Rearing insects for food and feed is a rapidly growing industry, because it provides excellent opportunities for a sustainable approach to animal protein production. Two fly species, the black soldier fly (BSF) and the house fly (HF), naturally live in decaying organic matter (e.g. compost), and can thus be effectively reared on organic rest streams from the food and agricultural industry. The adoption of these insects as mini-livestock on microbially rich substrates, however, requires us to address how we can safeguard insect health under mass-rearing conditions. In this review, we discuss what is known about the innate immunity of insects in general, especially focusing on a comparative approach to current knowledge for the two dipteran species BSF and HF. We also discuss environmental factors that may affect innate immunity in mass-rearing settings, including temperature, insect densities and diet composition. Furthermore, we address the role of the microbiome in insect health and the associations of these fly species with detrimental or beneficial microbes. Finally, we present a perspective on important open scientific questions for optimizing the mass rearing of these insects with respect to their health and welfare.
Agaisse, H. and Perrimon, N., 2004. The roles of JAK/STAT signaling inDrosophila immune responses. Immunological Reviews 198: 72-82.https://doi.org/10.1111/j.0105-2896.2004.0133.x
Almire, F., Terry, S., McFarlane, M., Sziemel, A.M., Terhzaz, S., Varjak, M., McDonald, A., Kohl, A. and Pondeville, E., 2021. Sugar feeding enhances gut immunity and protects against arboviral infection in the mosquito vectorAedes aegypti. PLoS Pathogens 17(9): e1009870.
'Sugar feeding enhances gut immunity and protects against arboviral infection in the mosquito vectorAedes aegypti ' () 17 PLoS Pathogens : e1009870.
Anderson, R.D., Blanford, S., Jenkins, N.E. and Thomas, M.B., 2013a. Discriminating fever behavior in house flies. PLoS ONE 8: e62269.
'Discriminating fever behavior in house flies ' () 8 PLoS ONE : e62269.
Anderson, R.D., Blanford, S. and Thomas, M.B., 2013b. House flies delay fungal infection by fevering: at a cost. Ecological Entomology 38: 1-10.
'House flies delay fungal infection by fevering: at a cost ' () 38 Ecological Entomology : 1 -10.
Andoh, M., Ueno, T. and Kawasaki, K., 2018. Tissue-dependent induction of antimicrobial peptide genes after body wall injury in house fly (Musca domestica) larvae. Drug Discoveries & Therapeutics 12(6): 355-362.https://doi.org/10.5582/ddt.2018.01063.
Angilletta Jr, M.J., Huey, R.B. and Frazier, M.R., 2010. Thermodynamic effects on organismal performance: is hotter better? Physiological and Biochemical Zoology 83: 197-206.https://doi.org/10.1086/648567
Anonymous, 2019. Edible insects market by product type (whole insect, insect powder, insect meal), insect type (crickets, black soldier fly, mealworms), application (animal feed, protein bar and shakes, bakery, confectionery, beverages) – global forecast to 2030. Available at:https://tinyurl.com/2p99k4px
Ardia, D.R., Gantz, J.E. and Strebel, S., 2012. Costs of immunity in insects: an induced immune response increases metabolic rate and decreases antimicrobial activity. Functional Ecology 26: 732-739.https://doi.org/10.1111/j.1365-2435.2012.01989.x
Arrese, E.L. and Soulages, J.L., 2010. Insect fat body: energy, metabolism, and regulation. Annual Review of Entomology 55: 207-225.https://doi.org/10.1146/annurev-ento-112408-085356
Ayres, J.S. and Schneider, D.S., 2009. The role of anorexia in resistance and tolerance to infections inDrosophila. PLoS Biology 7: e1000150.
'The role of anorexia in resistance and tolerance to infections inDrosophila ' () 7 PLoS Biology : e1000150.
Bae, Y.S., Choi, M.K. and Lee, W.-J., 2010. Dual oxidase in mucosal immunity and host – microbe homeostasis. Trends in Immunology 31: 278-287.https://doi.org/10.1016/j.it.2010.05.003
Bahrndorff, S., De Jonge, N., Skovgård, H. and Nielsen, J.L., 2017. Bacterial communities associated with houseflies (Musca domestica L.) sampled within and between farms. PLoS ONE 12: e0169753.
'Bacterial communities associated with houseflies (Musca domestica L.) sampled within and between farms ' () 12 PLoS ONE : e0169753.
Bahrndorff, S., Gill, C., Lowenberger, C., Skovgard, H. and Hald, B., 2014. The effects of temperature and innate immunity on transmission ofCampylobacter jejuni (Campylobacterales: Campylobacteraceae) between life stages ofMusca domestica (Diptera: Muscidae). Journal of Medical Entomology 51: 670-677.https://doi.org/10.1603/me13220
Bang, I.S., 2019. JAK/STAT signaling in insect innate immunity. Entomological Research 49: 339-353.
'JAK/STAT signaling in insect innate immunity ' () 49 Entomological Research : 339 -353.
Barillas-Mury, C., Han, Y.-S., Seeley, D. and Kafatos, F.C., 1999.Anopheles gambiae Ag-STAT, a new insect member of the STAT family, is activated in response to bacterial infection. The EMBO Journal 18: 959-967.https://doi.org/10.1093/emboj/18.4.959
Barragan-Fonseca, K.B., Dicke, M. and Van Loon, J.J.A., 2018. Influence of larval density and dietary nutrient concentration on performance, body protein, and fat contents of black soldier fly larvae (Hermetia illucens). Entomologia Experimentalis et Applicata 166: 761-770.https://doi.org/10.1111/eea.12716
Bischoff, V., Vignal, C., Duvic, B., Boneca, I.G., Hoffmann, J.A. and Royet, J., 2006. Downregulation of theDrosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathogens 2: e14.
'Downregulation of theDrosophila immune response by peptidoglycan-recognition proteins SC1 and SC2 ' () 2 PLoS Pathogens : e14.
Blum, J.E., Fischer, C.N., Miles, J. and Handelsman, J., 2013. Frequent replenishment sustains the beneficial microbiome ofDrosophila melanogaster. MBio 4.https://doi.org/10.1128/mBio.00860-13
Boman, H.G., Nilsson-Faye, I., Paul, K. and Rasmuson Jr, T., 1974. Insect immunity. I. Characteristics of an inducible cell-free antibacterial reaction in hemolymph ofSamia cynthia pupae. Infection and Immunity 10: 136-145.
'Insect immunity ' () 10 Infection and Immunity : 136 -145.
Boman, H.G., Nilsson, I. and Rasmuson, B., 1972. Inducible antibacterial defence system inDrosophila. Nature 237: 232-235.https://doi.org/10.1038/237232a0
Bonelli, M., Bruno, D., Caccia, S., Sgambetterra, G., Cappellozza, S., Jucker, C., Tettamanti, G. and Casartelli, M., 2019. Structural and functional characterization ofHermetia illucens larval midgut. Frontiers in Physiology 10: 204.https://doi.org/10.3389/fphys.2019.00204
Borowska, J. and Pyza, E., 2011. Effects of heavy metals on insect immunocompetent cells. Journal of Insect Physiology 57: 760-770.https://doi.org/10.1016/j.jinsphys.2011.02.012
Bruno, D., Bonelli, M., De Filippis, F., Di Lelio, I., Tettamanti, G., Casartelli, M., Ercolini, D. and Caccia, S., 2019. The intestinal microbiota ofHermetia illucens larvae is affected by diet and shows a diverse composition in the different midgut regions. Applied and Environmental Microbiology 85: e01864-01818.
'The intestinal microbiota ofHermetia illucens larvae is affected by diet and shows a diverse composition in the different midgut regions ' () 85 Applied and Environmental Microbiology : e01864 -01818.
Buchon, N., Broderick, N.A., Chakrabarti, S. and Lemaitre, B., 2009. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways inDrosophila. Genes & Development 23: 2333-2344.
'Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways inDrosophila ' () 23 Genes & Development : 2333 -2344.
Buchon, N., Silverman, N. and Cherry, S., 2014. Immunity inDrosophila melanogaster – from microbial recognition to whole-organism physiology. Nature Reviews Immunology 14: 796-810.
'Immunity inDrosophila melanogaster – from microbial recognition to whole-organism physiology ' () 14 Nature Reviews Immunology : 796 -810.
Burger, J.M., Hwangbo, D.S., Corby-Harris, V. and Promislow, D.E., 2007. The functional costs and benefits of dietary restriction inDrosophila. Aging Cell 6: 63-71.https://doi.org/10.1111/j.1474-9726.2006.00261.x
Cattenoz, P.B., Monticelli, S., Pavlidaki, A. and Giangrande, A., 2021. Toward a consensus in the repertoire of hemocytes identified inDrosophila. Frontiers in Cell and Developmental Biology 9: 14.https://doi.org/10.3389/fcell.2021.643712
Chambers, M.C. and Schneider, D.S., 2012. Pioneering immunology: insect style. Current Opinion in Immunology 24: 10-14.https://doi.org/10.1016/j.coi.2011.11.003
Chandler, J., Lang, J., Bhatnagar, S., Eisen, J.A. and Kopp, A., 2011. Bacterial communities of diverseDrosophila species: ecological context of a host-microbe model system. PLoS Genetic 7(9): e1002272.https://doi.org/10.1371/journal.pgen.1002272
Chaplinska, M., Gerritsma, S., Dini-Andreote, F., Falcao Salles, J. and Wertheim, B., 2016. Bacterial communities differ amongDrosophila melanogaster populations and affect host resistance against parasitoids. PLoS ONE 11: e0167726.
'Bacterial communities differ amongDrosophila melanogaster populations and affect host resistance against parasitoids ' () 11 PLoS ONE : e0167726.
Chia, S.Y., Tanga, C.M., Khamis, F.M., Mohamed, S.A., Salifu, D., Sevgan, S., Fiaboe, K.K., Niassy, S., Van Loon, J.J. and Dicke, M., 2018a. Threshold temperatures and thermal requirements of black soldier flyHermetia illucens: implications for mass production. PLoS ONE 13: e0206097.
'Threshold temperatures and thermal requirements of black soldier flyHermetia illucens: implications for mass production ' () 13 PLoS ONE : e0206097.
Chia, S.Y., Tanga, C.M., Osuga, I.M., Mohamed, S.A., Khamis, F.M., Salifu, D., Sevgan, S., Fiaboe, K.K.M., Niassy, S., Van Loon, J.J.A., Dicke, M. and Ekesi, S., 2018b. Effects of waste stream combinations from brewing industry on performance of black soldier fly,Hermetia illucens (Diptera: Stratiomyidae). Peer J 6: e5885.https://doi.org/10.7717/peerj.5885
Cirimotich, C.M., Dong, Y., Clayton, A.M., Sandiford, S.L., Souza-Neto, J.A., Mulenga, M. and Dimopoulos, G., 2011. Natural microbe-mediated refractoriness to Plasmodium infection inAnopheles gambiae. Science 332: 855-858.
'Natural microbe-mediated refractoriness to Plasmodium infection inAnopheles gambiae ' () 332 Science : 855 -858.
Clemmons, A.W., Lindsay, S.A. and Wasserman, S.A., 2015. An effector peptide family required forDrosophila toll-mediated immunity. PLoS Pathogens 11: e1004876.
'An effector peptide family required forDrosophila toll-mediated immunity ' () 11 PLoS Pathogens : e1004876.
Contreras-Garduño, J., Lanz-Mendoza, H., Franco, B., Nava, A., Pedraza-Reyes, M. and Canales-Lazcano, J., 2016. Insect immune priming: ecology and experimental evidences. Ecological Entomology 41: 351-366.https://doi.org/10.1111/een.12300
Cooper, D. and Eleftherianos, I., 2017. Memory and specificity in the insect immune system: current perspectives and future challenges. Frontiers in Immunology 8: 539.https://doi.org/10.3389/fimmu.2017.00539
Daffre, S., Kylsten, P., Samakovlis, C. and Hultmark, D., 1994. The lysozyme locus inDrosophila melanogaster: an expanded gene family adapted for expression in the digestive tract. Molecular and General Genetics MGG 242: 152-162.
'The lysozyme locus inDrosophila melanogaster: an expanded gene family adapted for expression in the digestive tract ' () 242 Molecular and General Genetics MGG : 152 -162.
De Smet, J., Wynants, E., Cos, P. and Van Campenhout, L., 2018. Microbial community dynamics during rearing of black soldier fly larvae (Hermetia illucens) and impact on exploitation potential. Applied and Environmental Microbiology 84(9).https://doi.org/10.1128/AEM.02722-17
Dhinaut, J., Chogne, M. and Moret, Y., 2018. Immune priming specificity within and across generations reveals the range of pathogens affecting evolution of immunity in an insect. Journal of Animal Ecology 87: 448-463.https://doi.org/10.1111/1365-2656.12661
Dicke, M., 2017. Ecosystem services of insects. In: Van Huis, A. and Tomberlin, J.K. (eds.) Insects as food and feed: from production to consumption. Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 61-76.
'Ecosystem services of insects ', () 61 -76.
Dicke, M., 2018. Insects as feed and the sustainable development goals. Journal of Insects as Food and Feed 4: 147-156.https://doi.org/10.3920/JIFF2018.0003
Diener, S., Zurbrügg, C. and Tockner, K., 2009. Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Management & Research 27: 603-610.
'Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates ' () 27 Waste Management & Research : 603 -610.
Dong, Y., Taylor, H.E. and Dimopoulos, G., 2006. AgDscam, a hypervariable immunoglobulin domain-containing receptor of theAnopheles gambiae innate immune system. PLoS Biology 4: e229.https://doi.org/10.1371/journal.pbio.0040229
Dostert, C., Jouanguy, E., Irving, P., Troxler, L., Galiana-Arnoux, D., Hetru, C., Hoffmann, J.A. and Imler, J.-L., 2005. The Jak-STAT signaling pathway is required but not sufficient for the antiviral response ofDrosophila. Nature Immunology 6: 946-953.
'The Jak-STAT signaling pathway is required but not sufficient for the antiviral response ofDrosophila ' () 6 Nature Immunology : 946 -953.
Douglas, A.E., 2015. Multiorganismal insects: diversity and function of resident microorganisms. Annual Review of Entomology 60: 17.
'Multiorganismal insects: diversity and function of resident microorganisms ' () 60 Annual Review of Entomology : 17.
Elhag, O., Zhou, D., Song, Q., Soomro, A.A., Cai, M., Zheng, L., Yu, Z. and Zhang, J., 2017. Screening, expression, purification and functional characterization of novel antimicrobial peptide genes fromHermetia illucens (L.). PLoS ONE 12: e0169582.https://doi.org/10.1371/journal.pone.0169582
Engel, P. and Moran, N.A., 2013. The gut microbiota of insects – diversity in structure and function. FEMS Microbiology Reviews 37: 699-735.
'The gut microbiota of insects – diversity in structure and function ' () 37 FEMS Microbiology Reviews : 699 -735.
Erickson, M.C., Islam, M., Sheppard, C., Liao, J. and Doyle, M.P., 2004. Reduction ofEscherichia coli O157:H7 andSalmonella enterica serovar enteritidis in chicken manure by larvae of the black soldier fly. Journal of Food Protection 67: 685-690.https://doi.org/10.4315/0362-028x-67.4.685
Fallon, J.P., Troy, N. and Kavanagh, K., 2011. Pre-exposure ofGalleria mellonella larvae to different doses ofAspergillus fumigatus conidia causes differential activation of cellular and humoral immune responses. Virulence 2: 413-421.https://doi.org/10.4161/viru.2.5.17811
Faye, I. and Lindberg, B.G., 2016. Towards a paradigm shift in innate immunity – seminal work by Hans G. Boman and co-workers. Philosophical Transactions of the Royal Society B: Biological Sciences 371: 20150303.
'Towards a paradigm shift in innate immunity – seminal work by Hans G ' () 371 Philosophical Transactions of the Royal Society B: Biological Sciences : 20150303.
Faye, I., Pye, A., Rasmuson, T., Boman, H.G. and Boman, I.A., 1975. Insect immunity II. Simultaneous induction of antibacterial activity and selection synthesis of some hemolymph proteins in diapausing pupae ofHyalophora cecropia andSamia cynthia. Infection and Immunity 12: 1426-1438.
'Insect immunity II. Simultaneous induction of antibacterial activity and selection synthesis of some hemolymph proteins in diapausing pupae ofHyalophora cecropia andSamia cynthia ' () 12 Infection and Immunity : 1426 -1438.
Fedorka, K.M., Kutch, I.C., Collins, L. and Musto, E., 2016. Cold temperature preference in bacterially infectedDrosophila melanogaster improves survival but is remarkably suboptimal. Journal of Insect Physiology 93: 36-41.
'Cold temperature preference in bacterially infectedDrosophila melanogaster improves survival but is remarkably suboptimal ' () 93 Journal of Insect Physiology : 36 -41.
Fedorka, K.M., Lee, V. and Winterhalter, W.E., 2012. Thermal environment shapes cuticle melanism and melanin-based immunity in the ground cricketAllonemobius socius. Evolutionary Ecology 27: 521-531.https://doi.org/10.1007/s10682-012-9620-0
Fellous, S. and Lazzaro, B.P., 2010. Larval food quality affects adult (but not larval) immune gene expression independent of effects on general condition. Molecular Ecology 19: 1462-1468.https://doi.org/10.1111/j.1365-294X.2010.04567.x
Fitches, E.C., Dickinson, M., De Marzo, D., Wakefield, M.E., Charlton, A.C. and Hall, H., 2019. Alternative protein production for animal feed:Musca domestica productivity on poultry litter and nutritional quality of processed larval meals. Journal of Insects as Food and Feed 5: 77-88.https://doi.org/10.3920/JIFF2017.0061
Franz, A., Wood, W. and Martin, P., 2018. Fat body cells are motile and actively migrate to wounds to drive repair and prevent infection. Developmental Cell 44: 460-470.https://doi.org/10.1016/j.devcel.2018.01.026
Freitak, D., Schmidtberg, H., Dickel, F., Lochnit, G., Vogel, H. and Vilcinskas, A., 2014. The maternal transfer of bacteria can mediate trans-generational immune priming in insects. Virulence 5: 547-554.https://doi.org/10.4161/viru.28367
Fu, P., Wu, J.W. and Guo, G., 2009. Purification and molecular identification of an antifungal peptide from the hemolymph ofMusca domestica (housefly). Cellular & Molecular Immunology 6: 245-251.https://doi.org/10.1038/cmi.2009.33
Fu, Y., Huang, X., Zhang, P., Van de Leemput, J. and Han, Z., 2020. Single-cell RNA sequencing identifies novel cell types inDrosophila blood. Journal of Genetics and Genomics 47: 175-186.https://doi.org/10.1016/j.jgg.2020.02.004
Fujikawa, K., Takahashi, A., Nishimura, A., Itoh, M., Takano-Shimizu, T. and Ozaki, M., 2009. Characteristics of genes up-regulated and down-regulated after 24 h starvation in the headof Drosophila. Gene 446: 11-17.https://doi.org/10.1016/j.gene.2009.06.017
Gill, C., Bahrndorff, S. and Lowenberger, C., 2017.Campylobacter jejuni inMusca domestica: an examination of survival and transmission potential in light of the innate immune responses of the house flies. Insect Science 24: 584-598.https://doi.org/10.1111/1744-7917.12353
Gold, M., Tomberlin, J.K., Diener, S., Zurbrugg, C. and Mathys, A., 2018. Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: a review. Waste Management 82: 302-318.https://doi.org/10.1016/j.wasman.2018.10.022
González-Santoyo, I. and Córdoba-Aguilar, A., 2012. Phenoloxidase: a key component of the insect immune system. Entomologia Experimentalis et Applicata 142: 1-16.
'Phenoloxidase: a key component of the insect immune system ' () 142 Entomologia Experimentalis et Applicata : 1 -16.
Gottar, M., Gobert, V., Matskevich, A.A., Reichhart, J.M., Wang, C., Butt, T.M., Belvin, M., Hoffmann, J.A. and Ferrandon, D., 2006. Dual detection of fungal infections inDrosophila via recognition of glucans and sensing of virulence factors. Cell 127: 1425-1437.https://doi.org/10.1016/j.cell.2006.10.046
Graham-Smith, G.S., 1910. Observations on the ways in which artificially infected flies (Musca domestica) carry and distribute pathogenic and other bacteria. In:Reports to the Local Government Board on public health and medical subjects, new series; no. 40. Available at:https://catalogue.wellcomelibrary.org/record=b2829902~S8.
Greenberg, B., 1968. Micro-potentiometric pH determinations of muscoid maggot digestive tracts. Annals of the Entomological Society of America 61: 365-368.
'Micro-potentiometric pH determinations of muscoid maggot digestive tracts ' () 61 Annals of the Entomological Society of America : 365 -368.
Greenberg, B., Kowalski, J.A. and Klowden, M.J., 1970. Factors affecting the transmission ofSalmonella by flies: natural resistance to colonization and bacterial interference. Infection and Immunity 2: 800-809.
'Factors affecting the transmission ofSalmonella by flies: natural resistance to colonization and bacterial interference ' () 2 Infection and Immunity : 800 -809.
Grübel, P., Hoffman, J.S., Chong, F.K., Burstein, N.A., MePani, C. and Cave, D.R., 1997. Vector potential of houseflies (Musca domestica) forHelicobacter pylori. Journal of Clinical Microbiology 35: 1300-1303.
'Vector potential of houseflies (Musca domestica) forHelicobacter pylori ' () 35 Journal of Clinical Microbiology : 1300 -1303.
Guo, G., Tao, R., Li, Y., Ma, H., Xiu, J., Fu, P. and Wu, J., 2017. Identification and characterization of a novel antimicrobial protein from the houseflyMusca domestica. Biochemical and Biophysical Research Communications 490: 746-752.https://doi.org/10.1016/j.bbrc.2017.06.112
Gupta, A.K., Nayduch, D., Verma, P., Shah, B., Ghate, H.V., Patole, M.S. and Shouche, Y.S., 2012. Phylogenetic characterization of bacteria in the gut of house flies (Musca domestica L.). FEMS Microbiology Ecology 79: 581-593.
'Phylogenetic characterization of bacteria in the gut of house flies (Musca domestica L.) ' () 79 FEMS Microbiology Ecology : 581 -593.
Ha, E.-M., Lee, K.-A., Seo, Y.Y., Kim, S.-H., Lim, J.-H., Oh, B.-H., Kim, J. and Lee, W.-J., 2009. Coordination of multiple dual oxidase – regulatory pathways in responses to commensal and infectious microbes inDrosophila gut. Nature Immunology 10: 949-957.https://doi.org/10.1038/ni.1765
Ha, E.-M., Oh, C.-T., Bae, Y.S. and Lee, W.-J., 2005. A direct role for dual oxidase inDrosophila gut immunity. Science 310: 847-850.https://doi.org/10.1126/science.1117311
Hemphill, W., Rivera, O. and Talbert, M., 2018. RNA-sequencing ofDrosophila melanogaster head tissue on high-sugar and high-fat diets. G3: Genes, Genomes, Genetics 8: 279-290.https://doi.org/10.1534/g3.117.300397
Henry, Y., Tarapacki, P. and Colinet, H., 2020. Larval density affects phenotype and surrounding bacterial community without altering gut microbiota inDrosophila melanogaster. FEMS Microbiology Ecology 96(4): fiaa055.https://doi.org/10.1093/femsec/fiaa055
Hernández-Martínez, P., Naseri, B., Navarro-Cerrillo, G., Escriche, B., Ferré, J. and Herrero, S., 2010. Increase in midgut microbiota load induces an apparent immune priming and increases tolerance toBacillus thuringiensis. Environmental Microbiology 12: 2730-2737.
'Increase in midgut microbiota load induces an apparent immune priming and increases tolerance toBacillus thuringiensis ' () 12 Environmental Microbiology : 2730 -2737.
Hillyer, J.F., 2016. Insect immunology and hematopoiesis. Developmental & Comparative Immunology 58: 102-118.https://doi.org/10.1016/j.dci.2015.12.006
Hoffmann, J.A., 1995. Innate immunity of insects. Current Opinion in Immunology 7: 4-10.
'Innate immunity of insects ' () 7 Current Opinion in Immunology : 4 -10.
Horváth, B. and Kalinka, A.T., 2016. Effects of larval crowding on quantitative variation for development time and viability inDrosophila melanogaster. Ecology and Evolution 6: 8460-8473.
'Effects of larval crowding on quantitative variation for development time and viability inDrosophila melanogaster ' () 6 Ecology and Evolution : 8460 -8473.
Huang, Y., Yu, Y., Zhan, S., Tomberlin, J.K., Huang, D., Cai, M., Zheng, L., Yu, Z. and Zhang, J., 2020. Dual oxidase duox and toll-like receptor 3 TLR3 in the toll pathway suppress zoonotic pathogens through regulating the intestinal bacterial community homeostasis inHermetia illucens L. PLoS ONE 15: e0225873.https://doi.org/10.1371/journal.pone.0225873
Hudson, A.L., Moatt, J.P. and Vale, P.F., 2020. Terminal investment strategies following infection are dependent on diet. Journal of Evolutionary Biology 33: 309-317.https://doi.org/10.1111/jeb.13566
Hunt, V.L., Zhong, W., McClure, C.D., Mlynski, D.T., Duxbury, E.M., Keith Charnley, A. and Priest, N.K., 2016. Cold-seeking behaviour mitigates reproductive losses from fungal infection inDrosophila. Journal of Animal Ecology 85: 178-186.https://doi.org/10.1111/1365-2656.12438
Hussein, M., Pillai, V.V., Goddard, J.M., Park, H.G., Kothapalli, K.S., Ross, D.A., Ketterings, Q.M., Brenna, J.T., Milstein, M.B. and Marquis, H., 2017. Sustainable production of housefly (Musca domestica) larvae as a protein-rich feed ingredient by utilizing cattle manure. PLoS ONE 12: e0171708.
'Sustainable production of housefly (Musca domestica) larvae as a protein-rich feed ingredient by utilizing cattle manure ' () 12 PLoS ONE : e0171708.
Hwang, B., Hwang, J.S., Lee, J. and Lee, D.G., 2010a. Antifungal properties and mode of action of psacotheasin, a novel knottintype peptide derived fromPsacothea hilaris. Biochemical and Biophysical Research Communications 400: 352-357.https://doi.org/10.1016/j.bbrc.2010.08.063
Hwang, J.S., Lee, J., Hwang, B., Nam, S.H., Yun, E.Y., Kim, S.R. and Lee, D.G., 2010b. isolation and charaterization of psacotheasin, a novel knottin-type antimicrobial peptide, fromPsacothea hilaris. Journal of Microbiology and Biotechnology 20(4): 708-711.https://doi.org/10.4014/jmb.1002.02003
Jaenike, J., Unckless, R., Cockburn, S.N., Boelio, L.M. and Perlman, S.J., 2010. Adaptation via symbiosis: recent spread of aDrosophila defensive symbiont. Science 329: 212-215.
'Adaptation via symbiosis: recent spread of aDrosophila defensive symbiont ' () 329 Science : 212 -215.
Jeon, H., Park, S., Choi, J., Jeong, G., Lee, S.-B., Choi, Y. and Lee, S.-J., 2011. The intestinal bacterial community in the food waste-reducing larvae ofHermetia illucens. Current Microbiology 62: 1390-1399.
'The intestinal bacterial community in the food waste-reducing larvae ofHermetia illucens ' () 62 Current Microbiology : 1390 -1399.
Jiang, C.L., Jin, W.Z., Tao, X.H., Zhang, Q., Zhu, J., Feng, S.Y., Xu, X.H., Li, H.Y., Wang, Z.H. and Zhang, Z.J., 2019. Black soldier fly larvae (Hermetia illucens) strengthen the metabolic function of food waste biodegradation by gut microbiome. Microbial Biotechnology 12: 528-543.
'Black soldier fly larvae (Hermetia illucens) strengthen the metabolic function of food waste biodegradation by gut microbiome ' () 12 Microbial Biotechnology : 528 -543.
Johnston, P.R., Makarova, O. and Rolff, J., 2014. Inducible defenses stay up late: temporal patterns of immune gene expression inTenebrio molitor. G3: Genes, Genomes, Genetics 4: 947-955.
'Inducible defenses stay up late: temporal patterns of immune gene expression inTenebrio molitor ' () 4 G3: Genes, Genomes, Genetics : 947 -955.
Joosten, L., Lecocq, A., Jensen, A.B., Haenen, O., Schmitt, E. and Eilenberg, J., 2020. Review of insect pathogen risks for the black soldier fly (Hermetia illucens) and guidelines for reliable production. Entomologia Experimentalis et Applicata 168: 432-447.
'Review of insect pathogen risks for the black soldier fly (Hermetia illucens) and guidelines for reliable production ' () 168 Entomologia Experimentalis et Applicata : 432 -447.
Kallio, J., Leinonen, A., Ulvila, J., Valanne, S., Ezekowitz, R.A. and Rämet, M., 2005. Functional analysis of immune response genes inDrosophila identifies JNK pathway as a regulator of antimicrobial peptide gene expression in S2 cells. Microbes and Infection 7: 811-819.https://doi.org/10.1016/j.micinf.2005.03.014
Kapahi, P., Kaeberlein, M. and Hansen, M., 2017. Dietary restriction and lifespan: lessons from invertebrate models. Ageing Research Reviews 39: 3-14.https://doi.org/10.1016/j.arr.2016.12.005
Kariithi, H.M., Yao, X., Yu, F., Teal, P.E., Verhoeven, C.P. and Boucias, D.G., 2017. Responses of the housefly,Musca domestica, to the hytrosavirus replication: impacts on host’s vitellogenesis and immunity. Frontiers in Microbiology 8: 583.https://doi.org/10.3389/fmicb.2017.00583
Katewa, S.D. and Kapahi, P., 2011. Role of TOR signaling in aging and related biological processes inDrosophila melanogaster. Experimental Gerontology 46: 382-390.https://doi.org/10.1016/j.exger.2010.11.036
Kim, C.H. and Muturi, E.J., 2013. Effect of larval density and Sindbis virus infection on immune responses inAedes aegypti. Journal of Insect Physiology 59: 604-610.https://doi.org/10.1016/j.jinsphys.2013.03.010
Kingsolver, M.B., Huang, Z. and Hardy, R.W., 2013. Insect antiviral innate immunity: pathways, effectors, and connections. Journal of Molecular Biology 425: 4921-4936.
'Insect antiviral innate immunity: pathways, effectors, and connections ' () 425 Journal of Molecular Biology : 4921 -4936.
Klammsteiner, T., Walter, A., Bogataj, T., Heussler, C.D., Stres, B., Steiner, F.M., Schlick-Steiner, B.C., Arthofer, W. and Insam, H., 2020. The core gut microbiome of black soldier fly (Hermetia illucens) larvae raised on low-bioburden diets. Frontiers in Microbiology 11: 993.
'The core gut microbiome of black soldier fly (Hermetia illucens) larvae raised on low-bioburden diets ' () 11 Frontiers in Microbiology : 993.
Knorr, E., Schmidtberg, H., Arslan, D., Bingsohn, L. and Vilcinskas, A., 2015. Translocation of bacteria from the gut to the eggs triggers maternal transgenerational immune priming inTribolium castaneum. Biology Letters 11: 20150885.https://doi.org/10.1098/rsbl.2015.0885
Kounatidis, I. and Ligoxygakis, P., 2012.Drosophila as a model system to unravel the layers of innate immunity to infection. Open Biology 2: 120075.https://doi.org/10.1098/rsob.120075
Krautz, R., Arefin, B. and Theopold, U., 2014. Damage signals in the insect immune response. Frontiers in Plant Science 5: 342.
'Damage signals in the insect immune response ' () 5 Frontiers in Plant Science : 342.
Kurtz, J. and Armitage, S.A.O., 2006. Alternative adaptive immunity in invertebrates. Trends in Immunology 27: 493-496.https://doi.org/10.1016/j.it.2006.09.001
Kurtz, J. and Franz, K., 2003. Evidence for memory in invertebrate immunity. Nature 425: 37-38.https://doi.org/10.1038/425037a
Kurucz, É., Márkus, R., Zsámboki, J., Folkl-Medzihradszky, K., Darula, Z., Vilmos, P., Udvardy, A., Krausz, I., Lukacsovich, T., Gateff, E., Zettervall, C.-J., Hultmark, D. and Andó, I., 2007. Nimrod, a putative phagocytosis receptor with EGF repeats inDrosophila plasmatocytes. Current Biology 17: 649-654.https://doi.org/10.1016/j.cub.2007.02.041
Kutch, I.C., Sevgili, H., Wittman, T. and Fedorka, K.M., 2014. Thermoregulatory strategy may shape immune investment inDrosophila melanogaster. Journal of Experimental Biology 217: 3664-3669.https://doi.org/10.1242/jeb.106294
Lalander, C.H., Fidjeland, J., Diener, S., Eriksson, S. and Vinnerås, B., 2015. High waste-to-biomass conversion and efficientSalmonella spp. reduction using black soldier fly for waste recycling. Agronomy for Sustainable Development 35: 261-271.
'High waste-to-biomass conversion and efficientSalmonella spp. reduction using black soldier fly for waste recycling ' () 35 Agronomy for Sustainable Development : 261 -271.
Lanot, R., Zachary, D., Holder, F. and Meister, M., 2001. Postembryonic hematopoiesis inDrosophila. Developmental Biology 230: 243-257.https://doi.org/10.1006/dbio.2000.0123
Lavine, M.D. and Strand, M.R., 2002. Insect hemocytes and their role in immunity. Insect Biochemistry and Molecular Biology 32: 1295-1309.
'Insect hemocytes and their role in immunity ' () 32 Insect Biochemistry and Molecular Biology : 1295 -1309.
Lazzaro, B.P., 2008. Natural selection on theDrosophila antimicrobial immune system. Current Opinion in Microbiology 11: 284-289.
'Natural selection on theDrosophila antimicrobial immune system ' () 11 Current Opinion in Microbiology : 284 -289.
Lee, J.E., Rayyan, M., Liao, A., Edery, I. and Pletcher, S.D., 2017. Acute dietary restriction acts via TOR, PP2A, and Myc Signaling to boost innate immunity inDrosophila. Cell Reports 20: 479-490.https://doi.org/10.1016/j.celrep.2017.06.052
Lee, K.-A. and Lee, W.-J., 2018. Immune-metabolic interactions during systemic and enteric infection inDrosophila. Current Opinion in Insect Science 29: 21-26.https://doi.org/10.1016/j.cois.2018.05.014
Lehane, M.J., 1997. Peritrophic matrix structure and function. Annual Review of Entomology 42: 525-550.https://doi.org/10.1146/annurev.ento.42.1.525
Leitao, A.B. and Sucena, E., 2015.Drosophila sessile hemocyte clusters are true hematopoietic tissues that regulate larval blood cell differentiation. Elife 4: e06166.https://doi.org/10.7554/eLife.06166
Lemaitre, B. and Hoffmann, J., 2007. The host defense ofDrosophila melanogaster. Annual Review of Immunology 25: 697-743.
'The host defense ofDrosophila melanogaster ' () 25 Annual Review of Immunology : 697 -743.
Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.-M. and Hoffmann, J.A., 1996. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response inDrosophila adults. Cell 86: 973-983.https://doi.org/10.1016/s0092-8674(00)80172-5
Lemaitre, B., Reichhart, J.-M. and Hoffmann, J.A., 1997.Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proceedings of the National Academy of Sciences of the United States of America 94: 14614-14619.
'Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms ' () 94 Proceedings of the National Academy of Sciences of the United States of America : 14614 -14619.
Li, D., Wan, Z.C., Li, X.J., Duan, M., Yang, L., Ruan, Z.C., Wang, Q. and Li, W.W., 2019. Alternatively spliced down syndrome cell adhesion molecule (Dscam) controls innate immunity in crab. Journal of Biological Chemistry 294: 16440-16450.https://doi.org/10.1074/jbc.RA119.010247
Lindsay, S.A., Lin, S.J. and Wasserman, S.A., 2018. Short-form bomanins mediate humoral immunity inDrosophila. Journal of Innate Immunity 10: 306-314.
'Short-form bomanins mediate humoral immunity inDrosophila ' () 10 Journal of Innate Immunity : 306 -314.
Liu, Q., Tomberlin, J.K., Brady, J.A., Sanford, M.R. and Yu, Z., 2008. Black soldier fly (Diptera: Stratiomyidae) larvae reduceEscherichia coli in dairy manure. Environmental Entomology 37: 1525-1530.
'Black soldier fly (Diptera: Stratiomyidae) larvae reduceEscherichia coli in dairy manure ' () 37 Environmental Entomology : 1525 -1530.
Maciel-Vergara, G., Jensen, A.B., Lecocq, A. and Eilenberg, J., 2021. Diseases in edible insect rearing systems. Journal of Insects as Food and Feed 7: 621-638.https://doi.org/10.3920/JIFF2021.0024
Márkus, R., Laurinyecz, B., Kurucz, É., Honti, V., Bajusz, I., Sipos, B., Somogyi, K., Kronhamn, J., Hultmark, D. and Andó, I., 2009. Sessile hemocytes as a hematopoietic compartment inDrosophila melanogaster. Proceedings of the National Academy of Sciences of the USA 106: 4805-4809.https://doi.org/10.1073/pnas.0801766106
Merzendorfer, H., Kelkenberg, M. and Muthukrishnan, S., 2016. Peritrophic matrices. In: Cohen, E. and Moussian, B. (eds.) Extracellular composite matrices in arthropods. Springer, Cham, Switzerland, pp. 255-324.
'Peritrophic matrices ', () 255 -324.
Meunier, J., 2015. Social immunity and the evolution of group living in insects. Philosophical Transactions of the Royal Society B: Biological Sciences 370: 20140102.https://doi.org/10.1098/rstb.2014.0102
Miller, M.M., Popova, L.B., Meleshkevitch, E.A., Tran, P.V. and Boudko, D.Y., 2008. The invertebrate B0 system transporter,D. melanogaster NAT1, has unique D-amino acid affinity and mediates gut and brain functions. Insect Biochemistry and Molecular Biology 38: 923-931.
'The invertebrate B0 system transporter,D. melanogaster NAT1, has unique D-amino acid affinity and mediates gut and brain functions ' () 38 Insect Biochemistry and Molecular Biology : 923 -931.
Miranda, C.D., Cammack, J.A. and Tomberlin, J.K., 2019. Life-history traits of the black soldier fly,Hermetia illucens (L.) (Diptera: Stratiomyidae), reared on three manure types. Animals 9: 281.
'Life-history traits of the black soldier fly,Hermetia illucens (L.) (Diptera: Stratiomyidae), reared on three manure types ' () 9 Animals : 281.
Mondotte, J.A., Gausson, V., Frangeul, L., Suzuki, Y., Vazeille, M., Mongelli, V., Blanc, H., Failloux, A.-B. and Saleh, M.-C., 2020. Evidence for long-lasting transgenerational antiviral immunity in insects. Cell Reports 33: 108506.
'Evidence for long-lasting transgenerational antiviral immunity in insects ' () 33 Cell Reports : 108506.
Moret, Y., 2006. Trans-generational immune priming: specific enhancement of the antimicrobial immune response in the mealworm beetle,Tenebrio molitor. Proceedings of the Royal Society B: Biological Sciences 273: 1399-1405.
'Trans-generational immune priming: specific enhancement of the antimicrobial immune response in the mealworm beetle,Tenebrio molitor ' () 273 Proceedings of the Royal Society B: Biological Sciences : 1399 -1405.
Moret, Y. and Moreau, J., 2012. The immune role of the arthropod exoskeleton. Invertebrate Survival Journal 9: 200-206.
'The immune role of the arthropod exoskeleton ' () 9 Invertebrate Survival Journal : 200 -206.
Mura, M.E. and Ruiu, L., 2017.Brevibacillus laterosporus pathogenesis and local immune response regulation in the house fly midgut. Journal of Invertebrate Pathology 145: 55-61.https://doi.org/10.1016/j.jip.2017.03.009
Murdock, C.C., Moller-Jacobs, L.L. and Thomas, M.B., 2013. Complex environmental drivers of immunity and resistance in malaria mosquitoes. Proceedings of the Royal Society B: Biological Sciences 280: 20132030.https://doi.org/10.1098/rspb.2013.2030
Murdock, C.C., Paaijmans, K.P., Bell, A.S., King, J.G., Hillyer, J.F., Read, A.F. and Thomas, M.B., 2012. Complex effects of temperature on mosquito immune function. Proceedings of the Royal Society B: Biological Sciences 279: 3357-3366.https://doi.org/10.1098/rspb.2012.0638
Mussabekova, A., Daeffler, L. and Imler, J.-L., 2017. Innate and intrinsic antiviral immunity inDrosophila. Cellular and Molecular Life Sciences 74: 2039-2054.https://doi.org/10.1007/s00018-017-2453-9
Musselman, L.P., Fink, J.L., Grant, A.R., Gatto, J.A. and Tuthill, B.F., 2018. A complex relationship between immunity and metabolism inDrosophila diet-induced insulin resistance. Molecular and Cellular Biology 38: e00259-00217.
'A complex relationship between immunity and metabolism inDrosophila diet-induced insulin resistance ' () 38 Molecular and Cellular Biology : e00259 -00217.
Mylonakis, E., Podsiadlowski, L., Muhammed, M. and Vilcinskas, A., 2016. Diversity, evolution and medical applications of insect antimicrobial peptides. Philosophical Transactions of the Royal Society London, B Biological Sciences 371: 20150290.https://doi.org/10.1098/rstb.2015.0290
Natori, S., Shiraishi, H., Hori, S. and Kobayashi, A., 1999. The roles ofSarcophaga defense molecules in immunity and metamorphosis. Developmental and Comparative Immunology 23: 317-328.https://doi.org/10.1016/s0145-305x(99)00014-2
Nayduch, D. and Burrus, R.G., 2017. Flourishing in filth: house fly-microbe interactions across life history. Annals of the Entomological Society of America 110: 6-18.https://doi.org/10.1093/aesa/saw083
Park, R., Dzialo, M.C., Spaepen, S., Nsabimana, D., Gielens, K., Devriese, H., Crauwels, S., Tito, R.Y., Raes, J. and Lievens, B., 2019. Microbial communities of the house flyMusca domestica vary with geographical location and habitat. Microbiome 7: 1-12.
'Microbial communities of the house flyMusca domestica vary with geographical location and habitat ' () 7 Microbiome : 1 -12.
Pei, Z., Sun, X., Tang, Y., Wang, K., Gao, Y. and Ma, H., 2014. Cloning, expression, and purification of a new antimicrobial peptide gene fromMusca domestica larva. Gene 549: 41-45.
'Cloning, expression, and purification of a new antimicrobial peptide gene fromMusca domestica larva ' () 549 Gene : 41 -45.
Peng, J., Wu, Z.Y., Liu, W.W., Long, H.L., Zhu, G.M., Guo, G. and Wu, J.W., 2019. Antimicrobial functional divergence of the cecropin antibacterial peptide gene family inMusca domestica. Parasites and Vectors 12: 537.https://doi.org/10.1186/s13071-019-3793-0
Pham, L.N., Dionne, M.S., Shirasu-Hiza, M. and Schneider, D.S., 2007. A specific primed immune response inDrosophila is dependent on phagocytes. PLoS Pathogens 3: e26.https://doi.org/10.1016/j.jinsphys.2006.01.005
Pletcher, S.D., Libert, S. and Skorupa, D., 2005. Flies and their golden apples: the effect of dietary restriction onDrosophila aging and age-dependent gene expression. Ageing Research Reviews 4: 451-480.
'Flies and their golden apples: the effect of dietary restriction onDrosophila aging and age-dependent gene expression ' () 4 Ageing Research Reviews : 451 -480.
Ponton, F., Morimoto, J., Robinson, K., Kumar, S.S., Cotter, S.C., Wilson, K. and Simpson, S.J., 2020. Macronutrients modulate survival to infection and immunity inDrosophila. Journal of Animal Ecology 89: 460-470.
'Macronutrients modulate survival to infection and immunity inDrosophila ' () 89 Journal of Animal Ecology : 460 -470.
Poulsen, M., Bot, A.N., Nielsen, M.G. and Boomsma, J.J., 2002. Experimental evidence for the costs and hygienic significance of the antibiotic metapleural gland secretion in leaf-cutting ants. Behavioral Ecology and Sociobiology 52: 151-157.https://doi.org/10.1007/s00265-002-0489-8
Price, D.P., Schilkey, F.D., Ulanov, A. and Hansen, I.A., 2015. Small mosquitoes, large implications: crowding and starvation affects gene expression and nutrient accumulation inAedes aegypti. Parasites and Vectors 8: 252.https://doi.org/10.1186/s13071-015-0863-9
Qi, S.D., Gao, B. and Zhu, S.Y., 2021. Molecular diversity and evolution of antimicrobial peptides inMusca domestica. Diversity 13: 29.https://doi.org/10.3390/d13030107
Raimondi, S., Spampinato, G., Macavei, L.I., Lugli, L., Candeliere, F., Rossi, M., Maistrello, L. and Amaretti, A., 2020. Effect of rearing temperature on growth and microbiota composition ofHermetia illucens. Microorganisms 8: 902.
'Effect of rearing temperature on growth and microbiota composition ofHermetia illucens ' () 8 Microorganisms : 902.
Ren, Q., Zhao, X. and Wang, J., 2009. Molecular characterization and expression analysis of a chicken-type lysozyme gene from housefly (Musca domestica). Journal of Genetical Genomics 36: 7-16.https://doi.org/10.1016/S1673-8527(09)60002-3
Ribeiro, C. and Brehélin, M., 2006. Insect haemocytes: what type of cell is that? Journal of Insect Physiology 52: 417-429.
'Insect haemocytes: what type of cell is that? ' () 52 Journal of Insect Physiology : 417 -429.
Rivers, D., Thompson, C. and Brogan, R., 2011. Physiological tradeoffs of forming maggot masses by necrophagous flies on vertebrate carrion. Bulletin of Entomological Research 101: 599-611.https://doi.org/10.1017/S0007485311000241
Rizki, M., 1956. The secretory activity of the proventriculus ofDrosophila melanogaster. Journal of Experimental Zoology 131: 203-221.https://doi.org/10.1002/jez.1401310202
Roberts, K.E. and Longdon, B., 2021. Viral susceptibility across host species is largely independent of dietary protein to carbohydrate ratios. Journal of Evolutionary Biology 34: 746-756.https://doi.org/10.1111/jeb.13773
Rodrigues, J., Brayner, F.A., Alves, L.C., Dixit, R. and Barillas-Mury, C., 2010. Hemocyte differentiation mediates innate immune memory inAnopheles gambiae mosquitoes. Science 329: 1353-1355.
'Hemocyte differentiation mediates innate immune memory inAnopheles gambiae mosquitoes ' () 329 Science : 1353 -1355.
Rowley, A.F. and Powell, A., 2007. Invertebrate immune systems-specific, quasi-specific, or nonspecific? The Journal of Immunology 179: 7209-7214.https://doi.org/10.4049/jimmunol.179.11.7209
Ryu, J.-H., Kim, S.-H., Lee, H.-Y., Bai, J.Y., Nam, Y.-D., Bae, J.-W., Lee, D.G., Shin, S.C., Ha, E.-M. and Lee, W.-J., 2008. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism inDrosophila. Science 319: 777-782.
'Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism inDrosophila ' () 319 Science : 777 -782.
Saatkamp, H.W., Aartsma, Y., Hogeveen, H., Augustijn, M., Baumann, A., Beukeboom, L.W., Borghuis, A., Bovenkerk, B., Van der Bruggen, M., Companjen, M.H., Dörper, A., Falcao Salles, J., Van der Fels-Klerx, H.J., Fischer, A.R.H., Haenen, O., Hosseini, A., Van den Hurk, J., Jacobs, P., Jansen, W.L., De Jong, M., Kortsmit, Y., Leipertz, M., Lommers, H., Van Loon, J.J.A., Van Loon, M.S., Maistrou, S., Niermans, K., Schmitt, E., Shah, P., Spaans, A., Veldkamp, T., Verweij, M.F., Vogel, M., Voulgari Kokota, A., Wertheim, B. and Dicke, M., in press. Development of sustainable business models for insect-fed poultry production: opportunities and risks. Journal of Insects as Food and Feed.https://doi.org/10.3920/JIFF2021.0216
Sackton, T.B., Lazzaro, B.P. and Clark, A.G., 2017. Rapid expansion of immune-related gene families in the house fly,Musca domestica. Molecular Biology and Evolution 34: 857-872.https://doi.org/10.1093/molbev/msw285
Salazar-Jaramillo, L., Paspati, A., Van de Zande, L., Vermeulen, C.J., Schwander, T. and Wertheim, B., 2014. Evolution of a cellular immune response inDrosophila: a phenotypic and genomic comparative analysis. Genome Biology and Evolution 6: 273-289.https://doi.org/10.1093/gbe/evu012
Salehipour-Shirazi, G., Ferguson, L.V. and Sinclair, B.J., 2017. Does cold activate theDrosophila melanogaster immune system? Journal of Insect Physiology 96: 29-34.https://doi.org/10.1016/j.jinsphys.2016.10.009
Salomone, R., Saija, G., Mondello, G., Giannetto, A., Fasulo, S. and Savastano, D., 2017. Environmental impact of food waste bioconversion by insects: application of life cycle assessment to process usingHermetia illucens. Journal of Cleaner Production 140: 890-905.
'Environmental impact of food waste bioconversion by insects: application of life cycle assessment to process usingHermetia illucens ' () 140 Journal of Cleaner Production : 890 -905.
Schaler, J., Stoffolano Jr, J., Fausto, A.M., Gambellini, G. and Burand, J., 2018. Effect of diet on adult house fly (Diptera: Muscidae) injected with the salivary gland hypertrophy virus (MdSGHV). Journal of Insect Science 18(3).https://doi.org/10.1093/jisesa/iey040
Schmid-Hempel, P., 2005. Evolutionary ecology of insect immune defenses. Annual Review of Entomology 50: 529-551.https://doi.org/10.1146/annurev.ento.50.071803.130420
Schmid-Hempel, P., 2011. Evolutionary parasitology: the integrated study of infections, immunology, ecology, and genetics. Oxford University Press, Oxford, UK.https://doi.org/10.1093/acprof:oso/9780199229482.001.0001
Schmidtmann, E.T. and Martin, P.A.W., 1992. Relationship between selected bacteria and the growth of immature house flies,Musca domestica, in an axenic test system. Journal of Medical Entomology 29: 232-235.
'Relationship between selected bacteria and the growth of immature house flies,Musca domestica, in an axenic test system ' () 29 Journal of Medical Entomology : 232 -235.
Schulenburg, H., Boehnisch, C. and Michiels, N.K., 2007. How do invertebrates generate a highly specific innate immune response? Molecular Immunology 44: 3338-3344.https://doi.org/10.1016/j.molimm.2007.02.019
Scott, J.G., Warren, W.C., Beukeboom, L.W., Bopp, D., Clark, A.G., Giers, S.D., Hediger, M., Jones, A.K., Kasai, S., Leichter, C.A., Li, M., Meisel, R.P., Minx, P., Murphy, T.D., Nelson, D.R., Reid, W.R., Rinkevich, F.D., Robertson, H.M., Sackton, T.B., Sattelle, D.B., Thibaud-Nissen, F., Tomlinson, C., Van de Zande, L., Walden, K.K.O., Wilson, R.K. and Liu, N., 2014. Genome of the house fly,Musca domestica L., a global vector of diseases with adaptations to a septic environment. Genome Biology 15: 466.https://doi.org/10.1186/s13059-014-0466-3
Shane, S.M., Montrose, M.S. and Harrington, K.S., 1985. Transmission ofCampylobacter jejuni by the housefly (Musca domestica). Avian Diseases 29: 384-391.
'Transmission ofCampylobacter jejuni by the housefly (Musca domestica) ' () 29 Avian Diseases : 384 -391.
Shelomi, M., Wu, M.-K., Chen, S.-M., Huang, J.-J. and Burke, C.G., 2020. Microbes associated with black soldier fly (Diptera: Stratiomiidae) degradation of food waste. Environmental Entomology 49: 405-411.
'Microbes associated with black soldier fly (Diptera: Stratiomiidae) degradation of food waste ' () 49 Environmental Entomology : 405 -411.
Sheppard, D.C., Tomberlin, J.K., Joyce, J.A., Kiser, B.C. and Sumner, S.M., 2002. Rearing methods for the black soldier fly (Diptera: Stratiomyidae). Journal of Medical Entomology 39: 695-698.https://doi.org/10.1603/0022-2585-39.4.695
Shin, S.C., Kim, S.-H., You, H., Kim, B., Kim, A.C., Lee, K.-A., Yoon, J.-H., Ryu, J.-H. and Lee, W.-J., 2011.Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334: 670-674. Steinhaus, E.A., 1956. Microbial control-the emergence of an idea. A brief history of insect pathology through the nineteenth century. Hilgardia 26: 107-160.
'Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling ' () 26 Hilgardia : 107 -160.
Štětina, T., Poupardin, R., Moos, M., Šimek, P., Šmilauer, P. and Koštál, V., 2019. Larvae ofDrosophila melanogaster exhibit transcriptional activation of immune response pathways and antimicrobial peptides during recovery from supercooling stress. Insect Biochemistry and Molecular Biology 105: 60-68.https://doi.org/10.1016/j.ibmb.2019.01.006
Stokes, B.A., Yadav, S., Shokal, U., Smith, L. and Eleftherianos, I., 2015. Bacterial and fungal pattern recognition receptors in homologous innate signaling pathways of insects and mammals. Frontiers in Microbiology 6: 19.https://doi.org/10.3389/fmicb.2015.00019
Strand, M.R., 2008. The insect cellular immune response. Insect Science 15: 1-14.https://doi.org/10.1111/j.1744-7917.2008.00183.x
Su, Z., Zhang, M., Liu, X., Tong, L., Huang, Y., Li, G. and Pang, Y., 2010. Comparison of bacterial diversity in wheat bran and in the gut of larvae and newly emerged adult ofMusca domestica (Diptera: Muscidae) by use of ethidium monoazide reveals bacterial colonization. Journal of Economic Entomology 103: 1832-1841.
'Comparison of bacterial diversity in wheat bran and in the gut of larvae and newly emerged adult ofMusca domestica (Diptera: Muscidae) by use of ethidium monoazide reveals bacterial colonization ' () 103 Journal of Economic Entomology : 1832 -1841.
Tafesh-Edwards, G. and Eleftherianos, I., 2020. JNK signaling inDrosophila immunity and homeostasis. Immunology Letters 226: 7-11.https://doi.org/10.1016/j.imlet.2020.06.017
Tang, T., Li, X., Yang, X., Yu, X., Wang, J., Liu, F. and Huang, D., 2014. Transcriptional response ofMusca domestica larvae to bacterial infection. PLoS ONE 9: e104867.
'Transcriptional response ofMusca domestica larvae to bacterial infection ' () 9 PLoS ONE : e104867.
Tang, T., Wu, C., Li, J., Ren, G., Huang, D. and Liu, F., 2012. Stress-induced HSP70 fromMusca domestica plays a functionally significant role in the immune system. Journal of Insect Physiology 58: 1226-1234.
'Stress-induced HSP70 fromMusca domestica plays a functionally significant role in the immune system ' () 58 Journal of Insect Physiology : 1226 -1234.
Tanji, T., Hu, X., Weber, A.N. and Ip, Y.T., 2007. Toll and IMD pathways synergistically activate an innate immune response inDrosophila melanogaster. Molecular and Cellular Biology 27: 4578-4588.
'Toll and IMD pathways synergistically activate an innate immune response inDrosophila melanogaster ' () 27 Molecular and Cellular Biology : 4578 -4588.
Tattikota, S.G., Cho, B., Liu, Y.F., Hu, Y.H., Barrera, V., Steinbaugh, M.J., Yoon, S.H., Comjean, A., Li, F.G., Dervis, F., Hung, R.J., Nam, J.W., Sui, S.H., Shim, J. and Perrimon, N., 2020. A single-cell survey ofDrosophila blood. Elife 9: e54818.https://doi.org/10.7554/eLife.54818
Tebbutt, H., 1912. On the influence of the metamorphosis ofMusca domestica upon bacteria administered in the larval stage. Epidemiology & Infection 12: 516-526.
'On the influence of the metamorphosis ofMusca domestica upon bacteria administered in the larval stage ' () 12 Epidemiology & Infection : 516 -526.
Telonis-Scott, M., Van Heerwaarden, B., Johnson, T.K., Hoffmann, A.A. and Sgro, C.M., 2013. New levels of transcriptome complexity at upper thermal limits in wildDrosophila revealed by exon expression analysis. Genetics 195: 809-830.https://doi.org/10.1534/genetics.113.156224
Terra, W.R., 2001. The origin and functions of the insect peritrophic membrane and peritrophic gel. Archives of Insect Biochemistry and Physiology 47: 47-61.https://doi.org/10.1002/arch.1036
Theopold, U. and Schmid, M., 2017. Thioester-containing proteins: At the crossroads of immune effector mechanisms. Virulence 8: 1468-1470.
'Thioester-containing proteins: At the crossroads of immune effector mechanisms ' () 8 Virulence : 1468 -1470.
Thomas, T., De, T.D., Sharma, P., Lata, S., Saraswat, P., Pandey, K.C. and Dixit, R., 2016. Hemocytome: deep sequencing analysis of mosquito blood cells in Indian malarial vectorAnopheles stephensi. Gene 585(2): 177-190.https://doi.org/10.1016/j.gene.2016.02.031
Trienens, M. and Rohlfs, M., 2020. A potential collective defense ofDrosophila larvae against the invasion of a harmful fungus. Frontiers in Ecology and Evolution 8: 79.
'A potential collective defense ofDrosophila larvae against the invasion of a harmful fungus ' () 8 Frontiers in Ecology and Evolution : 79.
Tzou, P., Ohresser, S., Ferrandon, D., Capovilla, M., Reichhart, J.-M., Lemaitre, B., Hoffmann, J.A. and Imler, J.-L., 2000. Tissue-specific inducible expression of antimicrobial peptide genes inDrosophila surface epithelia. Immunity 13: 737-748.https://doi.org/10.1016/s1074-7613(00)00072-8
Ueda, K. Saito, A., Imamura, M., Miura, N., Atsumi, S., Tabunoki, H., Watanabe, A., Kitami, M. and Sato, R., 2005. Purification and cDNA cloning of luxuriosin, a novel antibacterial peptide with Kunitz domain from the longicorn beetle,Acalolepta luxuriosa. Biochimica et Biophysica Acta 1772: 36-42.https://doi.org/10.1016/j.bbagen.2004.11.014
Unckless, R.L., Rottschaefer, S.M. and Lazzaro, B.P., 2015. The complex contributions of genetics and nutrition to immunity inDrosophila melanogaster. PLoS Genetics 11: e1005030.
'The complex contributions of genetics and nutrition to immunity inDrosophila melanogaster ' () 11 PLoS Genetics : e1005030.
Vanha-aho, L.M., Kleino, A., Kaustio, M., Ulvila, J., Wilke, B., Hultmark., D., Valanne, S. and Rämet, M., 2012. Functional characterization of the infection-inducible peptide edin inDrosophila melanogaster. PLoS ONE 7(5): e37153.https://doi.org/10.1371/journal.pone.0037153
Van Huis, A., 2013. Potential of insects as food and feed in assuring food security. Annual Review of Entomology 58: 563-583.https://doi.org/10.1146/annurev-ento-120811-153704
Van Huis, A., 2019. Insects as food and feed, a new emerging agricultural sector: a review. Journal of Insects as Food and Feed 6: 27-44.https://doi.org/10.3920/JIFF2019.0017
Varma, D., Bülow, M.H., Pesch, Y.-Y., Loch, G. and Hoch, M., 2014. Forkhead, a new cross regulator of metabolism and innate immunity downstream of TOR inDrosophila. Journal of Insect Physiology 69: 80-88.https://doi.org/10.1016/j.jinsphys.2014.04.006
Varotto Boccazzi, I., Ottoboni, M., Martin, E., Comandatore, F., Vallone, L., Spranghers, T., Eeckhout, M., Mereghetti, V., Pinotti, L. and Epis, S., 2017. A survey of the mycobiota associated with larvae of the black soldier fly (Hermetia illucens) reared for feed production. PLoS ONE 12: e0182533.
'A survey of the mycobiota associated with larvae of the black soldier fly (Hermetia illucens) reared for feed production ' () 12 PLoS ONE : e0182533.
Vijendravarma, R.K., Narasimha, S. and Kawecki, T.J., 2013. Predatory cannibalism inDrosophila melanogaster larvae. Nature Communications 4: 1789.
'Predatory cannibalism inDrosophila melanogaster larvae ' () 4 Nature Communications : 1789.
Viljakainen, L., 2015. Evolutionary genetics of insect innate immunity. Briefings in Functional Genomics 14: 407-412.
'Evolutionary genetics of insect innate immunity ' () 14 Briefings in Functional Genomics : 407 -412.
Villazana, J. and Alyokhin, A., 2019. Tolerance of immature black soldier flies (Diptera: Stratiomyidae) to cold temperatures above and below freezing point. Journal of Economic Entomology 112: 2632-2637.
'Tolerance of immature black soldier flies (Diptera: Stratiomyidae) to cold temperatures above and below freezing point ' () 112 Journal of Economic Entomology : 2632 -2637.
Vizioli, J., Bulet, P., Hoffmann, J.A., Kafatos, F.C., Müller, H.-M. and Dimopoulos, G., 2001. Gambicin: a novel immune responsive antimicrobial peptide from the malaria vectorAnopheles gambiae. Proceedings of the National Academy of Sciences of the USA 98: 12630-12635.
'Gambicin: a novel immune responsive antimicrobial peptide from the malaria vectorAnopheles gambiae ' () 98 Proceedings of the National Academy of Sciences of the USA : 12630 -12635.
Vogel, H., Müller, A., Heckel, D.G., Gutzeit, H. and Vilcinskas, A., 2018. Nutritional immunology: diversification and diet-dependent expression of antimicrobial peptides in the black soldier flyHermetia illucens. Developmental & Comparative Immunology 78: 141-148.
'Nutritional immunology: diversification and diet-dependent expression of antimicrobial peptides in the black soldier flyHermetia illucens ' () 78 Developmental & Comparative Immunology : 141 -148.
Waterhouse, R.M., Kriventseva, E.V., Meister, S., Xi, Z., Alvarez, K.S., Bartholomay, L.C., Barillas-Mury, C., Bian, G., Blandin, S., Christensen, B.M., Dong, Y., Jiang, H., Kanost, M.R., Koutsos, A.C., Levashina, E.A., Li, J., Ligoxygakis, P., Maccallum, R.M., Mayhew, G.F., Mendes, A., Michel, K., Osta, M.A., Paskewitz, S., Shin, S.W., Vlachou, D., Wang, L., Wei, W., Zheng, L., Zou, Z., Severson, D.W., Raikhel, A.S., Kafatos, F.C., Dimopoulos, G., Zdobnov, E.M. and Christophides, G.K., 2007. Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science 316: 1738-1743.https://doi.org/10.1126/science.1139862
Watson, D.W., Martin, P.A.W. and Schmidtmann, E.T., 1993. Egg yolk and bacteria growth medium forMusca domestica (Diptera: Muscidae). Journal of Medical Entomology 30: 820-823.
'Egg yolk and bacteria growth medium forMusca domestica (Diptera: Muscidae) ' () 30 Journal of Medical Entomology : 820 -823.
Watson, F.L., Püttmann-Holgado, R., Thomas, F., Lamar, D.L., Hughes, M., Kondo, M., Rebel, V.I. and Schmucker, D., 2005. Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309: 1874-1878.https://doi.org/10.1126/science.1116887.
Wei, T., Hu, J., Miyanaga, K. and Tanji, Y., 2013. Comparative analysis of bacterial community and antibiotic-resistant strains in different developmental stages of the housefly (Musca domestica). Applied Microbiology and Biotechnology 97: 1775-1783.
'Comparative analysis of bacterial community and antibiotic-resistant strains in different developmental stages of the housefly (Musca domestica) ' () 97 Applied Microbiology and Biotechnology : 1775 -1783.
Wertheim, B., Marchais, J., Vet, L.E.M. and Dicke, M., 2002. Allee effect in larval resource exploitation inDrosophila: an interaction among density of adults, larvae, and micro-organisms. Ecological Entomology 27: 608-617.
'Allee effect in larval resource exploitation inDrosophila: an interaction among density of adults, larvae, and micro-organisms ' () 27 Ecological Entomology : 608 -617.
Wertheim, B., Van Baalen, E.J.A., Dicke, M. and Vet, L.E.M., 2005. Pheromone-mediated aggregation in nonsocial arthropods: an evolutionary ecological perspective. Annual Review of Entomology 50: 321-346.
'Pheromone-mediated aggregation in nonsocial arthropods: an evolutionary ecological perspective ' () 50 Annual Review of Entomology : 321 -346.
Wiegmann, B.M., Trautwein, M.D., Winkler, I.S., Barr, N.B., Kim, J.-W., Lambkin, C., Bertone, M.A., Cassel, B.K., Bayless, K.M., Heimberg, A.M., Wheeler, B.M., Peterson, K.J., Pape, T., Sinclair, B.J., Skevington, J.H., Blagoderov, V., Caravas, J., Kutty, S.N., Schmidt-Ott, U., Kampmeier, G.E., Thompson, F.C., Grimaldi, D.A., Beckenbach, A.T., Courtney, G.W., Friedrich, M., Meier, R. and Yeates, D.K., 2011. Episodic radiations in the fly tree of life. Proceedings of the National Academy of Sciences of the USA 108: 5690-5695.https://doi.org/10.1073/pnas.1012675108
Wu, Q., Patocka, J. and Kuca, K., 2018. Insect antimicrobial peptides, a mini review. Toxins 10: 461.https://doi.org/10.3390/toxins10110461
Wynants, E., Frooninckx, L., Crauwels, S., Verreth, C., De Smet, J., Sandrock, C., Wohlfahrt, J., Van Schelt, J., Depraetere, S. and Lievens, B., 2019. Assessing the microbiota of black soldier fly larvae (Hermetia illucens) reared on organic waste streams on four different locations at laboratory and large scale. Microbial Ecology 77: 913-930.
'Assessing the microbiota of black soldier fly larvae (Hermetia illucens) reared on organic waste streams on four different locations at laboratory and large scale ' () 77 Microbial Ecology : 913 -930.
Xiao, X., Mazza, L., Yu, Y., Cai, M., Zheng, L., Tomberlin, J.K., Yu, J., Van Huis, A., Yu, Z. and Fasulo, S., 2018. Efficient co-conversion process of chicken manure into protein feed and organic fertilizer byHermetia illucens L. (Diptera: Stratiomyidae) larvae and functional bacteria. Journal of Environmental Management 217: 668-676.
'Efficient co-conversion process of chicken manure into protein feed and organic fertilizer byHermetia illucens L. (Diptera: Stratiomyidae) larvae and functional bacteria ' () 217 Journal of Environmental Management : 668 -676.
Yu, S., Zhang, G. and Jin, L.H., 2018. A high-sugar diet affects cellular and humoral immune responses inDrosophila. Experimental Cell Research 368: 215-224.https://doi.org/10.1016/j.yexcr.2018.04.032
Zaidman-Rémy, A., Hervé, M., Poidevin, M., Pili-Floury, S., Kim, M.-S., Blanot, D., Oh, B.-H., Ueda, R., Mengin-Lecreulx, D. and Lemaitre, B., 2006. The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24: 463-473.
'The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection ' () 24 Immunity : 463 -473.
Zanchi, C., Troussard, J.P., Martinaud, G., Moreau, J. and Moret, Y., 2011. Differential expression and costs between maternally and paternally derived immune priming for offspring in an insect. Journal of Animal Ecology 80: 1174-1183.https://doi.org/10.1111/j.1365-2656.2011.01872.x
Zdybicka-Barabas, A., Bulak, P., Polakowski, C., Bieganowski, A., Wasko, A. and Cytrynska, M., 2017. Immune response in the larvae of the black soldier flyHermetia illucens. Invertebrate Survival Journal 14: 9-17.
'Immune response in the larvae of the black soldier flyHermetia illucens ' () 14 Invertebrate Survival Journal : 9 -17.
Zhai, Z., Boquete, J.-P. and Lemaitre, B., 2018. Cell-specific Imd-NF-κβ responses enable simultaneous antibacterial immunity and intestinal epithelial cell shedding upon bacterial infection. Immunity 48: 897-910. e897.https://doi.org/10.1016/j.immuni.2018.04.010
Zhan, S., Fang, G., Cai, M., Kou, Z., Xu, J., Cao, Y., Bai, L., Zhang, Y., Jiang, Y. and Luo, X., 2020. Genomic landscape and genetic manipulation of the black soldier flyHermetia illucens, a natural waste recycler. Cell Research 30: 50-60.https://doi.org/10.1038/s41422-019-0252-6
Zhang, R.D., Zhu, Y.B., Pang, X.J., Xiao, X.P., Zhang, R.L. and Cheng, G., 2017. Regulation of antimicrobial peptides inAedes aegypti Aag2 Cells. Frontiers in Cellular and Infection Microbiology 7: 12.https://doi.org/10.3382/fcimb.2017.00022
Zhang, Z., Wang, H., Zhu, J., Suneethi, S. and Zheng, J., 2012. Swine manure vermicomposting via housefly larvae (Musca domestica): the dynamics of biochemical and microbial features. Bioresource Technology 118: 563-571.
'Swine manure vermicomposting via housefly larvae (Musca domestica): the dynamics of biochemical and microbial features ' () 118 Bioresource Technology : 563 -571.
Zhao, Y., Wang, W., Zhu, F., Wang, X., Wang, X. and Lei, C., 2017. The gut microbiota in larvae of the houseflyMusca domestica and their horizontal transfer through feeding. AMB Express 7: 147.
'The gut microbiota in larvae of the houseflyMusca domestica and their horizontal transfer through feeding ' () 7 AMB Express : 147.
Zhukovskaya, M., Yanagawa, A. and Forschler, B.T., 2013. Grooming behavior as a mechanism of insect disease defense. Insects 4: 609-630.https://doi.org/10.3390/insects4040609
Zimmerman, J., Berry, W., Beran, G. and Murphy, D., 1989. Influence of temperature and age on the recovery of pseudorabies virus from houseflies (Musca domestica). American Journal of Veterinary Research 50: 1471-1474.
'Influence of temperature and age on the recovery of pseudorabies virus from houseflies (Musca domestica) ' () 50 American Journal of Veterinary Research : 1471 -1474.
Zurek, L., Schal, C. and Watson, D., 2000. Diversity and contribution of the intestinal bacterial community to the development ofMusca domestica (Diptera: Muscidae) larvae. Journal of Medical Entomology 37: 924-928.
'Diversity and contribution of the intestinal bacterial community to the development ofMusca domestica (Diptera: Muscidae) larvae ' () 37 Journal of Medical Entomology : 924 -928.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 481 | 321 | 50 |
PDF Views & Downloads | 632 | 439 | 54 |
Rearing insects for food and feed is a rapidly growing industry, because it provides excellent opportunities for a sustainable approach to animal protein production. Two fly species, the black soldier fly (BSF) and the house fly (HF), naturally live in decaying organic matter (e.g. compost), and can thus be effectively reared on organic rest streams from the food and agricultural industry. The adoption of these insects as mini-livestock on microbially rich substrates, however, requires us to address how we can safeguard insect health under mass-rearing conditions. In this review, we discuss what is known about the innate immunity of insects in general, especially focusing on a comparative approach to current knowledge for the two dipteran species BSF and HF. We also discuss environmental factors that may affect innate immunity in mass-rearing settings, including temperature, insect densities and diet composition. Furthermore, we address the role of the microbiome in insect health and the associations of these fly species with detrimental or beneficial microbes. Finally, we present a perspective on important open scientific questions for optimizing the mass rearing of these insects with respect to their health and welfare.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 481 | 321 | 50 |
PDF Views & Downloads | 632 | 439 | 54 |