposition on m-cresol in the presence of the deterrent isomer p-cresol. Parasite Vectors 7: 315. https://doi.org/10.1186/1756-3305-7-315

  • Afify, A. and Potter, C.J., 2020. Insect repellents mediate species-specific olfactory behaviours in mosquitoes. Malaria Journal 19: 127. https://doi.org/10.21203/rs.2.19889/v3

  • Ai, M., Min, S., Grosjean, Y., Leblanc, C., Bell, R., Benton, R. and Suh, G.S.B., 2010. Acid sensing by the Drosophila olfactory system. Nature 468: 691-695. https://doi.org/10.1038/nature09537

  • Allan, S.A., Bernier, U.R. and Kline, D.L., 2010. Laboratory evaluation of lactic acid on attraction of Culex spp. (Diptera: Culicidae). Journal of Vector Ecology 35: 318-324. https://doi.org/10.1111/j.1948-7134.2010.00089.x

  • Allan, S.A. and Kline, D.L., 1995. Evaluation of organic infusions and synthetic compounds mediating oviposition in Aedes albopictus and Aedes aegypti (Diptera: Culicidae). Journal of Chemical Ecology 21: 1847-1860. https://doi.org/10.1007/bf02033681

  • Andrade, S.L.A. and Einsle, O., 2009. The Amt/Mep/Rh family of ammonium transport proteins (Review). Molecular Membrane Biology 24:357-365. https://doi.org/10.1080/09687680701388423

  • Arensburger, P., Megy, K., Waterhouse, R.M., Abrudan, J., Amedeo, P., Antelo, B., Bartholomay, L., Bidwell, S., Caler, E., Camara, F., Campbell, C.L., Campbell, K.S., Casola, C., Castro, M.T., Chandramouliswaran, I., Chapman, S.B., Christley, S., Costas, J., Eisenstadt, E., Feschotte, C., Fraser-Liggett, C., Guigo, R., Haas, B., Hammond, M., Hansson, B.S., Hemingway, J., Hill, S.R., Howarth, C., Ignell, R., Kennedy, R.C., Kodira, C.D., Lobo, N.F., Mao, C., Mayhew, G., Michel, K., Mori, A., Liu, N., Naveira, H., Nene, V., Nguyen, N., Pearson, M.D., Pritham, E.J., Puiu, D., Qi, Y., Ranson, H., Ribeiro, J.M.C., Roberston, H.M., Severson, D.W., Shumway, M., Stanke, M., Strausberg, R.L., Sun, C., Sutton, G., Tu, Z.J., Tubio, J.M.C., Unger, M.F., Vanlandingham, D.L., Vilella, A.J., White, O., White, J.R., Wondji, C.S., Wortman, J., Zdobnov, E.M., Birren, B., Christensen, B.M., Collins, F.H., Cornel, A., Dimopoulos, G., Hannick, L.I., Higgs, S., Lanzaro, G.C., Lawson, D., Lee, N.H., Muskavitch, M.A.T., Raikhel, A.S. and Atkinson, P.W., 2010. Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science 330: 86-88. https://doi.org/10.1126/science.1191864

  • Asmare, Y., Hill, S.R., Hopkins, R.J., Tekie, H. and Ignell, R., 2017. The role of grass volatiles on oviposition site selection by Anopheles arabiensis and Anopheles coluzzii. Malaria Journal 16: 65. https://doi.org/10.1186/s12936-017-1717-z

  • Baak-Baak, C.M., Rodríguez-Ramírez, A.D., García-Rejón, J.E., Ríos-Delgado, S. and Torres-Estrada, J.L., 2013. Development and laboratory evaluation of chemically-based baited ovitrap for the monitoring of Aedes aegypti. Journal of Vector Ecology 38: 175-181. https://doi.org/10.1111/j.1948-7134.2013.12024.x

  • Bailly, A., Groenhagen, U., Schulz, S., Geisler, M., Eberl, L. and Weisskopf, L., 2014. The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. The Plant Journal 80: 758-771.https://doi.org/10.1111/tpj.12666

  • Barnard, D.R. and Xue, R.-D., 2004. Laboratory evaluation of mosquito repellents against Aedes albopictus, Culex nigripalpus, and Ochlerotatus triseriatus (Diptera: Culicidae). Journal of Medical Entomology 41: 726-730. https://doi.org/10.1603/0022-2585-41.4.726

  • Beehler, J.W., Beehler, J., Millar, J., Millar, J.G., Mulla, M.S. and Mulla, M., 1994. Field evaluation of synthetic compounds mediating oviposition in Culex mosquitoes (Diptera: Culicidae). Journal of Chemical Ecology 20: 281-291.

  • Bentley, M., McDaniel, I. and Yatagai, M., 1979. p-Cresol: an oviposition attractant of Aedes triseriatus. Environmental Entomology 10: 186-189. https://doi.org/10.1093/ee/10.2.186

  • Benton, R., 2017. The neurobiology of gustation in insect disease vectors: progress and potential. Current Opinion in Insect Science 20: 19-27. https://doi.org/10.1016/j.cois.2017.02.003

  • Benton, R., Dessimoz, C. and Moi, D., 2020. A putative origin of the insect chemosensory receptor superfamily in the last common eukaryotic ancestor. Elife 9: e62507. https://doi.org/10.7554/elife.62507

  • Benton, R., Vannice, K.S., Gomez-Diaz, C. and Vosshall, L.B., 2009. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136: 149-162. https://doi.org/10.1016/j.cell.2008.12.001

  • Beran, F., Rahfeld, P., Luck, K., Nagel, R., Vogel, H., Wielsch, N., Irmisch, S., Ramasamy, S., Gershenzon, J., Heckel, D.G. and Köllner, T.G., 2016. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle. Proceedings of the National Academy of Sciences of the USA 113: 2922-2927. https://doi.org/10.1073/pnas.1523468113

  • Bernier, U.R., Booth, M.M. and Yost, R.A., 1999. Analysis of human skin emanations by gas chromatography/mass spectrometry. 1. Thermal desorption of attractants for the yellow fever mosquito (Aedes aegypti). Analytical chemistry 71: 1-7. https://doi.org/10.1021/ac980990v

  • Bernier, U.R., Kline, D.L., Allan, S.A. and Barnard, D.R., 2007. Laboratory comparison of Aedes aegypti attraction to human odors and to synthetic human odour compounds and blends. Journal of the American Mosquito Control Association 23: 288-293. https://doi.org/10.2987/8756-971X(2007)23[288:LCOAAA]2.0.CO;2

  • Bernier, U.R., Kline, D.L., Barnard, D.R., Schreck, C.E. and Yost, R.A., 2000. Analysis of human skin emanations by gas chromatography/mass spectrometry. 2. Identification of volatile compounds that are candidate attractants for the yellow fever mosquito (Aedes aegypti). Analytical Chemistry 72: 747-756. https://doi.org/10.1021/ac990963k

  • Bernier, U.R., Kline, D.L., Posey, K.H., Booth, M.M., Yost, R.A. and Barnard, D.R., 2003. Synergistic attraction of Aedes aegypti (L.) to binary blends of L-lactic acid and acetone, dichloromethane, or dimethyl disulfide. Journal of Medical Entomology 40: 653-656. https://doi.org/10.1603/0022-2585-40.5.653

  • Bernier, U.R., Kline, D.L., Schreck, C.E., Yost, R.A. and Barnard, D.R., 2002. Chemical analysis of human skin emanations: comparison of volatiles from humans that differ in attraction of Aedes aegypti (Diptera: Culicidae). Journal of the American Mosquito Control Association 18: 186-195.

  • Birkett, M.A., Agelopoulos, N. and Jensen, K., 2004. The role of volatile semiochemicals in mediating host location and selection by nuisance and disease-transmitting cattle flies. Medical and Veterinary Entomology 18: 313-322. https://doi.org/10.1111/j.0269-283X.2004.00528.x

  • Blackwell, A. and Johnson, S., 2000. Electrophysiological investigation of larval water and potential oviposition chemo-attractants for Anopheles gambiae s.s. Annals of Tropical Medicine and Parasitology 94: 389-398.https://doi.org/10.1080/00034983.2000.11813554

  • Blackwell, A., Mordue, A. and Hansson, B., 1993. A behavioural and electrophysiological study of oviposition cues for Culex quinquefasciatus. Physiological Entomology 18: 343-348. https://doi.org/10.1111/j.1365-3032.1993.tb00607.x

  • Bohbot, J., Pitts, R.J., Kwon, H.W., Rutzler, M., Robertson, H.M. and Zwiebel, L.J., 2007. Molecular characterization of the Aedes aegypti odorant receptor gene family. Insect Molecular Biology 16: 525-537. https://doi.org/10.1111/j.1365-2583.2007.00748.x

  • Bohbot, J.D. and Dickens, J.C., 2009. Characterization of an enantioselective odorant receptor in the yellow fever mosquito Aedes aegypti. PLoS ONE 4: e7032. https://doi.org/10.1371/journal.pone.0007032

  • Bohbot, J.D., Durand, N.F., Vinyard, B.T. and Dickens, J.C., 2013. Functional development of the octenol response in Aedes aegypti. Frontiers in physiology 4: 39. https://doi.org/10.3389/fphys.2013.00039

  • Bohbot, J.D., Jones, P.L., Wang, G., Pitts, R.J., Pask, G.M. and Zwiebel, L.J., 2011. Conservation of indole responsive odorant receptors in mosquitoes reveals an ancient olfactory trait. Chem Senses 36: 149-160. https://doi.org/10.1093/chemse/bjq105

  • Bohbot, J.D. and Pitts, R.J., 2015. The narrowing olfactory landscape of insect odorant receptors. Frontiers in Ecology and Evolution 3: 39. https://doi.org/10.3389/fevo.2015.00039

  • Bohbot, J.D., Sparks, J.T. and Dickens, J.C., 2014. The maxillary palp of Aedes aegypti, a model of multisensory integration. Insect Biochemistry and Molecular Biology 48: 29-39. https://doi.org/10.1016/j.ibmb.2014.02.007

  • Bosch, O.J., Geier, M. and Boeckh, J., 2000. Contribution of fatty acids to olfactory host finding of female Aedes aegypti. Chem Senses 25: 323-330. https://doi.org/10.1093/oxfordjournals.chemse.a014042

  • Braks, M., Meijerink, J. and Takken, W., 2001. The response of the malaria mosquito, Anopheles gambiae to two components of human sweat, ammonia and L-lactic acid. Physiological Entomology 26: 142-148. https://doi.org/10.1046/j.1365-3032.2001.00227.x

  • Bursell, E., Gough, A.J.E., Beevor, P.S., Cork, A., Hall, D.R. and Vale, G.A., 1988. Identification of components of cattle urine attractive to tsetse flies, Glossina spp. (Diptera: Glossinidae). Bulletin of Entomological Research 78: 281-291.https://doi.org/10.1017/s0007485300013043

  • Busko, M., Kulik, T., Ostrowska, A., Góral, T. and Perkowski, J., 2014. Quantitative volatile compound profiles in fungal cultures of three different Fusarium graminearum chemotypes. FEMS Microbiol Lett 359: 85-93.https://doi.org/10.1111/1574-6968.12569

  • Butterwick, J.A., Mármol, J. del, Kim, K.H., Kahlson, M.A., Rogow, J.A., Walz, T. and Ruta, V., 2018. Cryo-EM structure of the insect olfactory receptor Orco. Nature 560: 447-452. https://doi.org/10.1038/s41586-018-0420-8

  • Cabrera, M. and Jaffe, K., 2007. An aggregation pheromone modulates lekking behaviour in the vector mosquito Aedes aegypti (Diptera: Culicidae). Journal of the American Mosquito Control Association 23: 1-10. https://doi.org/10.2987/8756-971x(2007)23[1:aapmlb]2.0.co;2

  • Cai, L., Koziel, J.A., Lo, Y.-C. and Hoff, S.J., 2006. Characterization of volatile organic compounds and odorants associated with swine barn particulate matter using solid-phase microextraction and gas chromatography-mass spectrometry-olfactometry. Journal of Chromatography 1102: 60-72. https://doi.org/10.1016/j.chroma.2005.10.040

  • Cane, D.E. and Ikeda, H., 2012. Exploration and mining of the bacterial terpenome. Accounts of Chemical Research 45: 463-472. https://doi.org/10.1021/ar200198d

  • Canyon, D.V. and Hii, J.L., 1997. Efficacy of carbon dioxide, 1-octen-3-ol, and lactic acid in modified Fay-Prince traps as compared to man-landing catch of Aedes aegypti. Journal of the American Mosquito Control Association 13: 66-70.

  • Carde, R.T. and Gibson, G., 2010. Host finding by female mosquitoes: mechanisms of orientation to host odours and other cues. In: W. Takken and B.G.J. Knols (eds.), Olfaction in vector-host interactions, Wageningen Academic Publishers, Wageningen, pp. 115-142

  • Carey, A.F., Wang, G., Su, C.-Y., Zwiebel, L.J. and Carlson, J.R., 2010. Odorant reception in the malaria mosquito Anopheles gambiae. Nature 464: 66-71. https://doi.org/10.1038/nature08834

  • Carlson, D.A., Smith, N., Gouck, H.K. and Godwin, D.R., 1973. Yellow fever mosquitoes: compounds related to lactic acid that attract females. Journal of Economic Entomology 66: 329-331. https://doi.org/10.1093/jee/66.2.329

  • Carraher, C., Dalziel, J., Jordan, M.D., Christie, D.L., Newcomb, R.D. and Kralicek, A.V., 2015. Towards an understanding of the structural basis for insect olfaction by odorant receptors. Insect Biochemistry and Molecular Biology 66: 31-41. https://doi.org/10.1016/j.ibmb.2015.09.010

  • Carroll, M.J., Schmelz, E.A., Meagher, R.L. and Teal, P.E.A., 2006. Attraction of Spodoptera frugiperda larvae to volatiles from herbivore-damaged maize seedlings. Journal of Chemical Ecology 32: 1911-1924. https://doi.org/10.1007/s10886-006-9117-9

  • Chen, C., Buhl, E., Xu, M., Croset, V., Rees, J.S., Lilley, K.S., Benton, R., Hodge, J.J.L. and Stanewsky, R., 2015a. Drosophila ionotropic receptor 25a mediates circadian clock resetting by temperature. Nature 527: 516-520. https://doi.org/10.1038/nature16148

  • Chen, G., Zhang, R.-R., Liu, Y. and Sun, W.-B., 2014. Spore dispersal of fetid by feces of mycophagous insects. Journal of Chemical Ecology 40: 893-899. https://doi.org/10.1007/s10886-014-0481-6

  • Chen, X.-G., Jiang, Xuanting, Gu, J., Xu, M., Wu, Y., Deng, Y., Zhang, C., Bonizzoni, M., Dermauw, W., Vontas, J., Armbruster, P., Huang, X., Yang, Y., Zhang, H., He, W., Peng, H., Liu, Y., Wu, K., Chen, J., Lirakis, M., Topalis, P., Leeuwen, T.V., Hall, A.B., Jiang, Xiaofang, Thorpe, C., Mueller, R.L., Sun, C., Waterhouse, R.M., Yan, G., Tu, Z.J., Fang, X. and James, A.A., 2015b. Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution. Proceedings of the National Academy of Sciences of the USA 112: E5907-E5915. https://doi.org/10.1073/pnas.1516410112

  • Chen, Z., Liu, F. and Liu, N., 2019. Human odour coding in the yellow fever mosquito, Aedes aegypti. Scientific Reports 9: 1-12. https://doi.org/10.1038/s41598-019-49753-2

  • Choo, Y.-M., Xu, P., Hwang, J.K., Zeng, F., Tan, K., Bhagavathy, G., Chauhan, K.R. and Leal, W.S., 2018. Reverse chemical ecology approach for the identification of an oviposition attractant for Culex quinquefasciatus. Proceedings of the National Academy of Sciences of the USA 115: 714-719. https://doi.org/10.1073/pnas.1718284115

  • Cimmino, A., Andolfi, A. and Evidente, A., 2014. Phytotoxic terpenes produced by phytopathogenic fungi and allelopathic plants. Natural Product Communications 9: 401-408. https://doi.org/10.1177/1934578x1400900330

  • Clyne, P., Warr, C., Freeman, M., Lessing, D., Kim, J. and Carlson, J., 1999. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22: 327-338. https://doi.org/10.1016/s0896-6273(00)81093-4

  • Collins, L.E. and Blackwell, A., 1998. Electroantennogram studies of potential oviposition attractants for Toxorhynchites moctezuma and T. amboinensis mosquitoes. Physiological Entomology 23:214-219. https://doi.org/10.1046/j.1365-3032.1998.233091.x

  • Collins, L. and Blackwell, A., 2002. Olfactory cues for oviposition behaviour in Toxorhynchites moctezuma and Toxorhynchites amboinensis (Diptera: Culicidae). Journal of Medical Entomology 39: 121-126. https://doi.org/10.1603/0022-2585-39.1.121

  • Cook, J.I., Majeed, S., Ignell, R., Pickett, J.A., Birkett, M.A. and Logan, J.G., 2011. Enantiomeric selectivity in behavioural and electrophysiological responses of Aedes aegypti and Culex quinquefasciatus mosquitoes. Bulletin of Entomological Research 101: 541-550. https://doi.org/10.1017/s0007485311000162

  • Cooperband, M.F., McElfresh, J.S., Millar, J.G. and Cardé, R.T., 2008. Attraction of female Culex quinquefasciatus Say (Diptera: Culicidae) to odors from chicken feces. Journal of Insect Physiology 54: 1184-1192. https://doi.org/10.1016/j.jinsphys.2008.05.003

  • Cork, A., 1996. Olfactory basis of host location by mosquitoes and other haematophagous Diptera. In: Bock, G.R. and Cardew, G. (eds.) Olfaction in mosquito-host interactions, Novartis Foundation Symposia. Wiley & Sons, Chichester, pp. 71-88.

  • Cork, A. and Park, K.C., 1996. Identification of electrophysiologically-active compounds for the malaria mosquito, Anopheles gambiae, in human sweat extracts. Medical and Veterinary Entomology 10: 269-276. https://doi.org/10.1111/j.1365-2915.1996.tb00742.x

  • Cortes-Rojes, D.F., Souza, C.R.F. de and Oliveira, W.P., 2014. Clove (Syzygium aromaticum): a precious spice. Asian Pacific Journal of Tropical Biomedicine 4: 90-96. https://doi.org/10.1016/s2221-1691(14)60215-x

  • Costantini, C., Birkett, M.A., Gibson, G., Ziesmann, J., Sagnon, N.F., Mohammed, H.A., Coluzzi, M. and Pickett, J.A., 2001. Electroantennogram and behavioural responses of the malaria vector Anopheles gambiae to human-specific sweat components. Medical and Veterinary Entomology 15: 259-266. https://doi.org/10.1046/j.0269-283x.2001.00297.x

  • Costello, B. de L., Amann, A., Al-Kateb, H., Flynn, C., Filipiak, W., Khalid, T., Osborne, D. and Ratcliffe, N.M., 2014. A review of the volatiles from the healthy human body. Journal of Breath Research 8: 014001. https://doi.org/10.1088/1752-7155/8/1/014001

  • Croset, V., Rytz, R., Cummins, K.W., Budd, A., Brawand, D., Kaessmann, H., Gibson, T.J. and Benton, R., 2010. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genetics 6: e1001064. https://doi.org/10.1371/journal.pgen.1001064

  • Curran, A.M., Rabin, S.I., Prada, P.A. and Furton, K.G., 2005. Comparison of the volatile organic compounds present in human odour using SPME-GC/MS. Journal of Chemical Ecology 31: 1607-1619. https://doi.org/10.1007/s10886-005-5801-4

  • Curtius, H.C., Mettler, M. and Ettlinger, L., 1976. Study of the intestinal tyrosine metabolism using stable isotopes and gas chromatography-mass spectrometry. Journal of Chromatography 126: 569-580. https://doi.org/10.1016/S0021-9673(01)84102-9

  • Davis, E., 1976. A receptor sensitive to oviposition site attractants on the antennae of the mosquito, Aedes aegypti. Journal of Insect Physiology 22: 1371-1376. https://doi.org/10.1016/0022-1910(76)90160-8

  • Davis, E.E. and Bowen, M.F., 1994. Sensory physiological basis for attraction in mosquitoes. Journal of the American Mosquito Control Association 10: 316-325.

  • Davis, E.M. and Croteau, R., 2000. Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. In: Leeper, F.J. and Vederas, J.C. (eds.) Biosynthesis. Topics in current chemistry. Springer, Berlin, Germany. https://doi.org/https://doi.org/10.1007/3-540-48146-X_2

  • Davis, T.S., Crippen, T.L., Hofstetter, R.W. and Tomberlin, J.K., 2013. Microbial volatile emissions as insect semiochemicals. Journal of Chemical Ecology 39: 840-859. https://doi.org/10.1007/s10886-013-0306-z

  • Debboun, M., Frances, S.P. and Strickman, D. (eds.), 2015. Insect repellents handbook; 2nd ed. CRC Press, Boca Raton, FL, USA.

  • Degennaro, M., McBride, C.S., Seeholzer, L., Nakagawa, T., Dennis, E.J., Goldman, C., Jasinskiene, N., James, A.A. and Vosshall, L.B., 2013. orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature 498: 487-491. https://doi.org/10.1038/nature12206

  • Dekel, A., Pitts, R.J., Yakir, E. and Bohbot, J.D., 2016. Evolutionarily conserved odorant receptor function questions ecological context of octenol role in mosquitoes. Scientific Reports 6: 37330. https://doi.org/10.1038/srep37330

  • Dekel, A., Yakir, E. and Bohbot, J.D., 2019a. The sulcatone receptor of the strict nectar-feeding mosquito Toxorhynchites amboinensis. Insect Biochemistry and Molecular Biology 111: 103174. https://doi.org/10.1016/j.ibmb.2019.05.009

  • Dekel, A., Yakir, E. and Bohbot, J.D., 2019b. The evolutionarily conserved indolergic receptors of the non-hematophagous elephant mosquito Toxorhynchites amboinensis. Insect Biochemistry and Molecular Biology 110: 45-51. https://doi.org/10.1016/j.ibmb.2019.04.015

  • Dekker, T., Steib, B., Carde, R.T. and Geier, M., 2002. L-lactic acid: a human-signifying host cue for the anthropophilic mosquito Anopheles gambiae. Medical and Veterinary Entomology 16,: 91-98. https://doi.org/10.1046/j.0269-283x.2002.00345.x

  • Dickschat, J.S., Wagner-Döbler, I. and Schulz, S., 2005. The chafer pheromone buibuilactone and ant pyrazines are also produced by marine bacteria. Journal of Chemical Ecology 31: 925-947. https://doi.org/10.1007/s10886-005-3553-9

  • Dijkstra, F.Y. and Wikén, T.O., 1976. Studies on mushroom flavours. Zeitschrift Für Lebensmittel-untersuchung Und Forschung 160: 255-262. https://doi.org/10.1007/bf01132289

  • Douglas, H.D., Co, J.E., Jones, T.H., Conner, W.E. and Day, J.F., 2005. Chemical odorant of colonial seabird repels mosquitoes. Journal of Medical Entomology 42: 647-651.

  • Du, Y. and Millar, J., 1999. Electroantennogram and oviposition bioassay responses of Culex quinquefasciatus and Culex tarsalis (Diptera: Culicidae) to chemicals in odors from Bermuda grass infusions. Journal of Medical Entomology 36: 158-166. https://doi.org/10.1093/jmedent/36.2.158.

  • Edman, J.D. and Taylor, D.J., 1968. Culex nigripalpus: Seasonal shift in the bird-mammal feeding ratio in a mosquito vector of human encephalitis. Science 161: 67-68. https://doi.org/10.1126/science.161.3836.67

  • Eiras, A.E. and Jepson, P.C., 1994. Responses of female Aedes aegypti (Diptera: Culicidae) to host odours and convection currents using an olfactometer bioassay. Bulletin of Entomological Research 84: 207-211. https://doi.org/10.1017/s0007485300039705

  • Eiras, A.E. and Jepson, P.C., 1991. Host location by Aedes aegypti (Diptera: Culicidae): a wind tunnel study of chemical cues. Bulletin of Entomological Research 81: 151-160. https://doi.org/10.1017/s0007485300051221

  • Elgaali, H., Hamilton-Kemp, T.R., Newman, M.C., Collins, R.W., Yu, K. and Archbold, D.D., 2002. Comparison of long-chain alcohols and other volatile compounds emitted from food-borne and related Gram positive and Gram negative bacteria. Journal of Basic Microbiology 42: 373-380. https://doi.org/10.1002/1521-4028(200212)42:6<373::aid-jobm373>3.0.co;2-4

  • El-Sayed, A.M., 2021. The pherobase: database of pheromones and semiochemicals [WWW Document]. Available at: https://www.pherobase.com

  • Emami, S.N., Lindberg, B.G., Hua, S., Hill, S.R., Mozūraitis, R., Lehmann, P., Birgersson, G., Borg-Karlson, A.-K., Ignell, R. and Faye, I., 2017. A key malaria metabolite modulates vector blood seeking, feeding, and susceptibility to infection. Science 355: 1076-1080. https://doi.org/10.1126/science.aah4563

  • Eneh, L.K., Okal, M.N., Borg-Karlson, A.-K., Fillinger, U. and Lindh, J.M., 2016. Gravid Anopheles gambiae sensu stricto avoid ovipositing in Bermuda grass hay infusion and it’s volatiles in two choice egg-count bioassays. Malaria Journal 15: 276.https://doi.org/10.1186/s12936-016-1330-6

  • Erdelyan, C. and Mahood, T., 2011. Functional validation of the carbon dioxide receptor genes in Aedes aegypti mosquitoes using RNA interference. Insect Molecular Biology 21: 119-127. https://doi.org/10.1111/j.1365-2583.2011.01120.x

  • Essen, P.H.A.V., Kemme, J.A., Ritchie, S.A. and Kay, B.H., 1994. Differential responses of Aedes and Culex mosquitoes to octenol or light in combination with carbon dioxide in Queensland, Australia. Medical and Veterinary Entomology 8: 63-67. https://doi.org/10.1111/j.1365-2915.1994.tb00387.x

  • Fawaz, E.Y., Allan, S.A., Bernier, U.R., Obenauer, P.J. and Diclaro, J.W., 2014. Swarming mechanisms in the yellow fever mosquito: aggregation pheromones are involved in the mating behaviour of Aedes aegypti. Journal of Vector Ecology 39: 347-354. https://doi.org/10.1111/jvec.12110

  • Foster, W.A., 1995. Mosquito sugar feeding and reproductive energetics. Annual Review of Entomology 40: 443-474. https://doi.org/10.1146/annurev.en.40.010195.002303

  • Foster, W.A., 2022. Behavioural ecology of plant-mosquito relations. Chapter 7. In: Ignell, R., Lazzari, C.R., Lorenzo, M.G. and Hill, S.R. (eds.) Sensory ecology of disease vectors. Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 153-234. https://doi.org/10.3920/978-90-8686-932-9_7

  • Foster, W.A. and Takken, W., 2004. Nectar-related vs. human-related volatiles: behavioural response and choice by female and male Anopheles gambiae (Diptera: Culicidae) between emergence and first feeding. Bulletin of Entomological Research 94: 145-157.

  • Frey, M., Stettner, C., Pare, P.W., Schmelz, E.A., Tumlinson, J.H. and Gierl, A., 2000. An herbivore elicitor activates the gene for indole emission in maize. Proceedings of the National Academy of Sciences of the USA 97: 14801-14806. https://doi.org/10.1073/pnas.260499897

  • Ganesan, K., Mendki, M. and Suryanarayana, M., 2006. Studies of Aedes aegypti (Diptera: Culicidae) ovipositional responses to newly identified semiochemicals from conspecific eggs. Australian Journal of Entomology 45: 75-80. https://doi.org/10.1111/j.1440-6055.2006.00513.x

  • Gang, D.R., 2005. Evolution of flavors and scents. Annual Review in Plant Biology 56: 301-325. https://doi.org/10.1146/annurev.arplant.56.032604.144128

  • Gao, Q. and Chess, A., 1999. Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60: 31-39. https://doi.org/10.1006/geno.1999.5894

  • Garner, C.E., Smith, S., Costello, B. de L., White, P., Spencer, R., Probert, C.S.J. and Ratcliffe, N.M., 2007. Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease. Federation of American Societies for Experimental Biology 21: 1675-1688. https://doi.org/10.1096/fj.06-6927com

  • Geest, S.D., Laleman, I., Teughels, W., Dekeyser, C. and Quirynen, M., 2016. Periodontal diseases as a source of halitosis: a review of the evidence and treatment approaches for dentists and dental hygienists. Periodontology 2000 71: 213-227. https://doi.org/10.1111/prd.12111

  • Geetha, I., Paily, K., Padmanaban, V. and Balaraman, K., 2003. Oviposition response of the mosquito, Culex quinquefasciatus to the secondary metabolite(s) of the fungus, Trichoderma viride. Memórias Instituto Oswaldo Cruz 98: 223-226. https://doi.org/10.1590/s0074-02762003000200010

  • Geier, M. and Boeckh, J., 1999. A new Y-tube olfactometer for mosquitoes to measure the attractiveness of host odours. Entomologia Experimentalis et Applicata. 92: 9-19. https://doi.org/10.1046/j.1570-7458.1999.00519.x

  • Geier, M., Bosch, O. and Boeckh, J., 1999. Ammonia as an attractive component of host odour for the yellow fever mosquito, Aedes aegypti. Chemical Senses 24: 647-653. https://doi.org/10.1093/chemse/24.6.647

  • Ghaninia, M., Ignell, R. and Hansson, B.S., 2007. Functional classification and central nervous projections of olfactory receptor neurons housed in antennal trichoid sensilla of female yellow fever mosquitoes, Aedes aegypti. European Journal of Neuroscience 26: 1611-1623. https://doi.org/10.1111/j.1460-9568.2007.05786.x

  • Ghaninia, M., Larsson, M., Hansson, B.S. and Ignell, R., 2008. Natural odour ligands for olfactory receptor neurons of the female mosquito Aedes aegypti: use of gas chromatography-linked single sensillum recordings. Journal of Experimental Biology 211: 3020-3027. https://doi.org/10.1242/jeb.016360

  • Gibson, G. and Torr, S., 1999. Visual and olfactory responses of haematophagous Diptera to host stimuli. Medical and Veterinary Entomology 13: 2-23. https://doi.org/10.1046/j.1365-2915.1999.00163.x

  • Gilg, A.B., Tittiger, C. and Blomquist, G.J., 2009. Unique animal prenyltransferase with monoterpene synthase activity. Naturwissenschaften 96: 731-735. https://doi.org/10.1007/s00114-009-0521-1

  • Gillies, M.T., 1980. The role of carbon dioxide in host-finding by mosquitoes (Diptera: Culicidae): a review. Bulletin of Entomological Research 70: 525-532. https://doi.org/10.1017/S0007485300007811

  • Gouagna, L., Poueme, R.S., Dabiré, K.R., Ouédraogo, J., Fontenille, D. and Simard, F., 2010. Patterns of sugar feeding and host plant preferences in adult males of An. gambiae (Diptera: Culicidae). Journal of Vector Ecology 35: 267-276. https://doi.org/10.1111/j.1948-7134.2010.00082.x

  • Grab, W., 2008. Blended flavorings. In: Ziegler, E. and Ziegler, H. (eds.) Flavourings: production, composition, applications, regulations. Wiley, Hoboken, NJ, USA, pp. 347-386. https://doi.org/10.1002/9783527611829.ch04

  • Grant, A.J. and Dickens, J.C., 2011. Functional characterization of the octenol receptor neuron on the maxillary palps of the yellow fever mosquito, Aedes aegypti. PLoS ONE 6: e21785. https://doi.org/10.1371/journal.pone.0021785

  • Grant, A.J. and O’Connell, R.J., 1996. Electrophysiological responses from receptor neurons in mosquito maxillary palp sensilla. In: Block, E. (ed.), Ciba Found Symp. John Wiley & Sons, Ltd., Hoboken, NJ, USA, pp. 233-248. Grant, A.J., Aghajanian, J.G., O’Connell, R.J. and Wigton, B.E., 1995. Electrophysiological responses of receptor neurons in mosquito maxillary palp sensilla to carbon dioxide. Journal of Comparative Physiology A 177: 389396. https://doi.org/10.1007/bf00187475

  • Greenman, J., Duffield, J., Spencer, P., Rosenberg, M., Corry, D., Saad, S., Lenton, P., Majerus, G., Nachnani, S. and El-Maaytah, M., 2016. Study on the organoleptic intensity scale for measuring oral malodor. Journal of Dental Research 83: 81-85. https://doi.org/10.1177/154405910408300116

  • Guerenstein, P., Guerenstein, P.G., Christensen, T., Christensen, T.A., Hildebrand, J.G. and Hildebrand, J., 2004. Sensory processing of ambient CO2 information in the brain of the moth Manduca sexta. Journal of Comparative Physiology A 190: 707-725. https://doi.org/10.1007/s00359-004-0529-0

  • Hall, D., Beevor, P., Cork, A., Nesbitt, B. and Vale, G., 1984. 1-Octen-3-ol. A potent olfactory stimulant and attractant for tsetse isolated from cattle odours. International Journal of Tropical Insect Science 5: 335-339. https://doi.org/10.1017/S1742758400008626

  • Hallem, E.A., Ho, M.G. and Carlson, J.R., 2004. The molecular basis of odour coding in the Drosophila antenna. Cell 117: 965-979. https://doi.org/10.1016/j.cell.2004.05.012

  • Hao, H., Sun, J. and Dai, J., 2013. Dose-dependent behavioural response of the mosquito Aedes albopictus to floral odorous compounds. Journal of Insect Science 13: 127. https://doi.org/10.1673/031.013.12701

  • Hao, H., Wei, J., Dai, J. and Du, J., 2008. Host-seeking and blood-feeding behaviour of Aedes albopictus (Diptera: Culicidae) exposed to vapors of geraniol, citral, citronellal, eugenol, or anisaldehyde. Journal of Medical Entomology 45: 533-539. https://doi.org/10.1093/jmedent/45.3.533

  • Hartberg, W.K., 1971. Observations on the mating behaviour of Aedes aegypti in nature. Bulletin of the World Health Organization 45: 847-850.

  • Hawkes, F.M., Zeil, J. and Gibson, G., 2022. Vision in mosquitoes. Chapter 19. In: Ignell, R., Lazzari, C.R., Lorenzo, M.G. and Hill, S.R. (eds.) Sensory ecology of disease vectors. Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 511-533. https://doi.org/10.3920/978-90-8686-932-9_19

  • Healy, T. and Copland, M., 1995. Activation of Anopheles gambiae mosquitoes by carbon dioxide and human breath. Medical and Veterinary Entomology 9: 331-336. https://doi.org/10.1111/j.1365-2915.1995.tb00143.x

  • Hill, C.A., Fox, A.N., Pitts, R.J., Kent, L.B., Tan, P.L., Chrystal, M.A., Cravchik, A., Collins, F.H., Robertson, H.M. and Zwiebel, L.J., 2002. G protein-coupled receptors in Anopheles gambiae. Science 298: 176-178. https://doi.org/10.1126/science.1076196

  • Hill, S.R. and Ignell, R., 2021. Modulation of odour-guided behaviour in mosquitoes. Cell Tissue Research 383: 195-206. https://doi.org/10.1007/s00441-020-03368-6

  • Hill, S.R., Ghaninia, M. and Ignell, R., 2019. Blood meal induced regulation of gene expression in the maxillary palps, a chemosensory organ of the mosquito Aedes aegypti. Frontiers in Ecology and Evolution 7:336. https://doi.org/10.3389/fevo.2019.00336

  • Hill, S.R., Hansson, B.S. and Ignell, R., 2009. Characterization of antennal trichoid sensilla from female southern house mosquito, Culex quinquefasciatus Say. Chemical Senses 34: 231-252.https://doi.org/10.1093/chemse/bjn080

  • Hill, S.R., Majeed, S. and Ignell, R., 2015. Molecular basis for odorant receptor tuning: a short C-terminal sequence is necessary and sufficient for selectivity of mosquito Or8. Insect Molecular Biology 24: 491-501. https://doi.org/10.1111/imb.12176

  • Hill, S.R., Taparia, T. and Ignell, R., 2021. Regulation of the antennal transcriptome of the dengue vector, Aedes aegypti, during the first gonotrophic cycle. BMC Genomics 22: 71. https://doi.org/10.1186/s12864-020-07336-w

  • Hinze, A., Hill, S.R. and Ignell, R., 2022. Odour-mediated host selection and discrimination in mosquitoes. Chapter 9. In: Ignell, R., Lazzari, C.R., Lorenzo, M.G. and Hill, S.R. (eds.) Sensory ecology of disease vectors. Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 253-276. https://doi.org/10.3920/978-90-8686-932-9_9

  • Hinze, A., Lantz, J., Hill, S.R. and Ignell, R., 2021. Mosquito host seeking in 3D using a versatile climate-controlled wind tunnel system. Frontiers in Behavioral Neuroscience 15: 643693. https://doi.org/10.3389/fnbeh.2021.643693

  • Höckelmann, C. and Jüttner, F., 2004. Volatile organic compound (VOC) analysis and sources of limonene, cyclohexanone and straight chain aldehydes in axenic cultures of Calothrix and Plectonema. Water Science and Technology 49: 47-54. https://doi.org/10.2166/wst.2004.0531

  • Holt, R., Subramanian, G., Halpern, A., Sutton, G., Charlab, R., Nusskern, D., Wincker, P., Clark, A., Ribeiro, J., Wides, R., Salzberg, S., Loftus, B., Yandell, M., Majoros, W., Rusch, D., Lai, Z., Kraft, C., Abril, J., Anthouard, V., Arensburger, P., Atkinson, P., Baden, H., Berardinis, V. de, Baldwin, D., Benes, V., Biedler, J., Blass, C., Bolanos, R., Boscus, D., Barnstead, M., Cai, S., Center, A., Chatuverdi, K., Christophides, G., Chrystal, M., Clamp, M., Cravchik, A., Curwen, V., Dana, A., Delcher, A., Dew, I., Evans, C., Flanigan, M., Grundschober-Freimoser, A., Friedli, L., Gu, Z., Guan, P., Guigo, R., Hillenmeyer, M., Hladun, S., Hogan, J., Hong, Y., Hoover, J., Jaillon, O., Ke, Z., Kodira, C., Kokoza, E., Koutsos, A., Letunic, I., Levitsky, A., Liang, Y., Lin, J., Lobo, N., Lopez, J., Malek, J., McIntosh, T., Meister, S., Miller, J., Mobarry, C., Mongin, E., Murphy, S., O’Brochta, D., Pfannkoch, C., Qi, R., Regier, M., Remington, K., Shao, H., Sharakhova, M., Sitter, C., Shetty, J., Smith, T., Strong, R., Sun, J., Thomasova, D., Ton, L., Topalis, P., Tu, Z., Unger, M., Walenz, B., Wang, A., Wang, J., Wang, M., Wang, X., Woodford, K., Wortman, J., Wu, M., Yao, A., Zdobnov, E., Zhang, H., Zhao, Q., Zhao, S., Zhu, S., Zhimulev, I., Coluzzi, M., Torre, A.D., Roth, C., Louis, C., Kalush, F., Mural, R., Myers, E., Adams, M., Smith, H., Broder, S., Gardner, M., Fraser, C., Birney, E., Bork, P., Brey, P., Venter, J., Weissenbach, J., Kafatos, F., Collins, F. and Hoffman, S., 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298: 129-49. https://doi.org/10.1126/science.1076181

  • Howlett, F.M., 1910. The influence of temperature upon the biting of mosquitoes. Parasitology 3: 479-484. https://doi.org/10.1017/s0031182000002304

  • Hu, X., Leming, M.T., Whaley, M.A. and O’Tousa, J.E., 2014. Rhodopsin coexpression in UV photoreceptors of Aedes aegypti and Anopheles gambiae mosquitoes. Journal of Experimental Biology 217: 1003-1008. https://doi.org/10.1242/jeb.096347

  • Hubbard, T.D., Murray, I.A. and Perdew, G.H., 2015. Indole and tryptophan metabolism: endogenous and dietary routes to ah receptor activation. Drug Metabolism and Disposition 43: 1522-1535. https://doi.org/10.1124/dmd.115.064246

  • Huff, R.M. and Pitts, R.J., 2019. An odorant receptor from Anopheles gambiae that demonstrates enantioselectivity to the plant volatile, linalool. PLoS ONE 14: e0225637. https://doi.org/10.1371/journal.pone.0225637

  • Huff, R.M. and Pitts, R.J., 2020. Carboxylic acid responses by a conserved odorant receptor in culicine vector mosquitoes. Insect Molecular Biology 29: 523-530. https://doi.org/10.1111/imb.12661

  • Hughes, D.T., Pelletier, J., Luetje, C.W. and Leal, W.S., 2010. Odorant receptor from the southern house mosquito narrowly tuned to the oviposition attractant skatole. Journal of Chemical Ecology 36: 797-800. https://doi.org/10.1007/s10886-010-9828-9

  • Hussain, A., Zhang, M., Üçpunar, H.K., Svensson, T., Quillery, E., Gompel, N., Ignell, R. and Kadow, I.C.G., 2016. Ionotropic chemosensory receptors mediate the taste and smell of polyamines. PLoS Biology 14: e1002454. https://doi.org/10.1371/journal.pbio.1002454

  • Hwang, Y.-S., Wu, K.-H., Kumamoto, J., Axelrod, H. and Mulla, M.S., 1985. Isolation and identification of mosquito repellents in Artemisia vulgaris. Journal of Chemical Ecology 11: 1297-1306. https://doi.org/10.1007/bf01024117

  • Ikeshoji, T. and Hurlbert, S.H., 1971. Dibutyl o-cresol: its effects on mosquito survival and oviposition and on plankton populations. Mosquito News 31: 504-508.

  • Jaenson, T.G., 1985. Attraction to mammals of male mosquitoes with special reference to Aedes diantaeus in Sweden. Journal of the American Mosquito Control Association 1: 195-198.

  • Jones, P.L., Pask, G.M., Romaine, I.M., Taylor, R.W., Reid, P.R., Waterson, A.G., Sulikowski, G.A. and Zwiebel, L.J., 2012. Allosteric antagonism of insect odorant receptor ion channels. PLoS ONE 7: e30304. https://doi.org/10.1371/journal.pone.0030304

  • Jones, W.D., Nguyen, T.-A.T., Kloss, B., Lee, K.J. and Vosshall, L.B., 2005. Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Current Biology 15: R119-R121. https://doi.org/10.1016/j.cub.2005.02.007

  • Jürgens, A., Dötterl, S. and Meve, U., 2006. The chemical nature of fetid floral odours in stapeliads (Apocynaceae-Asclepiadoideae-Ceropegieae). The New Phytologist 172: 452-468. https://doi.org/10.1111/j.1469-8137.2006.01845.x

  • Kemme, J.A., Essen, P.H.V., Ritchie, S.A. and Kay, B.H., 1993. Response of mosquitoes to carbon dioxide and 1-octen-3-ol in southeast Queensland, Australia. Journal of the American Mosquito Control Association 9: 431-435.

  • Khan, M., Shah, R., Shad, S.A., Majeed, S., Ahmad, S. and Binyameen, M., 2021. Water extracts from trees negatively affect oviposition behavior and fitness of southern house mosquito, Culex Quinquefasciatus Say (Diptera: Culicidae): a simple, easily adoptable and cost-effective approach to control mosquitoes. Preprint. https://doi.org/10.21203/rs.3.rs-143809/v1

  • Khan, Z., Ignell, R. and Hill, S.R., 2022. Odour-mediated oviposition-site selection by mosquitoes. Chapter 14. In: Ignell, R., Lazzari, C.R., Lorenzo, M.G. and Hill, S.R. (eds.) Sensory ecology of disease vectors. Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 373-417. https://doi.org/10.3920/978-90-8686-932-9_14

  • Kilpatrick, A.M., Kramer, L.D., Jones, M.J., Marra, P.P. and Daszak, P., 2006. West Nile Virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biology 4: e82. https://doi.org/10.1371/journal.pbio.0040082

  • Kite, G.C., 1995. The floral odour of Arum maculatum. Biochemical Systematics and Ecology 23: 343-354. https://doi.org/10.1016/0305-1978(95)00026-q

  • Kline, D., Takken, W., Wood, J. and Carlson, D., 1990. Field studies on the potential of butanone, carbon dioxide, honey extract, 1-octen-3-ol, L-lactic acid and phenols as attractants for mosquitoes. Medical and Veterinary Entomology 4: 383-391. https://doi.org/10.1111/j.1365-2915.1990.tb00455.x

  • Kline, D.L., Allan, S.A., Bernier, U.R. and Welch, C.H., 2007. Evaluation of the enantiomers of 1-octen-3-ol and 1-octyn-3-ol as attractants for mosquitoes associated with a freshwater swamp in Florida, U.S.A. Medical and Veterinary Entomology 21: 323-331. https://doi.org/10.1111/j.1365-2915.2007.00697.x

  • Kline, D.L., Bernier, U.R., Posey, K.H. and Barnard, D.R., 2003. Olfactometric evaluation of spatial repellents for Aedes aegypti. Journal of Medical Entomology 40: 463-467. https://doi.org/10.1603/0022-2585-40.4.463

  • Kline, D.L., Dame, D.A. and Meisch, M.V., 1991a. Evaluation of 1-octen-3-ol and carbon dioxide as attractants for mosquitoes associated with irrigated rice fields in Arkansas. Journal of the American Mosquito Control Association 7: 165-169.

  • Kline, D.L., Wood, J.R. and Cornell, J.A., 1991b. Interactive effects of 1-octen-3-ol and carbon dioxide on mosquito (Diptera: Culicidae) surveillance and control. Journal of Medical Entomology 28: 254-258. https://doi.org/10.1093/jmedent/28.2.254

  • Klowden, M.J. and Lea, A.O., 1979. Humoral inhibition of host-seeking in Aedes aegypti during oöcyte maturation. Journal of Insect Physiology 25: 231-235. https://doi.org/10.1016/0022-1910(79)90048-9

  • Knight, J.C. and Corbet, S.A., 1991. Compounds affecting mosquito oviposition: structure-activity relationships and concentration effects. Journal of the American Mosquito Control Association 7: 37-41.

  • Knols, B., Takken, W. and Jong, R.D., 1994. Influence of human breath on selection of biting sites by Anopheles albimanus. Journal of the American Mosquito Control Association 10: 423-426.

  • Knudsen, J.T. and Tollsten, L., 1995. Floral scent in bat-pollinated plants: a case of convergent evolution. Botanical Journal of the Linnean Society 119: 45-57. https://doi.org/10.1111/j.1095-8339.1995.tb00728.x

  • Knudsen, J.T., Eriksson, R., Gershenzon, J. and Ståhl, B., 2006. Diversity and distribution of floral scent. The Botanical Review 72: 1-120. https://doi.org/10.1663/0006-8101(2006)72[1:dadofs]2.0.co;2

  • Kramer, W.L. and Mulla, M.S., 1979. Oviposition attractants and repellents of mosquitoes: oviposition responses of Culex mosquitoes to organic infusions. Environmental Entomology 8: 1111-1117. https://doi.org/10.1093/ee/8.6.1111

  • Krång, A.-S., Knaden, M., Steck, K. and Hansson, B.S., 2012. Transition from sea to land: olfactory function and constraints in the terrestrial hermit crab Coenobita clypeatus. Proceedings of the Royal Society 279: 3510-3519. https://doi.org/10.1098/rspb.2012.0596

  • Kwon, H.-W., Lu, T., Rutzler, M. and Zwiebel, L.J., 2006. Olfactory responses in a gustatory organ of the malaria vector mosquito Anopheles gambiae. Proceedings of the National Academy of Sciences of the USA 103: 13526-13531. https://doi.org/10.1073/pnas.0601107103

  • Kwon, J.Y., Dahanukar, A., Weiss, L.A. and Carlson, J.R., 2007. The molecular basis of CO2 reception in Drosophila. Proceedings of the National Academy of Sciences of the USA 104: 3574-3578. https://doi.org/10.1073/pnas.0700079104

  • Lacey, E.S., Ray, A. and Carde, R.T., 2014. Close encounters: contributions of carbon dioxide and human skin odour to finding and landing on a host in Aedes aegypti. Physiological Entomology 39: 60-68. https://doi.org/10.1111/phen.12048

  • Lacher, V., 1967. Elektrophysiologische Untersuchungen an einzelnen Geruchsrezeptoren auf den antennen weiblicher Moskitos (Aëdes aegypti L.). Journal of Insect Physiology 13: 1461-1470. https://doi.org/10.1016/0022-1910(67)90171-0

  • Lahondère, C., Vinauger, C., Okubo, R.P., Wolff, G.H., Chan, J.K., Akbari, O.S. and Riffell, J.A., 2019. The olfactory basis of orchid pollination by mosquitoes. Proceedings of the National Academy of Sciences USA 117: 708-716. https://doi.org/10.1073/pnas.1910589117

  • Lancaster, J., Khrimian, A., Young, S., Lehner, B., Luck, K., Wallingford, A., Ghosh, S.K.B., Zerbe, P., Muchlinski, A., Marek, P.E., Sparks, M.E., Tokuhisa, J.G., Tittiger, C., Köllner, T.G., Weber, D.C., Gundersen-Rindal, D.E., Kuhar, T.P. and Tholl, D., 2018. De novo formation of an aggregation pheromone precursor by an isoprenyl diphosphate synthase-related terpene synthase in the harlequin bug. Proceedings of the National Academy of Sciences USA 115: E8634-E8641. https://doi.org/10.1073/pnas.1800008115

  • Lancker, F.V., Adams, A., Delmulle, B., Saeger, S.D., Moretti, A., Peteghem, C.V. and Kimpe, N.D., 2008. Use of headspace SPME-GC-MS for the analysis of the volatiles produced by indoor molds grown on different substrates. Journal of Environmental Monitoring 10: 1127-1133. https://doi.org/10.1039/b808608g

  • Laurence, B. and Pickett, J., 1982. An oviposition pheromone for Culex quinquefasiatus. Bulletin of Entomological Research 73: 283-290. https://doi.org/10.1017/S0007485300014371

  • Leal, H.M., Hwang, J.K., Tan, K. and Leal, W.S., 2017. Attraction of Culex mosquitoes to aldehydes from human emanations. Scientific Reports 7: 17965. https://doi.org/10.1038/s41598-017-18406-7

  • Leal, W.S., 2012. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology 58: 373-391. https://doi.org/10.1146/annurev-ento-120811-153635

  • Leal, W.S., Barbosa, R.M.R., Xu, W., Ishida, Y., Syed, Z., Latte, N., Chen, A.M., Morgan, T.I., Cornel, A.J. and Furtado, A., 2008. Reverse and conventional chemical ecology approaches for the development of oviposition attractants for Culex mosquitoes. PLoS ONE 3: e3045. https://doi.org/10.1371/journal.pone.0003045

  • Leal, W.S., Choo, Y.-M., Xu, P., Silva, C.S.B. da and Ueira-Vieira, C., 2013. Differential expression of olfactory genes in the southern house mosquito and insights into unique odorant receptor gene isoforms. Proceedings of the National Academy of Sciences of the USA 110: 18704-18709. https://doi.org/10.1073/pnas.1316059110

  • Lee, J.-H., Wood, T.K. and Lee, J., 2015. Roles of indole as an interspecies and interkingdom signaling molecule. Trends in Microbiology 23: 707-718. https://doi.org/10.1016/j.tim.2015.08.001

  • Lindh, J.M., Borg-Karlson, A.-K. and Faye, I., 2008a. Transstadial and horizontal transfer of bacteria within a colony of Anopheles gambiae (Diptera: Culicidae) and oviposition response to bacteria-containing water. Acta Tropica 107: 242-250. https://doi.org/10.1016/j.actatropica.2008.06.008

  • Lindh, J.M., Kannaste, A., Knols, B.G.J., Faye, I. and Borg-Karlson, A.-K., 2008b. Oviposition responses of Anopheles gambiae s.s. (Diptera: Culicidae) and identification of volatiles from bacteria-containing solutions. Journal of Medical Entomology 45: 1039-1049. https://doi.org/10.1093/jmedent/45.6.1039

  • Linley, J.R., 1989. Laboratory tests of the effects of p-cresol and 4-methylcyclohexanol on oviposition by three species of Toxorhynchites mosquitoes. Medical and Veterinary Entomology 3: 347-352. https://doi.org/10.1111/j.1365-2915.1989.tb00241.x

  • Liu, C., Pitts, R.J., Bohbot, J.D., Jones, P.L., Wang, G. and Zwiebel, L.J., 2010. Distinct olfactory signaling mechanisms in the malaria vector mosquito Anopheles gambiae. PLoS Biology 8: e1000467. https://doi.org/10.1371/journal.pbio.1000467

  • Liu, F., Ye, Z., Baker, A., Sun, H. and Zwiebel, L.J., 2020. Gene editing reveals obligate and modulatory components of the CO2 receptor complex in the malaria vector mosquito, Anopheles coluzzii. Insect Biochemistry and Molecular Biology 127: 103-470. https://doi.org/10.1016/j.ibmb.2020.103470

  • Liu, H., Liu, T., Xie, L., Wang, X., Deng, Y., Chen, C.-H., James, A.A. and Chen, X.-G., 2016. Functional analysis of Orco and odorant receptors in odour recognition in Aedes albopictus. Parasites Vectors 9: 363. https://doi.org/10.1186/s13071-016-1644-9

  • Logan, J.G., Birkett, M.A., Clark, S.J., Powers, S., Seal, N.J., Wadhams, L.J., Luntz, A.J.M. and Pickett, J.A., 2008. Identification of human-derived volatile chemicals that interfere with attraction of Aedes aegypti mosquitoes. Journal of Chemical Ecology 34: 308-322. https://doi.org/10.1007/s10886-008-9436-0

  • Logan, J.G., Stanczyk, N.M., Hassanali, A., Kemei, J., Santana, A.E.G. Ribeiro, K.A.L., Pickett, J.A. and Luntz, A.J.M., 2010. Arm-in-cage testing of natural human-derived mosquito repellents. Malaria Journal 9: 239-239. https://doi.org/10.1186/1475-2875-9-239

  • Lombardo, F., Salvemini, M., Fiorillo, C., Nolan, T., Zwiebel, L.J., Ribeiro, J.M. and Arcà, B., 2017. Deciphering the olfactory repertoire of the tiger mosquito Aedes albopictus. BMC Genomics 18: 770. https://doi.org/10.1186/s12864-017-4144-1

  • Lorenz, L.M., Keane, A., Moore, J.D., Munk, C.J., Seeholzer, L., Mseka, A., Simfukwe, E., Ligamba, J., Turner, E.L., Biswaro, L.R., Okumu, F.O., Killeen, G.F., Mukabana, W.R. and Moore, S.J., 2013. Taxis assays measure directional movement of mosquitoes to olfactory cues. Parasites Vectors 6: 131. https://doi.org/10.1186/1756-3305-6-131

  • Lu, T., Qiu, Y.T., Wang, G., Kwon, J.Y., Rutzler, M., Kwon, H.-W., Pitts, R.J., Van Loon, J.J.A., Takken, W., Carlson, J.R. and Zwiebel, L.J., 2007. Odour coding in the maxillary palp of the malaria vector mosquito Anopheles gambiae. Current biology 17: 1533-1544. https://doi.org/10.1016/j.cub.2007.07.062

  • Magnarelli, L.A., 1977. Host feeding patterns of connecticut mosquitoes (Diptera: Culicidae). American Journal of Tropical Medicine and Hygiene 26: 547-552. https://doi.org/10.4269/ajtmh.1977.26.547

  • Majeed, S., 2013. Odour-mediated host preference in mosquitoes: the role of the maxillary palps in host recognition. Doctoral Thesis Swedish University of Agricultural Sciences, Alnarp, Sweden, 71 pp.

  • Majeed, S., Hill, S.R., Birgersson, G. and Ignell, R., 2016. Detection and perception of generic host volatiles by mosquitoes modulate host preference: context dependence of (R)-1-octen-3-ol. Royal Society Open Science 3: 160467. https://doi.org/10.1098/rsos.160467

  • Majeed, S., Hill, S.R., Dekker, T. and Ignell, R., 2017. Detection and perception of generic host volatiles by mosquitoes: responses to CO2 constrains host-seeking behaviour. Royal Society Open Science 4: 170189. https://doi.org/10.1098/rsos.170189

  • Manoharan, M., Chong, M.N.F., Vaïtinadapoulé, A., Frumence, E., Sowdhamini, R. and Offmann, B., 2013. Comparative genomics of odorant binding proteins in Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus. Genome Biology and Evolution 5: 163-180. https://doi.org/10.1093/gbe/evs131

  • Matthews, B.J., McBride, C.S., Degennaro, M., Despo, O. and Vosshall, L.B., 2016. The neurotranscriptome of the Aedes aegypti mosquito. BMC Genomics 17: 32. https://doi.org/10.1186/s12864-015-2239-0

  • Mboera, L.E.G. Takken, W. and Sambu, E., 2000. The response of Culex quinquefasciatus (Diptera: Culicidae) to traps baited with carbon dioxide, 1-octen-3-ol, acetone, butyric acid and human foot odour in Tanzania. Bulletin of Entomological Research 90: 155-159. https://doi.org/10.1017/s0007485300000262

  • McBride, C.S., Baier, F., Omondi, A.B., Spitzer, S.A., Lutomiah, J., Sang, R., Ignell, R. and Vosshall, L.B., 2014. Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515: 222-227. https://doi.org/10.1038/nature13964

  • Mccall, P.J. and Eaton, G., 2001. Olfactory memory in the mosquito Culex quinquefasciatus. Medical Veterinary Entomology 15: 197-203. https://doi.org/10.1046/j.0269-283x.2001.00304.x

  • McIver, S., 1982. Sensilla of mosquitoes (Diptera: Culicidae). Journal of Medical Entomology 19: 489-535.

  • McIver, S.B., Wilkes, T.J. and Gillies, M.T., 1980. Attraction to mammals of male Mansonia (Mansonioides) (Diptera: Culicidae). Bulleting of Entomological Research 70: 11-16. https://doi.org/10.1017/s0007485300009718

  • McLaughlin, C.N., Brbic, M., Xie, Q., Li, T., Horns, F., Kolluru, S.S., Kebschull, J.M., Vacek, D., Xie, A., Li, J., Jones, R.C., Leskovec, J., Quake, S.R., Luo, L. and Li, H., 2021. Single-cell transcriptomes of developing and adult olfactory receptor neurons in Drosophila. eLife 10: e63856. https://doi.org/10.7554/elife.63856

  • McMeniman, C.J., Corfas, R.A., Matthews, B.J., Ritchie, S.A. and Vosshall, L.B., 2014. Multimodal integration of carbon dioxide and other sensory cues drives mosquito attraction to humans. Cell 156: 1060-1071. https://doi.org/10.1016/j.cell.2013.12.044

  • Meijerink, J., Braks, M.A. and Van Loon, J.J., 2001. Olfactory receptors on the antennae of the malaria mosquito Anopheles gambiae are sensitive to ammonia and other sweat-borne components. Journal of Insect Physiology 47: 455-464. https://doi.org/10.1016/S0022-1910(00)00136-0

  • Meijerink, J., Braks, M.A.H., Brack, A.A., Adam, W., Dekker, T., Posthumus, M.A., Van Beek, T.A. and Van Loon, J.J.A., 2000. Identification of olfactory stimulants for Anopheles gambiae from human sweat samples. Journal of Chemical Ecology 26: 1367-1382. https://doi.org/10.1023/a:1005475422978

  • Melo, N., Wolff, G.H., Costa-da-Silva, A.L., Arribas, R., Triana, M.F., Gugger, M., Riffell, J.A., Degennaro, M. and Stensmyr, M.C., 2020. Geosmin attracts Aedes aegypti mosquitoes to oviposition sites. Current Biology 30: 1-8. https://doi.org/10.1101/598698

  • Mendki, M., 2000. Heneicosane: an oviposition attractant of larval origin in Aedes aegypti. Current Science 78: 1295-1296.

  • Menger, D.J., Van Loon, J.J.A. and Takken, W., 2014. Assessing the efficacy of candidate mosquito repellents against the background of an attractive source that mimics a human host. Medical and Veterinary Entomology 28: 407-413. https://doi.org/10.1111/mve.12061

  • Millar, J.G., Chaney, J.D. and Mulla, M.S., 1992. Identification of oviposition attractants for Culex quinquefasciatus from fermented Bermuda grass infusions. Journal of the American Mosquito Control Association 8: 11-17.

  • Millar, J.G., Chaney, J.D., Beehler, J.W. and Mulla, M.S., 1994. Interaction of the Culex quinquefasciatus egg raft pheromone with a natural chemical associated with oviposition sites. Journal of the American Mosquito Control Association 10: 374-379.

  • Min, S., Ai, M., Shin, S.A. and Suh, G.S.B., 2013. Dedicated olfactory neurons mediating attraction behaviour to ammonia and amines in Drosophila. Proceedings of the National Academy of Sciences of the USA 110: E1321-E1329. https://doi.org/10.1073/pnas.1215680110

  • Missbach, C., Dweck, H.K., Vogel, H., Vilcinskas, A., Stensmyr, M.C., Hansson, B.S. and Große-Wilde, E., 2014. Evolution of insect olfactory receptors. eLife 3: e02115. https://doi.org/10.7554/elife.02115

  • Moore, J.G., Jessop, L.D. and Osborne, D.N., 1987. Gas-chromatographic and mass-spectrometric analysis of the odour of human feces. Gastroenterology 93: 1321-1329. https://doi.org/10.1016/0016-5085(87)90262-9

  • Mordue, A.J., Blackwell, A., Hansson, B.S., Wadhams, L.J. and Pickett, J.A., 1992. Behavioural and electrophysiological evaluation of oviposition attractants for Culex quinquefasciatus say (Diptera: Culicidae). Cellular and Molecular Life Sciences 48: 1109-1111. https://doi.org/10.1007/bf01947999

  • Moreira, R.F.A., Trugo, L.C., Pietroluongo, M. and Maria, C.A.B.D., 2002. Flavor composition of cashew (Anacardium occidentale) and marmeleiro (Croton Species) honeys. Journal of Agricultural and Food Chemistry 50: 7616-7621. https://doi.org/10.1021/jf020464b

  • Mozūraitis, R., Hajkazemian, M., Zawada, J.W., Szymczak, J., Pålsson, K., Sekar, V., Biryukova, I., Friedländer, M.R., Koekemoer, L.L., Baird, J.K., Borg-Karlson, A.-K. and Emami, S.N., 2020. Male swarming aggregation pheromones increase female attraction and mating success among multiple African malaria vector mosquito species. Nature Ecology and Evolution 4: 1395-1401. https://doi.org/10.1038/s41559-020-1264-9

  • Müller, W., 1968. Die Distanz- und Kontakt-Orientierung der Stechmücken (Aedes aegypti) (Wirtsfindung, Stechverhalten und Blutmahlzeit). Zeitschrift Für Vergleichende Physiologie 58: 241-303. https://doi.org/10.1007/bf00298752

  • Nakagawa, T., Pellegrino, M., Sato, K., Vosshall, L.B. and Touhara, K., 2012. Amino acid residues contributing to function of the heteromeric insect olfactory receptor complex. PLoS ONE 7: e32372. https://doi.org/10.1371/journal.pone.0032372

  • Nene, V., Wortman, J.R., Lawson, D., Haas, B., Kodira, C., Tu, Z.J., Loftus, B., Xi, Z., Megy, K., Grabherr, M., Ren, Q., Zdobnov, E.M., Lobo, N.F., Campbell, K.S., Brown, S.E., Bonaldo, M.F., Zhu, J., Sinkins, S.P., Hogenkamp, D.G., Amedeo, P., Arensburger, P., Atkinson, P.W., Bidwell, S., Biedler, J., Birney, E., Bruggner, R.V., Costas, J., Coy, M.R., Crabtree, J., Crawford, M., Debruyn, B., Decaprio, D., Eiglmeier, K., Eisenstadt, E., El-Dorry, H., Gelbart, W.M., Gomes, S.L., Hammond, M., Hannick, L.I., Hogan, J.R., Holmes, M.H., Jaffe, D., Johnston, J.S., Kennedy, R.C., Koo, H., Kravitz, S., Kriventseva, E.V., Kulp, D., Labutti, K., Lee, E., Li, S., Lovin, D.D., Mao, C., Mauceli, E., Menck, C.F.M., Miller, J.R., Montgomery, P., Mori, A., Nascimento, A.L., Naveira, H.F., Nusbaum, C., O’leary, S., Orvis, J., Pertea, M., Quesneville, H., Reidenbach, K.R., Rogers, Y.-H., Roth, C.W., Schneider, J.R., Schatz, M., Shumway, M., Stanke, M., Stinson, E.O., Tubio, J.M.C., Vanzee, J.P., Verjovski-Almeida, S., Werner, D., White, O., Wyder, S., Zeng, Q., Zhao, Q., Zhao, Y., Hill, C.A., Raikhel, A.S., Soares, M.B., Knudson, D.L., Lee, N.H., Galagan, J., Salzberg, S.L., Paulsen, I.T., Dimopoulos, G., Collins, F.H., Birren, B., Fraser-Liggett, C.M. and Severson, D.W., 2007. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316: 1718-1723. https://doi.org/10.1126/science.1138878

  • Ni, L., Klein, M., Svec, K.V., Budelli, G., Chang, E.C., Ferrer, A.J., Benton, R., Samuel, A.D. and Garrity, P.A., 2016. The ionotropic receptors IR21a and IR25a mediate cool sensing in Drosophila. eLife 5: e13254. https://doi.org/10.7554/elife.13254

  • Nichols, A.S., Chen, S. and Luetje, C.W., 2011. Subunit contributions to insect olfactory receptor function: channel block and odorant recognition. Chemical Senses 36: 781-790. https://doi.org/10.1093/chemse/bjr053

  • Nikbakhtzadeh, M.R., II, J.W.T., Otienoburu, P.E. and Foster, W.A., 2014. Olfactory basis of floral preference of the malaria vector Anopheles gambiae (Diptera: Culicidae) among common african plants Journal of Vector Ecology 39: 372-383. https://doi.org/10.3376/i1081-1710-39-372

  • Nyasembe, V.O., Tchouassi, D.P., Kirwa, H.K., Foster, W.A., Teal, P.E.A., Borgemeister, C. and Torto, B., 2014. Development and assessment of plant-based synthetic odour baits for surveillance and control of malaria vectors. PLoS ONE 9: e89818. https://doi.org/10.1371/journal.pone.0089818

  • Nyasembe, V.O., Tchouassi, D.P., Pirk, C.W.W., Sole, C.L. and Torto, B., 2018. Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors. PLoS Neglected Tropical Diseases 12: e0006185. https://doi.org/10.1371/journal.pntd.0006185

  • Ober, D., 2005. Seeing double: gene duplication and diversification in plant secondary metabolism. Trends in Plant Science 10: 444-449. https://doi.org/10.1016/j.tplants.2005.07.007

  • Okumu, F.O., Killeen, G.F., Ogoma, S., Biswaro, L., Smallegange, R.C., Mbeyela, E., Titus, E., Munk, C., Ngonyani, H., Takken, W., Mshinda, H., Mukabana, W.R. and Moore, S.J., 2010. Development and field evaluation of a synthetic mosquito lure that is more attractive than humans. PLoS ONE 5: e8951. https://doi.org/10.1371/journal.pone.0008951

  • Oldfield, E. and Lin, F., 2012. Terpene biosynthesis: modularity rules. Angewandte Chemie 51: 1124-1137. https://doi.org/10.1002/anie.201103110

  • Omer, S. and Gillies, M., 1971. Loss of response to carbon dioxide in palpectomized female mosquitoes. Entomologia Experimentalis & Applicata 14: 251-252.

  • Omondi, A.B., Ghaninia, M., Dawit, M., Svensson, T. and Ignell, R., 2019. Age-dependent regulation of host seeking in Anopheles coluzzii. Scientific Reports 9: 1-9. https://doi.org/10.1038/s41598-019-46220-w

  • Paixo, K. da S., Pereira, I. de C., Bottini, L.L.A., Vilela, E.F. and Eiras, A.E., 2015. Volatile semiochemical-conditioned attraction of the male yellow fever mosquito, Aedes aegypti, to human hosts. Journal of Vector Ecology 40: 1-6. https://doi.org/10.1111/jvec.12143

  • Park, B.-S., Choi, W.-S., Kim, J.-H., Kim, K.-H. and Lee, S.-E., 2005. Monoterpenes from thyme (thymus vulgaris) as potential mosquito repellents. Journal of the American Mosquito Control Association 21: 80-83. https://doi.org/10.2987/8756-971x(2005)21[80:mfttva]2.0.co;2

  • Pask, G.M., Jones, P.L., Rutzler, M., Rinker, D.C. and Zwiebel, L.J., 2011. Heteromeric anopheline odorant receptors exhibit distinct channel properties. PLoS ONE 6: e28774. https://doi.org/10.1371/journal.pone.0028774

  • Pask, G.M., Romaine, I.M. and Zwiebel, L.J., 2012. The molecular receptive range of a lactone receptor in Anopheles gambiae. Chemical Senses 38: 19-25. https://doi.org/10.1093/chemse/bjs074

  • Pates, H.V., Takken, W. and Curtis, C.F., 2005. Laboratory studies on the olfactory behaviour of Anopheles quadriannulatus. Entomologia Experimentalis et Applicata 114: 153-159. https://doi.org/10.1111/j.1570-7458.2005.00249.x

  • Pelletier, J., Hughes, D.T., Luetje, C.W. and Leal, W.S., 2010. An odorant receptor from the southern house mosquito Culexpipiens quinquefasciatus sensitive to oviposition attractants. PLoS ONE 5: e10090. https://doi.org/10.1371/journal.pone.0010090

  • Pinto, M.C., Lendrum, D.H.C., Lozovei, A.L., Teodoro, U. and Davies, C.R., 2001. Phlebotomine sandfly responses to carbon dioxide and human odour in the field. Medical and Veterinary Entomology 15: 132-139. https://doi.org/10.1046/j.1365-2915.2001.00294.x

  • Pitts, R.J., Derryberry, S.L., Pulous, F.E. and Zwiebel, L.J., 2014. Antennal-expressed ammonium transporters in the malaria vector mosquito Anopheles gambiae. PLoS ONE 9: e111858. https://doi.org/10.1371/journal.pone.0111858

  • Pitts, R.J., Derryberry, S.L., Zhang, Z. and Zwiebel, L.J., 2017. Variant ionotropic receptors in the malaria vector mosquito Anopheles gambiae tuned to amines and carboxylic acids. Scientific Reports 7: 40297. https://doi.org/10.1038/srep40297

  • Pitts, R.J., Huff, R.M., Shih, S.J. and Bohbot, J.D., 2021. Identification and functional characterization of olfactory indolergic receptors in Musca domestica. Insect Biochemistry and Molecular Biology 139: 103653. https://doi.org/10.1016/j.ibmb.2021.103653

  • Pitts, R.J., Ibarra Bouzada, L.M.E. and Guerenstein, PG., 2022. Comparative morphology of the peripheral olfactory system of disease vector arthropods. Chapter 2. In: Ignell, R., Lazzari, C.R., Lorenzo, M.G. and Hill, S.R. (eds.) Sensory ecology of disease vectors. Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 29-70. https://doi.org/10.3920/978-90-8686-932-9_2

  • Pitts, R.J., Rinker, D.C., Jones, PL., Rokas, A. and Zwiebel, L.J., 2011. Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odour coding. BMC Genomics 12: 271. https://doi.org/10.1186/1471-2164-12-271

  • Poonam, S., Paily, K. and Balaraman, K., 2002. Oviposition attractancy of bacterial culture filtrates: response of Culex quinquefasciatus. Memórias Instituto Oswaldo Cruz 97: 359-362. https://doi.org/10.1590/s0074-02762002000300015

  • Puri, S.N., Mendki, M.J., Sukumaran, D., Ganesan, K., Prakash, S. and Sekhar, K., 2006. Electroantennogram and behavioural responses of Culex quinquefasciatus (Diptera: Culicidae) females to chemicals found in human skin emanations. Journal of Medical Entomology 43: 207-213. https://doi.org/10.1093/jmedent/43.2.207

  • Qiu, Y., Smallegange, R., Hoppe, S., Van Loon, J., Bakker, E. and Takken, W., 2004. Behavioural and electrophysiological responses of the malaria mosquito Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) to human skin emanations. Medical and Veterinary Entomology 18: 429-438. https://doi.org/10.1111/j.0269-283x.2004.00534.x

  • Qiu, Y., Smallegange, R., Van Loon, J., Braak, C.T. and Takken, W., 2006a. Interindividual variation in the attractiveness of human odours to the malaria mosquito Anopheles gambiae s. s. Medical and Veterinary Entomology 20: 280-287. https://doi.org/10.nn/j.1365-2915.2006.00627.x

  • Qiu, Y.T., Van Loon, J.J.A., Takken, W., Meijerink, J. and Smid, H.M., 2006b. Olfactory coding in antennal neurons of the malaria mosquito, Anopheles gambiae. Chemical Senses 31: 845-863. https://doi.org/10.1093/chemse/bjl027

  • Raji, J.I., Melo, N., Castillo, J.S., Gonzalez, S., Saldana, V., Stensmyr, M.C. and Degennaro, M., 2019. Aedes aegypti mosquitoes detect acidic volatiles found in human odour using the IR8a pathway. Current Biology 29: 1253-1262. e7. https://doi.org/10.1016/j.cub.2019.02.045

  • Raymer, J., Wiesler, D., Novotny, M., Asa, C., Seal, U.S. and Mech, L.D., 1985. Chemical investigations of wolf (Canis lupus) anal-sac secretion in relation to breeding season. Journal of Chemical Ecology 11: 593-608. https://doi.org/10.1007/bf00988570

  • Rines, H.W., French, R.C. and Daasch, L.W., 1974. Nonanal and 6-methyl-5-hepten-2-one: endogenous germination stimulators of uredospores of Puccinia graminis var. tritici and other rusts. Journal of Agricultural and Food Chemistry 22: 96-100. https://doi.org/10.1021/jf60191a004

  • Rinker, D.C., Zhou, X., Pitts, R.J., Rokas, A. and Zwiebel, L.J., 2013. Antennal transcriptome profiles of anopheline mosquitoes reveal human host olfactory specialization in Anopheles gambiae. BMC Genomics 14: 749. https://doi.org/10.1186/1471-2164-14-749

  • Robertson, H.M., Warr, C.G. and Carlson, J.R., 2003. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA 100: 14537-14542. https://doi.org/10.1073/pnas.2335847100

  • Roth, L.M., 1951. Loci of sensory end-organs used by mosquitoes (Aedes Aegypti (L.) and Anopheles quadrimaculatus Say) in receiving host stimuli. Annals of the Entomological Society of America, 44: 59-74.

  • Rudolfs, W., 1922. Chemotropism of mosquitoes. New Jersey Agricultural Experiment Stations 367: 4-23.

  • Rueda, L.M., Harrison, B.A., Brown, J.S., Whitt, P.B., Harrison, R.L. and Gardner, R.C., 2001. Evaluation of 1-octen-3-ol, carbon dioxide, and light as attractants for mosquitoes associated with two distinct habitats in North Carolina. Journal of the American Mosquito Control Association 17: 61-6.

  • Ruel, D., Yakir, E. and Bohbot, J.D., 2019. Supersensitive odorant receptor underscores pleiotropic roles of indoles in mosquito ecology. Frontiers in Cellular Neuroscience 12: 533. https://doi.org/10.3389/fncel.2018.00533

  • Ruel, D.M., Vainer, Y., Yakir, E. and Bohbot, J.D., 2021. Identification and functional characterization of olfactory indolergic receptors in Drosophila melanogaster. Insect Biochemistry and Molecular Biology 139: 103651. https://doi.org/10.1016/j.ibmb.2021.103651

  • Ruzsanyi, V., Mochalski, P., Schmid, A., Wiesenhofer, H., Klieber, M. and Amman, A., 2012. Ion mobility spectrometry for detection of skin volatiles. Journal of chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 911: 84-92. https://doi.org/10.1016/j.jchromb.2012.10.028

  • Saptalena, L.G., Kerpen, K., Kuklya, A. and Telgheder, U., 2012. Rapid detection of synthetic biomarkers of Escherichia coli in water using microAnalyzer: a field dependence study. International Jounal for Ion Mobility Spectrometry 15: 47-53. https://doi.org/10.1007/s12127-011-0087-4

  • Sastry, S.D., Buck, K.T., Janak, J., Dressler, M. and Preti, G., 1980. Volatiles emitted by humans. In: Walker, G.R. and Derner, O.C. (eds.) Biochemical applications of mass spectrometry: First Supplementary Volume. Wiley, Chichester, UK, pp. 1085-1129.

  • Saxena, K.N. and Sharma, R.N., 1972. Embryonic inhibition and oviposition induction in Aedes aegypti by certain terpenoids. Journal of Economic Entomology 65: 1588-1591. https://doi.org/10.1093/jee/65.6.1588

  • Schiffman, S.S., Bennett, J.L. and Raymer, J.H., 2001. Quantification of odors and odorants from swine operations in North Carolina. Agricultural and Forest Meteorology 108: 213-240. https://doi.org/10.1016/s0168-1923(01)00239-8

  • Schlein, Y. and Jacobson, R.L., 2008. High nocturnal CO2 emanation guides the sand fly Phlebotomus papatasi to sugar-rich plants. Physiological Entomology 33: 353-359. https://doi.org/10.1111/j.1365-3032.2008.00638.x

  • Schoelitsz, B., Mwingira, V., Mboera, L.E.G. Beijleveld, H., Koenraadt, C.J.M., Spitzen, J., Van Loon, J.J.A. and Takken, W., 2020. Chemical mediation of oviposition by Anopheles mosquitoes: a Push-pull system driven by volatiles associated with larval stages. Journal of Chemical Ecology 46: 397-409. https://doi.org/10.1007/s10886-020-01175-5

  • Schultze, A., Pregitzer, P., Walter, M.F., Woods, D.F., Marinotti, O., Breer, H. and Krieger, J., 2013. The co-expression pattern of odorant binding proteins and olfactory receptors identify distinct trichoid sensilla on the antenna of the malaria mosquito Anopheles gambiae. PLoS ONE 8: e69412. https://doi.org/10.1371/journal.pone.0069412

  • Schulz, S. and Dickschat, J.S., 2007. Bacterial volatiles: the smell of small organisms. Natural Product Reports 24: 814-842.https://doi.org/10.1039/b507392h

  • Senanayake, U.M., Wills, R.B.H. and Lee, T.H., 1977. Biosynthesis of eugenol and cinnamic aldehyde in Cinnamomum zeylanicum. Phytochemistry 16: 2032-2033. https://doi.org/10.1016/0031-9422(77)80125-8

  • Silbering, A.F., Rytz, R., Grosjean, Y., Abuin, L., Ramdya, P., Jefferis, G.S.X.E. and Benton, R., 2011. Complementary function and integrated wiring of the evolutionarily distinct Drosophila olfactory subsystems. The Journal of 31: 13357-13375.https://doi.org/10.1523/jneurosci.2360-11.2011

  • Silva, I.M., Eiras, A.E., Kline, D.L. and Bernier, U.R., 2005. Laboratory evaluation of mosquito traps baited with a synthetic human odour blend to capture Aedes aegypti. Journal of the American Mosquito Control Association 21: 229-233.

  • Smallegange, R.C., Qiu, Y.T., Van Loon, J.J.A. and Takken, W., 2005. Synergism between ammonia, lactic acid and carboxylic acids as kairomones in the host-seeking behaviour of the malaria mosquito Anopheles gambiae sensu stricto (Díptera: Culicidae). Chemical Senses 30: 145-152. https://doi.org/10.1093/chemse/bji010

  • Smith, C.N., Smith, N., Gouck, H.K., Weidhaas, D.E., Gilbert, I.H., Mayer, M.S., Smittle, B.J. and Hofbauer, A., 1970. L-Lactic Acid as a factor in the attraction of Aedes aegypti (Diptera: Culicidae) to human hosts. Annals of the Entomological Society of America 63: 760-770.

  • Sparks, J.T., Bohbot, J.D. and Dickens, J.C., 2014. The genetics of chemoreception in the labella and tarsi of Aedes aegypti. Insect Biochemistry and Molecular Biology 48: 8-16. https://doi.org/10.1016/j.ibmb.2014.02.004

  • Spitzen, J., Spoor, C.W, Grieco, F., Ter Braak, C., Beeuwkes, J., Van Brugge, S.P., Kranenbarg, S., Noldus, L.P.J.J., Van Leeuwen, J.L. and Takken, W., 2013. A 3D Analysis of Flight behaviour of Anopheles gambiae sens u strictomalaria mosquitoes in response to human odour and heat. PLoS ONE 8: e62995. https://doi.org/10.1371/journal.pone.0062995

  • Sritabutra, D., Soonwera, M. and Waltanachanobon, S., 2011. Evaluation of herbal essential oil as repellents against Aedes aegypti (L.) and Anopheles dirus Peyton & Harrion. Asian Pacific Journal of Tropical Biomedicine 1: S124-S128. https://doi.org/10.1016/S2221-1691(11)60138-X

  • Steffan, W.A. and Evenhuis, N.L., 1981. Biology of Toxorhynchites. Annual Review of Entomology 26: 159-181. Stensmyr, M.C., Dweck, H.K.M., Farhan, A., Ibba, I., Strutz, A., Mukunda, L., Linz, J., Grabe, V., Steck, K., Lavista-Llanos, S., Wicher, D., Sachse, S., Knaden, M., Becher, P.G., Seki, Y. and Hansson, B.S., 2012. A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151: 1345-1357. https://doi.org/10.1016/j.cell.2012.09.046

  • Suarez, F., Furne, J., Springfield, J. and Levitt, M., 1997. Insights into human colonic physiology obtained from the study of flatus composition. American Journal of Physiology – Gastrointestinal and Liver Physiology 272: G1028-G1033. https://doi.org/10.1152/ajpgi.1997.272.5.g1028

  • Suh, E., Bohbot, J.D. and Zwiebel, L.J., 2014. Peripheral olfactory signaling in insects. Current Opinion in Insect Science 6: 86-92. https://doi.org/10.1016/j.cois.2014.10.006

  • Suh, E., Choe, D.-H., Saveer, A.M. and Zwiebel, L.J., 2016. Suboptimal larval habitats modulate oviposition of the malaria vector mosquito Anopheles coluzzii. PLoS ONE 11: e0149800. https://doi.org/10.1371/journal.pone.0149800

  • Sutcliffe, J., 1994. Sensory bases of attractancy: morphology of mosquito olfactory sensilla – a review. Journal of the American Mosquito Control Association 10: 309-15.

  • Syed, Z. and Guerin, P.M., 2004. Tsetse flies are attracted to the invasive plant Lantana camara. Journal of Insect Physiology 50: 43-50. https://doi.org/10.1016/j.jinsphys.2003.09.007

  • Syed, Z. and Leal, W.S., 2009. Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant. Proceedings of the National Academy of Sciences of the USA 106: 18803-18808. https://doi.org/10.1073/pnas.0906932106

  • Syed, Z. and Leal, W.S., 2007. Maxillary palps are broad spectrum odorant detectors in Culex quinquefasciatus. Chemical Senses 32: 727-738. https://doi.org/10.1093/chemse/bjm040

  • Takken, W., 1991. The role of olfaction in host-seeking of mosquitoes: a review. International Journal of Tropical Insect Science 12: 287-295. https://doi.org/10.1017/s1742758400020816

  • Takken, W., Dekker, T. and Wijnholds, Y.G., 1997. Odor-mediated flight behaviour of Anopheles gambiae giles sensu stricto and An. stephensi liston in response to CO2, acetone, and 1-octen-3-ol (Diptera: Culicidae). Journal of Insect Behaviour 10: 395-407. https://doi.org/10.1007/bf02765606

  • Takken, W., Van Loon, J.J.A. and Adam, W., 2001. Inhibition of host-seeking response and olfactory responsiveness in Anopheles gambiae following blood feeding. Journal of Insect Physiology 47: 303-310. https://doi.org/10.1016/s0022-1910(00)00107-4

  • Takken, W and Kline, D.L., 1989. Carbon dioxide and 1-octen-3-ol as mosquito attractants. Journal of the American Mosquito Control Association 5: 311-316.

  • Takken, W. and Knols, B.G., 1999. Odor-mediated behaviour of Afrotropical malaria mosquitoes. Annual Review of Entomology 44: 131-157. https://doi.org/10.1146/annurev.ento.44.1.131

  • Tallon, A.K., Hill, S.R. and Ignell, R., 2019. Sex and age modulate antennal chemosensory-related genes linked to the onset of host seeking in the yellow-fever mosquito, Aedes aegypti. Scientific Reports 9: 43. https://doi.org/10.1038/s41598-018-36550-6

  • Tan, K.H. and Nishida, R., 2012. Methyl eugenol: its occurrence, distribution, and role in nature, especially in relation to insect behaviour and pollination. Journal of Insect Science 12: 56. https://doi.org/10.1673/031.012.5601

  • Task, D., Lin, C.-C., Afify, A., Li, H., Vulpe, A., Menuz, K. and Potter, C.J., 2020. Widespread polymodal chemosensory receptor expression in Drosophila olfactory neurons. bioRxiv 2020.11.07.355651. https://doi.org/10.1101/2020.11.07.355651

  • Thomas, A., Mazigo, H.D., Manjurano, A., Morona, D. and Kweka, E.J., 2017. Evaluation of active ingredients and larvicidal activity of clove and cinnamon essential oils against Anopheles gambiae (sensu lato). Parasites & Vectors 10: 411. https://doi.org/10.1186/s13071-017-2355-6

  • Tomberlin, J.K., Crippen, T.L., Wu, G., Griffin, A.S., Wood, T.K. and Kilner, R.M., 2017. Indole: An evolutionarily conserved influencer of behaviour across kingdoms. BioEssays 39: 1600203. https://doi.org/10.1002/bies.201600203

  • Traboulsi, A.F., El-Haj, S., Tueni, M., Taoubi, K., Nader, N.A. and Mrad, A., 2005. Repellency and toxicity of aromatic plant extracts against the mosquito Culex pipiens molestus (Diptera: Culicidae). Pest Management Science 61: 597-604. https://doi.org/10.1002/ps.1017

  • Tunon, H., Thorsell, W., Mikiver, A. and Malander, I., 2006. Arthropod repellency, especially tick (Ixodes ricinus), exerted by extract from Artemisia abrotanum and essential oil from flowers of Dianthus caryophyllum. Fitoterapia 77: 257-261. https://doi.org/10.1016/j.fitote.2006.02.009

  • Turlings, T.C., Tumlinson, J.H., Heath, R.R., Proveaux, A.T. and Doolittle, R.E., 1991. Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. Journal of Chemical Ecology 17: 2235-2251. https://doi.org/10.1007/bf00988004

  • Van den Velde, S., Nevens, F., Van Hee, P., Van Steenberghe, D. and Quirynen, M., 2008. GC-MS analysis of breath odour compounds in liver patients. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 875: 344-348. https://doi.org/10.1016/j.jchromb.2008.08.031

  • Vartak, P.H., Tungikar, V.B. and Sharma, R.N., 1994. Comparative repellent properties of certain chemicals against mosquitoes, house flies and cockroaches using modified techniques. The Journal of Communicable Diseases 26: 156-160.

  • Venkatesh, P.M. and Sen, A., 2017. Laboratory evaluation of synthetic blends of l-(+)-lactic acid, ammonia, and ketones as potential attractants for Aedes aegypti. Journal of the American Mosquito Control Association 33: 301308. https://doi.org/10.2987/16-6599.1

  • Verhulst, N.O., Takken, W., Dicke, M., Schraa, G. and Smallegange, R.C., 2010. Chemical ecology of interactions between human skin microbiota and mosquitoes. FEMS Microbiology Ecology 74: 1-9. https://doi.org/10.1111/j.1574-6941.2010.00908.x

  • Vinauger, C., Breugel, F. van, Locke, L.T., Tobin, K.K.S., Dickinson, M.H., Fairhall, A.L., Akbari, O.S. and Riffell, J.A., 2019. Visual-olfactory integration in the human disease vector mosquito Aedes aegypti. Current Biology 29: 2509-2516.e5. https://doi.org/10.1016/jxub.2019.06.043

  • Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A. and Axel, R., 1999. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96: 725-736. https://doi.org/10.1016/S0092-8674(00)80582-6

  • Vzquez-martnez, M.G., Rodrguez, M.H., Arredondo-Jimnez, J.I., Mndez-Snchez, J.D., Bond-Compen, J.G. and Gold-Morgan, M., 2002. Cyanobacteria Associated with Anopheles albimanus (Diptera: Culicidae) larval habitats in Southern Mexico. Journal of Medical Entomology 39: 825-832. https://doi.org/10.1603/0022-2585-39.6.825

  • Wahl, H.G., Hoffmann, A., Luft, D. and Liebich, H.M., 1999. Analysis of volatile organic compounds in human urine by headspace gas chromatography-mass spectrometry with a multipurpose sampler. Journal of Chromatography A 847: 117-125. https://doi.org/10.1016/s0021-9673(99)00017-5

  • Wang, F., Delannay, C., Goindin, D., Deng, L., Guan, S., Lu, X., Fouque, F., Vega-Rúa, A. and Picimbon, J.-F., 2019. Cartography of odour chemicals in the dengue vector mosquito (Aedes aegypti L., Diptera/Culicidae). Scientific Reports 9: 8510. https://doi.org/10.1038/s41598-019-44851-7

  • Wang, G., Carey, A.F., Carlson, J.R. and Zwiebel, L.J., 2010. Molecular basis of odour coding in the malaria vector mosquito Anopheles gambiae. Proceedings of the National Academy of Sciences 107: 4418-4423. https://doi.org/10.1073/pnas.0913392107

  • Wang, Y., Gilbreath, T.M., Kukutla, P., Yan, G. and Xu, J., 2011. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS ONE 6: e24767. https://doi.org/10.1371/journal.pone.0024767

  • Webster, B., Lacey, E.S. and Cardé, R.T., 2015. Waiting with bated breath: opportunistic orientation to human odour in the malaria mosquito, Anopheles gambiae, is modulated by minute changes in carbon dioxide concentration. Journal of Chemical Ecology 41: 59-66. https://doi.org/10.1007/s10886-014-0542-x

  • Wilkins, K., 1996. Volatile metabolites from actinomycetes. Chemosphere 32: 1427-1434. https://doi.org/10.1016/0045-6535(96)00051-3

  • Willemse, L. and Takken, W., 1994. Odor-induced host location in tsetse flies (Diptera: Glossinidae). Journal of Medical Entomology 31: 775-794. https://doi.org/10.1093/jmedent/31.6.775

  • Williams, C.R., Berbauer, R., Geier, M., Kline, D.L., Bernier, U.R., Russell, R.C. and Ritchie, S.A., 2009. Laboratory and field assessment of some kairomone blends for host-seeking Aedes aegypti. Journal of the American Mosquito Control Association 22: 641-647. https://doi.org/10.2987/8756-971x(2006)22[641:lafaos]2.0.co;2

  • Wondwosen, B., Birgersson, G., Seyoum, E., Tekie, H., Torto, B., Fillinger, U., Hill, S.R. and Ignell, R., 2016. Rice volatiles lure gravid malaria mosquitoes, Anopheles arabiensis. Scientific Reports 6: 37930. https://doi.org/10.1038/srep37930

  • Wondwosen, B., Birgersson, G., Tekie, H., Torto, B., Ignell, R. and Hill, S.R., 2018. Sweet attraction: sugarcane pollen-associated volatiles attract gravid Anopheles arabiensis. Malaria Journal 17: 90. https://doi.org/10.1186/s12936-018-2245-1

  • Wondwosen, B., Hill, S.R., Birgersson, G., Seyoum, E., Tekie, H. and Ignell, R., 2017. A(maize)ing attraction: gravid Anopheles arabiensis are attracted and oviposit in response to maize pollen odours. Malaria Journal 16: 39. https://doi.org/10.1186/s12936-016-1656-0

  • Xia, Y., Wang, G., Buscariollo, D., Pitts, R.J., Wenger, H. and Zwiebel, L.J., 2008. The molecular and cellular basis of olfactory-driven behaviour in Anopheles gambiae larvae. Proceedings of the National Academy of Sciences of the USA 105: 6433-6438. https://doi.org/10.1073/pnas.0801007105

  • Xu, P., Zhu, F., Buss, G.K. and Leal, W.S., 2015. 1-Octen-3-ol – the attractant that repels. F1000Research 4: 156. https://doi.org/10.12688/f1000research.6646.1

  • Yamada, Y., Kuzuyama, T., Komatsu, M., Shin-ya, K., Omura, S., Cane, D.E. and Ikeda, H., 2015. Terpene synthases are widely distributed in bacteria. Proceedings of the National Academy of Sciences 112: 857-862. https://doi.org/10.1073/pnas.1422108112

  • Yasuhara, A., Fuwa, K. and Jimbu, M., 1984. Identification of odorous compounds in fresh and rotten swine manure. Agricultural and Biological Chemistry 48: 3001-3010. https://doi.org/10.1271/bbb1961.48.3001

  • Ye, Z., Liu, F., Ferguson, S.T., Baker, A., Pitts, R.J. and Zwiebel, L.J., 2021. Ammonium transporter AcAmt mutagenesis uncovers reproductive and physiological defects without impacting olfactory responses to ammonia in the malaria vector mosquito Anopheles coluzzii. Insect Biochemistry and Molecular Biology 134: 103578 https://doi.org/10.1016/j.ibmb.2020.103360

  • Ye, Z., Liu, F., Sun, H., Barker, M., Pitts, R.J. and Zwiebel, L.J., 2020. Heterogeneous expression of the ammonium transporter AgAmt in chemosensory appendages of the malaria vector, Anopheles gambiae. Insect Biochemistry and Molecular Biology 120: 103360.https://doi.org/10.1016/j.ibmb.2020.103360

  • Yokoyama, M.T. and Carlson, J.R., 1979. Microbial metabolites of tryptophan in the intestinal tract with special reference to skatole. American Journal of Clinical Nutrition 32: 173-178. https://doi.org/10.1093/ajcn/32.1.173

  • Younger, M.A., Herre, M., Ehrlich, A.R., Gong, Z., Gilbert, Z.N., Rahiel, S., Matthews, B.J. and Vosshall, L.B., 2020. Non-canonical odour coding ensures unbreakable mosquito attraction to humans. bioRxiv 2022.11.07.368720. https://doi.org/10.1101/2020.11.07.368720

  • Younger, M.A., Herre, M., Goldman, O.V, Lu, T.-C., Caballero-Vidal, G., Qi, Y., Gilbert, Z.N., Gong, Z., Morita, T., Rahiel, S., Ghaninia, M., Ignell, R., Matthews, B.J., Li, H. and Vosshall, L.B., 2022. Non-canonical odor coding in the mosquito. Biorxiv 2020.11.07.368720. https://doi.org/10.1101/2020.11.07.368720

  • Yu, B.-T., Ding, Y.-M. and Mo, J.-C., 2015. Behavioural response of female Culex pipiens pallens to common host plant volatiles and synthetic blends. Parasite Vector 8: 598. https://doi.org/10.1186/s13071-015-1212-8

  • Zeng, X.-N., Leyden, J.J., Brand, J.G., Spielman, A.I., McGinley, K.J. and Preti, G., 1992. An investigation of human apocrine gland secretion for axillary odour precursors. Journal of Chemical Ecology 18: 1039-1055. https://doi.org/10.1007/bf00980061

  • Zhao, Z., Zung, J.L., Kriete, A.L., Iqbal, A., Younger, M.A., Matthews, B.J., Merhof, D., Thiberge, S., Strauch, M. and McBride, C.S., 2020. Chemical signatures of human odour generate a unique neural code in the brain of Aedes aegypti mosquitoes. bioRxiv 2020.11.01.363861. https://doi.org/10.1101/2020.11.01.363861

  • Zhou, X., Rinker, D.C., Pitts, R.J., Rokas, A. and Zwiebel, L.J., 2014. Divergent and conserved elements comprise the chemoreceptive repertoire of the non-blood feeding mosquito Toxorhynchites amboinensis. Genome Biology and Evolution 6: 2883-2896. https://doi.org/10.1093/gbe/evu231

  • Zinser, M., Ramberg, F. and Willott, E., 2004. Culex quinquefasciatus (Diptera: Culicidae) as a potential West Nile virus vector in Tucson, Arizona: Blood meal analysis indicates feeding on both humans and birds. Journal of Insect Science 4: 1-3. https://doi.org/10.1673/031.004.2001

  • Zlatkis, A., Bertsch, W., Lichtenstein, H.A., Tishbee, A., Shunbo, F., Liebich, H.M., Coscia, A.M. and Fleischer, N., 1973. Profile of volatile metabolites in urine by gas chromatography-mass spectrometry. Analytical Chemistry 45: 763-767. https://doi.org/10.1021/ac60326a036

  • Zlatkis, A. and Liebich, H.M., 1971. Profile of volatile metabolites in human urine. Clinical Chemistry 17: 592-594. Zollner, G.E., Torr, S.J., Ammann, C. and Meixner, F.X., 2004. Dispersion of carbon dioxide plumes in African woodland: implications for host-finding by tsetse flies. Physiological Entomology 29: 381-394. https://doi.org/10.1111/j.0307-6962.2004.00399.x

  • Collapse
  • Expand

Metrics

All Time Past 365 days Past 30 Days
Abstract Views 0 0 0
Full Text Views 218 122 26
PDF Views & Downloads 363 186 25